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Short-range particle correlations in a dilute Bose gas
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The thermodynamics of a homogeneous dilute Bose gas with an arbitrarily strong repulsion between par-
ticles is investigated on the basis of the exact relation connecting the pair correlation function with the
in-medium pair wave functions and occupation numbers. It is shown that the effective-interaction scheme,
which is reduced to the Bogoliubov model with the effective pairwise potential, is not acceptable for investi-
gating the short-range particle correlations in a dilute strongly interacting Bose gas. In contrast to this scheme,
our model is thermodynamically consistent and free of the ultraviolet divergences due to accurate treatment of
the short-range boson correlations. An equation for the in-medium scattering amplitude is derived that makes
it possible to find the in-medium renormalization for the pair wave functions at short boson separations.
Low-density expansions for the main thermodynamic quantities are reinvestigated on the basis of this equation.
In addition, the expansions are found for the interaction and kinetic energies per particle. It is demonstrated that
for a many-boson system of hard spheres the interaction energy is equal to zero for any boson density. The
exact relationship between the chemical potential and in-medium pair wave functions is also established.

PACS numbgs): 05.30.Jp, 67.40.Db, 03.75.Fi

I. INTRODUCTION AND BASIC EQUATIONS filled in Ref. [3] for reasons of space. Thus, in the present
paper, we continue reinvestigation of a dilute Bose gas with
The well-known experiments with magnetically trappedan arbitrarily strong repulsion between particles within the
alkali-metal atomg1] have significantly renewed interest in model proposed i3], the short-range boson correlations
the theory of Bose-Einstein condensatisee, e.g., Ref2]). being of special interest now. Zero temperature is under con-
In particular, it has recently been demonstrated by thesideration below.
present author3] that the customary way of investigatinga  The formalism of the present paper is concerned with a
dilute Bose gas with a purely repulsive and arbitrarily strongreduced density matrix of the second ordire two-matriy
interaction [4] is thermodynamically inconsistent. An and its eigenfunctions, which we call, following Bogoliubov
=N/V—0 this method is knowr5] to be reduced to the [8], the in-medium pair wave functions. As the two-matrix
Bogoliubov model[6] with the “bare” pairwise potential and its eigenfunctions are not often discussed in the modern
®(r) replaced by an effective, “dressed” one. This is why scientific literature on Bose-Einstein condensation, it is
below the approach of Ref4] is called the “effective- worth noting some basic notation and formulas. The two-
interaction method.” The dressed pairwise potential is usumatrix for a many-body system of spinless bosons can be
ally derived by summing the ladder diagrams and involvesfepresented g$9]
as is assumed, all the necessary information on the short-
range spatial correlations of bosors. In the final expres-
sions use of the effective interaction results in substituting
the exact scattering length for its Born approximatiora,
[5]. This allows for operating with strongly singular poten-
tials, but at the price of loss of the thermodynamic consis- el N T e N e N T e !
tency. In contrasrft, the strong-coupling generi;llization of the Fa(ry,rair, o) =(d (r) gl (ra) (ra) (ry)). (1)
Bogoliubov model proposed by the present author3ins  ere g(r) and ¢(r) denote the boson field operators. Use
based on avariational procedure and does not invoke any of the pair correlation function, which differs from the two-
mean-field arguments. Owing to this structure of the genermatrix only by the normalization factor, is more convenient
allzay(?[n we do not need to worry about the thermodynamiqy, ye thermodynamic limitrf=N/V=const, V— o) when
consistency. . . . . ) Fo(rqy,rp;ry,r5)ocl while po(ry,ri;rq,ry)c1N?. Recentl
The trouble mentioned above gives rise to various misrepg zéa; bzeer11 fézmd&lo,l]]ptzrsa% fozr al urﬁi)form Bose Systgm

resentafions of Fhe effective—inte_raction approach. For EXith a small depletion of the zero-momentum state the cor-
ample, the conqmon .Of .self-conS|stency Iead_s to zero €ong|aiion function(1) can be written in the thermodynamic
densate depletion within the pseudopotential mofdél limit as follows:

Another manifestation is an irrelevant picture of the pair bo-
son correlation at short particle separations. This important Fo(rq,rp;ry,rs)=ne*(re(r’)+2n,
point calls for a comprehensive analysis which was not ful-

- Fa(ra,rairy,ra)
Pz(rl,rz,rl,rz)zw,

where the pair correlation function is given by

dq :
><JWncﬁDq/z(r)@Dq/z(r )
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wherer=r,—r,, R=(ry+r,)/2, and similar relations hold two particles with momenturip. These conditions should
forr’ andR’, respectively. In Eq(2) np=N,/V is the den-  be satisfied in any theory that appropriately takes into ac-
sity of particles in the zero-momentum one-boson stage, count the short-range correlations of particles. Below we
=(alay) stands for the distribution of the uncondensedshow that our modef3] leads to the correct picture of the
bosons over momenta, ane(r) and ¢q,(r) are pair wave spatial correlationgin contrast to the effective-interaction
functions in medium in the center-of-mass system. That isapproach, which leads to negative values of the pair distri-
¢(r) is the wave function of a pair of particles, both being bution function(see Sec. Y. .

condensed. In turnpy,(r) denotes the wave function of the ~ Having at our disposal the distribution functiopand the
relative motion of a pair of bosons with the total momentumset of pair wave functiong(r) and ¢,(r), we are able to
#.q, this pair including one condensed and one uncondenseeficulate the main thermodynamic quantities of the system
particle. So Eq.(2) takes into account the condensate-Of interest. In particular, the mean energy per particle is ex-
condensate and supracondensate-condensate pair states Bfggsed in terms afy, andg(r) via the well-known formula

is related to the situation of a small depletion of the zero{see, €.g., Ref9])

momentum one-boson state. For the pair wave functions we

have f a3k ng

Y
o(r)=1+y(r), ¢¢0=J§umpw>+wArnp¢oxB) (2m)® "N

where the scattering wavefgr) and,(r) obey the bound-
ary conditions forr — o

2 wrmem,  ®

where T, =%2k?/2m is the one-particle kinetic energm is
the “bare” mass of the particles, amt=N/V stands for the
boson density.

The organization of this paper is as follows. In Sec. Il we
(1) =0, gp(r)—0, @ give, for convenience, helpful information concerning the

which follow from the Bogoliubov principle of correlation classification of pairwise potentials .used in the ordinary two-
Weakeninqs]_ The Fourier transforms of the functiowr) body problem. In Sec. Il the BOgO“UbOV model of a Weakly

and ¢,,(r) can explicitly be expressed in terms of the Boselnteracting Bose gas is considered within a variational
operatorség and 5,) [10] scheme. This scheme yields a system of two equations con-

nectingn, with ¢(r). As to the supracondensate-condensate
v (é* a.a ) pair wave fulnctions, they are the symmetrized pla_ne waves
‘/’(k):<akéfk>/n01¢p(k): N[ F2pTptkTpmk/ in the Bogoliubov modelys,(r)=0. In the next section the
2ng N2p low-density expansions for the condensate depletion and
©) mean energy per particle of a weak-coupling Bose gas are
In the representation2) the terms corresponding to the calculated within the Bogoliubov model. The effective-
interaction approach of Ref4] is analyzed in Sec. V. Using

supracondensate-supracondensate “"channel” are neglectet e results of the previous Secs. Il and IV, we show that the

i.e., we omit the contribution of pairs of particles that are S : . . .
" g effective-interaction approach is thermodynamically incon-
both uncondensed. Additionally, it is assumed that there aré. o : .
. oo ; Sistent. This inconsistency turns out to be directly related to
no bound states of pairs of bosons, which is obviously real=

; > . an irrelevant picture of the short-range spatial boson correla-
ized for a purely repulsive interaction between bosons.

: . : . tions. In particular, for a strongly singular potential the
The diagonal matrix element of the pair correlation func- L . : e
. ; . e . effective-interaction scheme vyields for the pair distribution
tion (2) is proportional to the pair distribution function

function the nonphysical resuif(r =0)=—1 in the limitn
9(r)=F (1 ,FoiF1,r5)/N 6) —0. It is also demonstrated that the well-known ultraviolet
divergence appearing in the effective-interaction approach as
that can be observed directly in scattering experiments. Deriwell as the thermodynamic inconsistency occur because the
vation of Egs.(2)—(5) and detailed discussion can be found Bogoliubov framework is used beyond the range of its valid-
in Ref.[10]. ity. The regularizing procedure, which consists in omitting
The two limiting casesi—0 andr—0 correspond to the the divergent integraf d®/k?, can be justified provided the
situation when the behavior of two particles in the medium isquantities of interest depend on the pairwise potential
determined by the ordinary two-body problem provided thethrough the mediation of the scattering lengg. (11) be-
pairwise interactionb(r) is repulsive and goes to infinity at low]. Section VI concerns a correct strong-coupling gener-
short boson separations. In particular, wher 0 we have alization of the Bogoliubov model. This generalization is
(n—ng)/n—0 and, as has been known since the Bogoliubowased on Eq(6) taken together with E¢(2) but not with its

Origina| paper and follows also from qu) and (6), linearized variant Eq(25) (beIOV\b used in the effective-
interaction approach, which is the weak-coupling approxima-
g(r)—[e@(r)72 (7)  tion for g(r). A variational procedure similar to that of Sec.

Il is formulated. It provides the system of equations that
Here ¢)(r) is defined bye®(r)=1lim,_oe(r) and obeys should be solved to find the pair wave functions in conjunc-
the ordinary two-body Schdinger equation in the center-of- tion with the momentum distribution. For a dilute Bose gas
mass system(9) (see Ref. [6]). Similarly, gofjo)(r) this system is reduced to a set of two equations connecting
=lim,_o¢,(r) obeys the Schuiinger equation related to the n, and¢(r). There is an essential difference between these
eigenvaludip?/m that corresponds to the relative motion of equations and those of Sec. Ill. Now the pairwise potential
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®(r) appears only in the combinatiap(r)®(r), which al- yO(k) = ¢(10)(k)+ ¢(20)(k)+ . (13
lows for using the strongly singular potentials beyond the
effective-interaction scheme. In what concerns the POK) = — D (K)/(2T,), (14)

supracondensate-condensate contribution to the thermody-

r_1amic quantities, it can b_e calculated with the relationwhich leads to the following expansion for the scattering
limy_o@o(r)=+2¢(r) resulting from Egs(3) and (4). In .

p p\l) = \ N length (11):
Sec. VII we investigate the short-range renormalization for
¢(r) conditioned t_Jy t_he presence of surrounding b(_)sons._ Its a=ag+a,+a,+ -, (15)
long-range behavior is also discussed. The whole investiga-
tion of this section is based on the in-medium Lippmann-

3 2
Schwinger equation coming from the equation fe(r) _ d(k=0), a;=— m f d’k @ (k)‘
found in Sec. VI. In Sec. VIII the low-density expansions for O 4mh? ’ Arh?) (2m)% 2Ty

the Bose condensate depletion, the energy per particle, and (16)

the chemical potential are found within the model presented

in Sec. VI, various methods of calculation being used. FoHere #°(k) and ®(k) stand for the Fourier transforms of
this purpose we establish the exact relationship between thg(®)(r) and®(r), respectively. If we restrict ourselves to the
chemical potential and pair wave functions in a condensefirst terms in Egs.(13) and (15 [z,lx(o)(k):z/;(lo)(k) and a
many-boson system. Here we also evaluate the kinetic angta,] we arrive at the Born approximation for the wave
interaction energies per particle which, to our knowledgefunction and the scattering length, respectively.

have never been calculated before. It should be stressed that The interaction is called the weak-coupling one, provided
they explicitly depend on the shape of the pairwise potentiathe Born approximation works well, in particular,

even in the leading order of the low-density expansion. In the

framework of our approach we are able to perform all the d3k  DA(K)
calculations concerning the kinetic and potential energies f 3 o7,
both directly and with the Hellmann-Feynman theorem, in (27m) K
contrast to the effective-interaction method. The main results

and prospects are discussed in the last section. This is valid if, first, the potentiatb(r) is integrable, and,
second, it is proportional to a small parameter, the coupling

constant. The latter implies that°)(r)|<1, and so the

Born approximatior(14) is nothing but a linearization of Eq.
Before further consideration we recall the classification of(9) with respect toy(°)(r), proportional to the coupling con-

the pairwise interaction®(r) that is used in the ordinary Stant:

two-body problem. In this paper we deal only with short-

<d(k=0). (17)

II. CLASSIFICATION OF INTERACTION POTENTIALS

range potentials that go to zero far—o~ as ®(r) VI 1+ ¢O(r)] 2.,(0)

— 1™ (m>3), or even faster. Let us consider the solution mzv Pr).
of the two-body Schidinger equation in the center-of-mass

system,

The potential is called singular if it is integrable but the Born
9 approximation does not work well. Finally, the potential is of
—h—Vzgp(O)(r)+<I>(r)gp(°)(r)=0, 9) strongly singular, or hard-core, type if it is not integrable
m [D(r)—1/r™(m=3) forr—0], and the term$14) and(16)
thus cannot exist. In the present paper a pairwise interaction
which corresponds to the scattering state with the momentursf this type is exactly implied when we speak about the
p=0:0O(r)=1+y(r), where the scattering part be- strong-coupling regime. For example, the well-known
haves as Lennard-Jones potential corresponds to this case together
with the hard-sphere interaction,
yO(r)——alr (10
+oo, r<a
whenr—o. Owing to this boundary condition with the real d(r)= 0 f~a (18
quantitya, the solutione®)(r) is chosen to be real also. The ’ '
scattering lengtla is defined by means of the scattering am-

plitude U©)(0): In the strong-coupling regime the solution of H§) obeys

the boundary conditior°)(r =0)=0, otherwise the inter-
action energyE; .= [d3r[ ¢ (r)]2®(r) and the scattering
m uO(0), length (11) would be infinitely large.

a= Ak (1) In further consideration we make use of the variational
theorem for the scattering amplitud&2):
u©0)= f d3re@(r)d(r). 12 h?
( ) ro (r) (r) ( ) 5U(0)(0):fd3r ¢(O)(r)5 _EVZ lﬁ(o)(r)

As applied to Eq.(9), the perturbation technique gives the
expansion for its solution + qo(o)(r)5(q)(r))(p(o)(l’)}. (19
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In order to prove this relation, we represent EtR) in the  In particular, the Bogoliubov model operates with the choice
form [3,10,11

|p(r)|<1, y(r)=0.

As the depletion of the Bose condensate-(g)/n is small
in a weakly interacting many-boson system, we have for the

which can be found using integration by parts and taking int@ne-particle density matri 1(r)= (" (r1)i(r,))
account the Schdinger equatior(9) and the boundary con-

dition (10). Further, varying Eq(20) and keeping in mind Fa(r)| j d*k ny
Egs.(9) and(10), we arrive at Eq(19). The relation(19) is n \_ (2m)3 N
analogous to the variational theorem for the energy:

ﬁ2
u<°’<0)=f d3r(EIVw“”(r>|2+[<p<°><r>]2<b(r>>,
(20

n
0<1.

=

explik-r)

) So the Bogoliubov scheme of treating a Bose gas involves
_ 3. (0) n oo (0) two small quantities/(r) and F,(r)/n and completely ne-
OEn fd adl (r)5( mV +(D(r))"p” (r). glects scattering in the supracondensate-condensate sector of
g(r):¢p(r)=0. This along with Eq(2) allows for rewriting
Here the real wave functiop!®)(r) obeys the Schidinger  Eq. (6) in the following form:
equation for a bound state with ener§y,. Equation(20)

. ; 3
can be represented in the more convenient form

(n=1+2 (r)+zf ak
g(r)=1+24 n) (2m)

77_3

neexplik-r). (25

3 0) 2 _ 2(n_
fdr[qo (N]"®(r) =4mA(a—b)/m. 21) Here we have restricted ourselves to the terms lineai(im)

andF4(r)/n. In addition, it is implied thaty* (r) = (r), for
Here one more characteristic lendtiin addition toa) has  the pair wave functions can be chosen as real quantities.
been introduced: Inserting Eq.(25) into Eq. (8), we are able to employ a
variational procedure to derive the unknown quantitlék)
andny. In so doing, we should realize that and (k) are
not independent variables. In fact, there are no spatial boson
correlations in the absence of interactid2]. Hence in this
It follows from Eg. (22) that b is a positive quantity. We casey(k)=0, and, as we investigate the ground state, all the
stress thab is not expressed in terms afand depends on a bosons are condensead,=0. In the presence of interaction
particular shape of the interaction potentfh(r). For ex- (k) #0, which leads to a nonzero depletion andnge-0.
ample, whenb(r) is the hard-sphere potentid8), we have  Within the Bogoliubov models(k) is related ton, by
b=a, while for ®(r) close to zero, in the weak-coupling

1
b=Ef d3r|VyO(r)|2 (22)

regime, we havé=—a,, a=a,, and hencd<a. NNt 1) = ngy?(k). (26)
Lastly, from the definitiong11) and (22) and the varia- . ) )
tional theorem(19) it follows that Indeed, according to the canonical Bogoliubov transforma-
tion, quasiparticle operators,. and «, are connected with
fda Ja the operators of the primordial bosons by the expression
y—=m—=a—b, (23
ady Jam ~ “ ~t ~ 4 ~t “
=Ukaytovga ., a=Ua, toga_y, (27)

where we introduce the auxiliary parametecalled the cou-
pling constanfi.e., ®(r)— y®(r)]. The first equality in Eq.
(23) implies thata=a(ym), which is an obvious conse- W2—p2=1 (28)
quence of the definitiori11) and the Schidinger equation ko Pk

(9). The relations(23) demonstrate that the quantityis  \yithin the Bogoliubov model the ground state of the system
expressed in terms af and its derivative with respect tp  of jnterest is the Bogoliubov quasiparticle vacuum, and so at

where

(or m) rather than in terms cd. zero temperature we have
Ill. VARIATIONAL TREATMENT OF THE BOGOLIUBOV (&I&k>=0. (29
MODEL

) . ) . ) ~ Then, using Eqgs(5), (27), and(29), one can find
Although the aim of this paper is to investigate a dilute

Bose gas with strong-coupling interaction, it is instructive to nk:vﬁ, H(K)=uw,/ng,
start with the Bogoliubov model related to the weak-
coupling regime. This regime implies a minor role of particle which in conjunction with Eq(28) leads to Eq.(26). We
scattering, both in the medium and out of it, and thus isremark that beyond the Bogoliubov scheme EZf) is not
characterized by the following inequalities for the scatteringvalid and should be correctddee Eq.(51) in the present
waves(3): paper and discussion on this question in R&f].
Now, inserting Eq.25) into Eq. (8) and varying the re-
lg(r)| <1, |gp(r)|<1. (24)  sulting expression with respect ti(k) andn,, we derive
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d3k
de= f (27

According to Eq.(26) infinitesimal changeg(k) and én,
are connected by

® (k)

1
K)=—3 —m—.
=73 Ti+2nT @(k)

IV. DENSITY EXPANSIONS IN THE BOGOLIUBOV
MODEL

(36)

ony
[T+ nCD(k)]T + nd)(k)aw(k)) .
(30

3 As we mentioned, in this paper we investigate the strong-
(2”1<+1)5nk+ p(k) [ d°q coupling regime for a dilute Bose gas. So considering a di-

Sptk)= 2n5y(k) no J (2m)3 g, (3D lute Bose gas in the weak-coupling approximation can be a

good exercise providing us with useful information. Let us

where the equality investigate the thermodynamics of a dilute many-boson sys-
tem within the Bogoliubov model. With Eq€8), (25), (35),

d3k and(36) we derive
n=ngy+ f 3Nk
(2m) n 1 dq
L . . e=-D(0)+ —
is implied. Takingde =0 and using Eqs(30) and (31), we 2 2n) (2m)°

find the following equation:
, X(VTg+2nT @ (q) —Tg—nd(q)). (37

n
—2Tp(k) = = P(K)(1+2n) +2ne(k) Here we describe in detail the method for obtaining the low-
No density expansions for expressions like ERj). This equa-
N o tion can be represented in the following form:
<[ 000+ 2[ L8|
(k) no) (2m)? (q)w(q)>

3 2
s=g((1>(0)—J dq 27 +1, (38

(2m)® 2Tq

(32

Note that Eq(32) is able to yield results accurate only to the where
leading order in §—ng)/n because Eq(25) is valid to the

next-to-leading ordef13]. So Eq.(32) should be written in d3q TS Tq
the form |:§j 3 — +2—=P(q)
(27) n n

= 2T (k) =®(k)(1+2n) +2ng(k)d(k), (33

[N

®2(q) )

Ty ®
R AT

which, with the help of Eq(25), can be represented as

Now, with the “scaling” substitution

(34 g=q'v2mn/#, (39

Equation(34) is very similar to the Bethe-Goldstone equa- we derive

tion. Necessary details concerning E&4) can be found in o
Refs.[11,14). We remark that the right-hand sidihs) of Eq. I 1/2m d3q’
(34) can be thought of as the in-medium potential of the nT/zzﬁ(ﬁ) j(277)3
boson-boson interaction in the Born approximation. Indeed,

Eq. (34) is derived from the more general equation given byyhere
Eq. (56) below by means of linearization im/(r) and

F.(r)/n. So the Bogoliubov model can be treated as the f(q’,n):\/(q’)4+2(q’)2q)(q’\/Zmn/ﬁ)—(q’)z
in-medium Born approximation for its generalization devel-

oped on the basis of Eq$2) and (6) beyond the weak- ®2(q'V2mn/h)
coupling regime(see Sec. VI In accordance with this treat- —@(q’V2mn/fi)+ T

ment, Eq.(34) at n=0 is nothing but the Fourier transform q

of Eq. (14), while Eq. (56) is reduced to the exact SCAro The advantage of the representati@) is that the resulting
dinger equatior{9) atn=0. We will return to this important integral in Eq.(40) uniformly converges forg’ — with

hZ
EVch(r)ZCD(f)Jrnf d*y@(y)[g(|r—y))—11.

f(a’.n), (40)

pointin Sec. V. respect ton for n—0, and thus we obtain
The system of Eq926) (here we should set=n,) and
(33) can easily be solved, which leads to the familiar results I 1/{2m\%? d3q’
6 Iim—==|— j f(q’,n=0).
[ ] nﬂon3/2 2 hZ (27T)3 (q )
1 Tt nd (k) . ) _ .
== —==——-1 (35 Here the integral is readily calculated, and the main asymp-

2\ T+ 2nT @ (k) , totics forI(n) is given by
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8 (mn\¥? calculating procedure based on Eq@25) and (26) has to
| = 2(—2> 5% 0) (41)  eventuate in Egs(33)—(36). Otherwise, as in the case of
157\ # using the Bogoliubov model with an effective interaction,

this procedure does not yield a result minimizing the mean
energy. Note that we do not mean, of course, that the
t-matrix approach or the pseudopotential method cannot be
applied in quantum scattering problems. It is only stated that
_ 2mh*n(ap+ay) n 2mh*nag 128 Jnad+ - the usual way of combining the ladder diagrams with the

m m 15{7 ' random-phase approximation oné%ubbles”) leads to a

(42)  thermodynamic inconsistency.

) ) ) ) ) To clarify the reason for this inconsistency, let us take a
Thus, we obtain the first two terms in the density expansiongok at the picture of the spatial boson correlations derived in
for the energy per particle within the Bogoliubov model.  the framework of the effective-interaction approach. Accord-

The density expansion for the condensate depletion is inng to the paper by Hugenholtz and Pirié$[see Eq(5.103
ferred from Eq(35) in the same manner employing the sub- thereir, the structure factor

stitution (39):

Further, with the help of Eq416), (38), and (41), the ex-
pression(37) is rewritten as

&€

n—ng f d%q ng 8JE§+ S<k>=1+nf d*rfg(r)—1lexp(—ik-r) (45
T 2m®n 3w
of a strong-coupling Bose gas can be writtennat0 as
Now let us discuss the range of validity of the Bogoliubov follows:
model. First, the condensate depleti@®) should be small
as the representation for the pair correlation funct@rthat Ny ~in Ng ~ ~ At Ay
we start from is valid only in this case. Note that, if we S(k)=1+2—"(aga)+ —~(ad-w +(a ay)). (46
expand the depletion with respect to the coupling consfant
[we assume thab(r)e y], we also arrive at Eq43) since  Using Eq.(5), the equalityy(k) = ¢* (k) [16], and definition
the occupation numbéB5) depends only on the production (45) of the structure factor, one can readily verify that Eq.
ny. Thus, the conditioma8<1 should be fulfilled. Second, (46) is reduced to Eq(25). This Bogoliubov relation does
we exploit the weak-coupling character of the pairwise internot depend on the interaction potential explicitly. So use of
action ®(r), which implies that the conditioil7) should the dressed interaction can in no way disturb the form of Eq.
also be satisfied. Note that Bogoliubov himself realized thig25), and, therefore, the effective-interaction approach deals
necessary condition since he treated the terd(0)/2  with a pair distribution function whose structure has obvious
=2mh?nay/m involved in the mean energid7) as the ma-  weak-coupling character. In particular, from Hd6) it can
jor one [6]. Beyond the inequality(17) the model may be be found thatg(r)— 1+2y)(r) for n—0, as opposed to
thermodynamically unstable. In particular, the opposite caséhe correct strong-coupling result given by Eg). However,
the wave functione®(r) obeys Eq.(9) in the effective-
d*k ®*(k) interaction approacH17], while within the Bogoliubov
¢(0)<f (ZT)S 2T, (44) model ¢(®)(r) is the solution of Eq(34) atn=0. This equa-
tion [Eq. (34) atn=0] comes from the Schdinger equation
leads to a negative scattering length in the next-to-Born apt9) in the Born approximatiofsee the discussion in Sec.)lll
proxima‘[iona: a0+ a1<0, which at Sufficient'y low densi- ThUS, the effective-interaction approach iS not t0ta||y re-
ties results in the incorrect sign for the compressibility duced to the weak-coupling framework due to its features of
— 9?EloV2=9P/gV>0 as is seen from Eq42). Note that Strong-coupling characteExactly this combination of the
this important point is not always stressed in the literaturePeculiarities of both the strong- and weak-coupling regimes
Moreover, Bru and Zagrebnojl5] proposed a model re- is the reason for the thermodynamic inconsistency mentioned
duced to the Bogoliubov approach but in conjunction with@bove.

the inequality(44). We have to conclude that this model It is also worth noting that this combination of the fea-
hardly has physical sense. tures of weakly and strongly interacting Bose gases leads not

only to the thermodynamic inconsistency, but also to an ir-
relevant picture of the short-range boson correlations. In-
deed, in the case of a strongly singular pair interaction for the
solution of Eq.(9) we have ¢®(r=0)=0 (see Sec. )|
which provides #{%(r=0)=—1. Within the effective-
After the detailed consideration in the previous sectionsinteraction schemg(r) obeys Eq.25) while ¢((r) satis-
we can argue that the Bogoliubov model with the “bare” fies Eq.(9). This implies thatg(r=0)—1+ 24 (r=0)=
potential®(r) replaced by an effective orjd] is thermody- —1 in the zero-density limit whem(—ny)/n—0. The result
namically inconsistent. Indeed, the basic relations of the Boebtained does not agree with the physical sensg(of (the
goliubov model(25) and (26) do not depend explicitly on conditional probability and has nothing to do with the
interaction. Hence, the pairwise potential appearing in Egsstrong-coupling regime when the relatigfr =0)=0 has to
(33)—(36) comes from Eq(8), which is the general relation be satisfied. The situation is even aggravated if we recall that
valid in both the weak- and strong-coupling regimes. Thus, ahe scattering parts of the supracondensate-condensate pair

S (43

V. SHORT-RANGE CORRELATIONS AND ULTRAVIOLET
DIVERGENCE WITHIN THE EFFECTIVE-INTERACTION
APPROACH
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wave functionsi,(r) are equal to zero in the Bogoliubov where the factors; can depend on various quantities but one
model. So, in what concerns the pair distribution function,of them, the “bare” potentiafb(r), is involved only through
the “triple” correlations involved in Eq.(5) for (k) are the mediation of the scattering lengthl). Substituting the
completely ignored within the effective-interaction scheme.Born series(15) in the expressions foc;(a) in the weak-
However, when deriving an equation for the effective poten-couplingregime, we obtain

tial, these correlations are taken into consideration, for ex-

ample, within the Beliaev approacsee the discussion in the aci(a)

review[18]). So we face one more combination of the weak- ci(@)=Ci(ap+art - -)=ci(ap)+ Ja at--

and strong-coupling features that is characteristic of the ap- 4%

proach of Ref[4].

Since the short-range behavior of the pair distribution
function is not correct within the effective-interaction ap-
proach, one can expect some problems related to evaluati
of the mean energy8). Let us consider the effective-
interaction method in its simplest variant, the so-called
pseudopotential moddkee the paper by Lee, Huang, and
Yang of Ref.[4]). This variant implies the replacement
®(r)— 8(r)4mh2alm, and hence for the Fourier transform
we have

(49

As the functional dependenciega) are of the same form in
both the weak- and strong-coupling regimes, one is able to
Ystore them by keeping the Born terméag) in the expan-
sion (48) and omitting otherg¢dependent o, ,a,, ...). It
can readily be verified in this way that E@2) leads to Eq.
(70). Thus, the pseudopotential approach providager
regularization the correct result given by E¢70) because it
is equivalent, in the first two orders of the low-density ex-
pansion, to a calculating scheme using the Bogoliubov model
together with Eqs(48) and(49) based on the Landau postu-
®(k)—4h?a/m=const, (47 late[20]. Note that this simple scheme looks even more ac-
curate and justified than the pseudopotential approach. At

where a is the scattering lengtfi11) obtained from the least, it allows for inve;tigating a strongly i.nteracting Bose
Schralinger equation(9). So the pseudopotential model is 98 beyond any ultraviolet divergence which appears as a
reduced to the Bogoliubov model with the effective p(,;lm,\,iseresu_lt of violating the subtle balance_of correlation terms
interaction given by Eq47). In a well-known textboo5] ~ €OmMing from the _boson-boson scattering. However, neither
one can find two ways of calculating the leading and next{ne pseudopotential approach nor the Bogoliubov model used
to-leading terms of the low-density expansion of the energy9ether with Eqs(48) and (49) can yield adequate micro-
of a dilute Bose gas within the pseudopotential model. On&COPIC results concerning the strong-coupling regime.
of them (see pp. 314—31%onsists in dealing directly with  1he second way of calculatingn) within the pseudopo-
the Hamiltonian of the system and faces the divergent intet€ntial model allows one to find the low-density expansion
gral [d3k/K? (the ultraviolet divergende The secondgiven (48 starting from the difference
on pp. 218-22B allows for calculating the difference
— u/2 and does not lead to any divergence. M 1d(en) 27hi’nay 32 Jni. (50

In the previous section we have derived the low-density 2 2 on m 15 nag, (50
expansiorn(42) corresponding to the Bogoliubov model. This

expansion can help us to understand the reasons for the afyere Eq.(42) and the well-known thermodynamic relation
biguous result of the pseudopotential model. Use of the, _ jrn.(n)]/an are of use. There is no divergent integral
pseudopotential47) leads to the substitutioa—a, in EQ.  here due to the specific property of the expansi®): a, is
(423)' Ir12 addition, a; — — as it becomes proportional 10 jnyolved only in the leading-order term that is exactly can-
Jd°k/k* [see Eq(16)]. This agrees with the result of the first ¢gjeq in Eq.(50) [20]. The solution of the differential equa-
way of calculatings in the textbooK5]. The divergent inte- o (50) (after replacinga, by a) is of the forme=cyn
gral is usually removed because it is assumed that “this di'+(27-rﬁ2na/m)(128/15J§) Jnad. To specifyc,, a constant
vergence Is not very basicf5]. SO’ we arrlve'at the correct of integration, one again needs to involve information addi-
expression Eq. (70) below], which is found in our model = yjona) 1o Eq.(50). Following Landau anghostulatingthat ¢,

beyond any divergences. The reason for the singularity igenends on the pairwise potential only through the mediation
obvious because the necessary conditbn of the validity — J¢ "y o scattering lengtta, one arrives atc,=27%%a/m

of the Bogoliubov model is not satisfied. However, the quesyyhich eventuates in Ec{76) ! ’
tion remains why the pseudopotential approach results nev-' 1,5 " \ve remark one more that the effective-interaction
ertheless in the correct final expressigtD)? The point is y

that the effective-int " h tually invol dapproachtaken in conjunction with the Landau postulate
1at the efiective-interaction scheme actually INVOIVES an alGie|qs the correct expansidi0). Even Wu's ternj21] in the
ditional assumption, namely, the Landau postul@ee the

. : o ) low-density expansion of the energy of a strong-coupling
footnote in Ref.[6] and dlscu_ssmn |n_Re[.4]). This postu- Bose gas is likely to be correct because it is present in the
late asserts that the properties of dilute quantum gases ay, ak-coupling calculations beyond the Bogoliubov model

ruled by the scattering length[ 19]. Let us consider how the 551" o ever, the microscopic results found within the
additior_lal assumption is used when derivi_ng the low-densit ffective-intera1ction approach should be reexamined. So a
expansion for the mean energy. According to the Landay,rect strong-coupling generalization of the Bogoliubov
argument this expansion should be of the form model should be constructed. It is also of importance that the
density expansions for the quantities depending on the form
e=cy(a)n+cy(ayn®+. .., (48)  of ®(r), for example, the interactiof76) and kinetic(77)
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energies below, cannot be derived directly within the #2 )
effective-interaction scheme. We discuss this point in Sec. -V @(r)=¢(r)®(r)+n
VIII E.

3 — —
VI. STRONG-COUPLING GENERALIZATION OF THE X f dyo(y)2(Y)[gu(Ir—y))—1], (56)
BOGOLIUBOV MODEL

wheregy, (r) stands for the truncated pair distribution func-

To avoid the serious problems mentioned in the previougion which is equal to the right-hand side of E@5) even
section, we should abandon the effective-interaction methogeyond the weak-coupling regime.

and use a way based on H@). Equations(2), (6), and(8) Equations(2) [and, hence, Eqg6) and (8)] and (51) are

make it possible to expregsin terms of the pair wave func- \ritten with the condensate-condensate and
tions and momentum distribution. So a variational procedurgpracondensate-condensate channels taken into account. As
similar to that of Sec. IIl can be employed to determine thesgnese relations are accurate to the next-to-leading order in
basic quantities. In so doing we should again keep in mingn _p y/n, Eq.(52) can be accurate only to the leading order
that the momentum distribution depends on the scattering, (n—no)/n. So it would be wrong to solve Eq52) to-
waves(see Sec. l). However, now we are not able to use gether with Eq(51). One should investigate E¢2) in con-

the Bogoliubov relation(26), which does not take into ac- junction with the shortened version of E&1) given by Eq.
count scattering in the supracondensate-condensate sector.(%) where the equaliyn=n, is implied. The system of

[3] the following extension of Eq(26) was proposed: Egs.(26) and (52) has the following solution:

d3q ~

2 2 +

(Nt 1)=n0¢2(k)—|—2n0J Gl (6D nk=%<w—l> | 57
VT2+2nT U(k)

This expression was derived with the help of the reasonable

expectation that the equation fgg,(k) should be reduced to 1 U(k)

the equation fory(k) in the limit p—0. It is interesting to p(k)y=— = —— (58

note the obvious structural parallels between H@s.and 2 VTZ2+2nTU(k)

(51). Now, inserting Eqs(2) and (6) into Eqg. (8) and then

perturbingy(k) andn, under the conditior51), we find with T,=T,+n[U’(k)—U(K)]. As to the supracondensate-

, condensate states, the goal of this paper makes it possible not
2Tk =U (k) (1+2ng+2ny(k)U’ (k). (52) to go into details concerning,(r). It is sufficient only to
/ . use Eq.(55). In the zero-density limin=0 Egq. (58) is re-
HereU(k) andU'(k) are defined by duced to the equationy(k)=yO(k)=—UO(K)/(2T,),
) which can be rewritten in the form of E¢9). So at small
U(k):f d®re(r)@(r)exp(—ik-r), (53)  densities all thermodynamic quantities can be expressed in
terms of the vacuum(out-medium scattering amplitude
U©(k) given by
U100~ [ et - 67 1)
U(O)k=fd3r Oryd(r)exp—ik-r). 59
g U i (k) e (r) @ (r)expl ) (59
—f—g—[wk,z(m—w (@] (54 . _

(2m)® ¥(a) Below it is shown that this feature of Eq&7) and (58)
results directly in Eqs(65), (69), and (70). So the low-
density energy expansion given by E@0) is determined in
our model beyond any additional assumptions like the Lan-
. . dau postulate in the pseudopotential approach. Equations
FI,'TO(P"(”_@P(”’ (59 (57) and (58) yield n 1k and (k) 1k at small boson

momenta. This is totally consistent with the well-known
where the factorn/2 comes from the second expression in“1/k?’ Bogoliubov theorem[8]. It is interesting that the
Eq. (3). Using the equation fog,,(k), one can be convinced Correct low-momentum behavior af andy/(k) comes from
that yo(k) =lim,,_oi,(k) = const< ¢(k). We should put this the relationU’ (k) —U(k)=k® which follows from Eq.(54)
constant equal tg/2 in order to obtain Eq(55) [23]. So we takenl ”:[‘, CO”JU”?(“O",‘ Wltrll\lth5t5h)’ ?I?E{Zusl)t of ?ég)rlgmplegf
have ¢(r) — \2¢,(r)<p? (see Ref[10] in [3]), which pro- ~ cOrrelation weaxening. INote tha an erive
vides(fJ(’ ()k) l/;@(pk()o)ckffog K—0. A[ddi]tiongll];, it is easl?y to within the BogohubovaodeI can be obtained from E@)
verify that[U (k) —U’(k)]/T,—0 whenk—. Therefore at and(58) by replacingT, and U(k) with T, and ®(k), re-
small densitiesi[ U’ (k) —U(k)]<T, for all momenta. This Spectively. So in what concerns EdS7) and(58), the situ-
is why the difference between’ (k) andU (k) does not play ~ ation in our strong—coupllng' generalization of.the Bogoliu-
a role when calculating the first two terms of the low-densitybov model does look as if we operated with a weakly
expansions for the basic thermodynamic quantities. Thus, dfiteracting Bose gas of the quasiparticles with the renormal-
sufficiently small densities Eq52) can be rewritten in the ized kinetic energyT, and the effective interactiok(r)
following form: =¢(r)®(r). This is close to the expectations following

An equation fory,(k) can be derived in the same manner.
Note that we have the following limiting relation:
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from the effective-interaction approacf#]. Due to the From Egs.(60) and(61) it now follows that
boundary conditiord (k) — U’ (k) =k* at smallk the mass of

the quasiparticles coincides with that of the primordial U(K)—U©(k)=ad (k)

bosons. However, as was mentioned in R&f, Eq. (51) is 3

the simplest of the possible approximations, which are fixed _f dq (lk—al)
(2m?®  2Tq

U(q)—-Uq)],
by the necessary condition that the Bethe-Goldstone equation (V@) (@]

for (k) is reduceq to .the equation f@r(k) in the limit p 62)
—0. These approximations lead to the same low-density ex-

pansions for thermodynamic quantitigthe energy, the \yhereU(©(k) obeys Eq.(60) with n=0, i.e., the standard
chemical potential, the condensate depletionthe leading | jyomann-Schwinger equation. Introducing the new quantity
and next-to-le_admg terms. However, the dl_ff_erence in theé(q): —[U(q)—U(O)(q)]/(ZTq), for its Fourier transform
thermodynamics has to appear at small but finite densities 8g,) we find an equation that is nothing else but the $ehro
well as in the higher-order terms in the density expansionsyinger equation9) with ¢©(r) replaced bya+ &(r). As

The same goes for the microscopic picture given by Eqsg(r)ﬁo whenr —, we can conclude that(r) = ay©(r).
(57) and(58). Here the different approximations of the rela- Hence, fom—0 we get

tionship between the momentum distribution and pair wave

functions can lead to some different details. In particular, we 8
cannota priori exclude the possibility that there is a more Uk)=UOk)| 1+ y(k,n)—\/na3). (63
relevant variant of Eq(51) which leads toU’(k)—U(k) N

xk?(k—0). In this situation the quasiparticle mass would be ) )
m* =m/(1+ Bn), where@=lim,_o[U’ (k) — U(k)]/T,. Her_e v(k,n)—1 whenn—0, and th_e scattering _Iengthl_s
defined by Eq.(11). The result derived for the in-medium
scattering amplitud® (k) coincides with the low-density ex-
VIl. SHORT-RANGE BOSON SPATIAL CORRELATIONS pansion for the effective potential found within the effective-
Now, to elaborate on the picture of the short-range bosofteraction approach at zero temperat{see Eq.(4.27) in
correlations, let us investigate how the correlation hole stiputhe review[18]]. This shows once more that there are actual
lated by the repulsion between bosons at small separatioirallels between our model and the approach of REf.
changes due to the influence of the surrounding bosons. Adowever, these parallels are accompanied by significant dif-
n—0 this hole is completely specified by the condensateferences. First, in general the in-medium Lippmann-
condensate pair wave functias(r). Exploring howU (k) is S_chwmg_er e_quat|0(60) is not a variant of thé matrix equa-
expressed in terms &f©)(k) makes it possible to know how tion, which is frequency dependent, contrary to E60).
o(r) differs from ¢(©(r) at small boson separations. Note Second, Eq(60) has been found beyond any diagram tech-
that the relation connectirig (k) with U(©(k) has been pub- Nigue by_ means of a 'varlatlonal prpcedure Whoge conse-
lished in our previous papgB] without supporting calcula- duence is that the pair wave functions “generating” in-
tions for reasons of space. Let us give these important calcdl®dium scattering amplitudes coincide with the pair wave
lations here. Using the definition &f(k) and Eq.(58), for functions involved ing(r). On the contrary, this is not true

the scattering amplitude one can find for the effective-interaction scheme, which implies plane
waves forgy(r) in the pair distribution function(see the
d3q  ®(lk—q))U(q) discussion in.Sec_. Mand certainly goes beyond. the plane-
UK)=d(k)— 3% J ,  (60) Wave approximation when calculating thematrix corre-
(27)3 | /=‘|-(2]Jr 2n7I'qU(q) sponding to a pair of particles with nonzero total momentum.

Third, in Egs.(57)—(60) we deal withT rather than with
which can be called the in-medium Lippmann-SchwingerTk, appearing in the effective-interaction scheme. For more
equation. Let us rewrite Eq60) in the form information, see also the discussion[it0]. Now, returning

to Eq.(63), we can conclude that for<sR [R is the radius of
d3q ®(|k—q))U(q) the int_eraction potentiadb(r); for strongly singular poten-
3 - =1, tials Ris of the order of the scattering lengiffandn—0 we
(2m) q obtain the following in-medium renormalization:

sﬁ)
@(k-ahu(@ ®(k-g)U() i

|72 = T ' Thus, the correlation hole coming from the repulsion of
Tg+2nT U(q) q . .
4 bosons at small particle separations becomes less marked

with an increase of the density of the surrounding bosons,
which is mainly the result of the Bose-Einstein statistics. For
the pair distribution function at small boson densities we
have g(r)[¢(®(r)]? [see the expressiof83)]. So, for
S strongly singular potentials, whes{®(r =0)=0, the correct
l=—a®(k), a=-——U3%0). (61)  strong-coupling resulg(r=0)=0 occurs for a dilute Bose
2p3 gas if Egs.(2), (8), and(51) are taken as the basic relations.

U(k)=®(k)—%f

where forl we have

d3q
_1
I_ZJ (2m)°

Performing the “scaling” substitution(39) in the integral
and then taking the zero-density limit in the integrand, for
n—0 we find

e(N=¢O(r)| 1+

(64)
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It is interesting to note that for the effective-interaction )
approach4] an upper cutoff in the momentum spacepat Up(k):J’ d3r @p(r)(r)exp(—ik-r). (68)
=fi/a is usually made. Thus, one could expect that owing to
the Uncertalnty relation in-medium renormalization would beUS|ng the Subst|tut|or(39) in the |ntegra| and tak|ng into

essential whem=<r in real space. Equatiof64) shows that consideration Eqs(55), (63), and (65), we can rewrite Eq.
this is not the case. As is seap(r) at small separations is (67) for n—0 as

really a solution of the bare Schtimger equatiorisee Sec.)l

but differs from¢(©)(r) by the multiplier (1+8yna3%/\/=). Anh2an 32

We also remark that unusual overscreening takes place fon=nU(0)(1+¢+---)= o 1+ na’+---

¢(r) whenr—o. Indeed, Eq(58) yields 3\/; 69
lim kz/;(k)—— U(O)_ This, together with the thermodynamic relatiop
K0 n =Jd[ne(n)]/an, yields the following result:

The last relation implies that for the condensate-condensate 27h2an 128

pair wave function we havey(r)=¢(r)—21c«1/ir? for r =" 1+ 15\/; na*+- - - (70

—oo, in contrast to the bare wave functiog{%(r)

= ¢(O(r) — 11/ for r— [see Eq(10)] known since the familiar paper by Lee and Ya#$] and

found with the binary collision expansion method.
VIIl. LOW-DENSITY EXPANSIONS

Now, to verify that a subtle balance of the terms coming B. Direct calculation of the energy

from the short-range particle correlations plays a significant The method of this subsection is direct and starts from the
role in the problem of the strong-coupling Bose gas, let usexpression(8). Inserting Eq.(2) into Eq. (6) and using the
calculate low-density expansions of the basic thermodysubstitution(39) in the integral, we can rewrite the pair dis-
namic quantities. The relation for the condensate depletiontribution function forn—0 in the form

~ 2
~ n_no—J dq n, 8 ’_na . g(r)=(1+2%)e(r), (71)
n (2m)® n 3\/— where the relatior{55) is implied. Note that this expression

is not valid at sufficiently large as the boundary condition
can be obtained from Ed@57) with the “scaling” substitu- g(r)— 1 forr—« is not satisfied. However, here we are not

tion given by Eq.(39). interested in the long-range behaviorggf) because we use
The low-density expansion for the energy can be derivedq. (71) when integratingy(r) multiplied by the short-range
in four different ways. potential®(r). Equation(71) makes it possible to represent

Eq. (8) for n—0 as
A. The chemical potential

3
The first way of obtaining the energy expansion deals 822(1+2§)U(0)+f d—q(an _(1
with the chemical potentigk and starts from the following 2 (2m)° n
relation for . valid in the presence of the Bose condensate
(8] +2z>U<q)w(q>). (72)

n= \/—f d3r’ @ (|r—r'[)("(r")g(r')ip(r)). (66)  Taking the term proportional t6 in the integral in Eq(72),
we can rewrite it fom—0 in the form

Here ¢/ (r) and¢(r) stand for the Bose field operators. This

relation follows from the well-known expression for an in- UO(q)(q)
finitesimal change of the grand canonical potentiD

=(5(H— uN)) and the necessary condition of the minimum k2

of Q with respect to the order parameter =-n{ (73

Ng:dQ(Ng,u, T)/dNg=0, the Hamiltonian depending on
the number of condensed particles owing to the substitutio . : 0)

31— 3, = |No. Equations(s) and (66) lead to[24] Where th_e vacuum scatte_rlng amplitud&®(q) and the
0~ Qo o- EG characteristic length are given by Eqgs(59) and (22), re-
spectively. Using the substitutidi39) in the residual part of

the integral in Eq(72),

d3q g
j (2n )3< —U(Q)l,b(CI)

d3
p=1oU(0)+ 2 | Gonalele?, @

whereU(0) is defined by Eq(53), and
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and taking into account Eq$57), (58), (63), and (65), we  Exactly this problem is the basis for the so-called ultraviolet
arrive at Eq.(70) but with the second term multiplied by the divergence occurring in the effective-interaction approach.
factorA =1—5b/(8a). Now the question arises which vari-

ant we should prefer, Eq70) or Eq.(70) with the factor\  C. Energy expansion through the Hellmann-Feynman theorem
=1-5b/(8a), and what is the reason for this ambiguous
situation?

To answer this question, let us reconsider the procedure
calculatinge given in this subsection. As was mentioned
earlier, Eqs(57) and(58) used in our calculations are con-
sistent with Eq.(26) rather than with Eq(51). Being char-
acteristic of the Bogoliubov model, E@26) is accurate to
the leading order inf{—ngy)/n and differs from Eq(51) by <

As shown in Sec. V, the effective-interaction approach
&asults in an irrelevant picture of the short-range boson cor-
relations. This is why it cannot yield the correct individual
values of the interactior;,; and kineticey;, energies by
direct calculations based on E@). Recall that we have the
following definitions: these energies are defined by

1
the supracondensate-condensate term neglected in the Bogo- Eint=
liubov relation. The problem of th& factor turns out to be

i#]

n
S gq>(|ri—rj|)>=§f d3r yd(r)g(r),

directly related to this term. It can be taken into account by (76)
representing Eq(51) for n—0 in the form 1 42y K
- n
|
erin=m| - T (D)
NN+ 1) = (14 20) p2(K). (74) K N< ¥ 2m > f(ZWs) K'n

where(- - -) stands for the statistical average with respect to
the ground state, and the auxiliary paramegeis the cou-
pling constant. The total energy per parti¢® is given by
the sum ofg;,; andgy;, at y=1:

Solving this equation with respect to, and noticing Eq.
(58), one can obtain

1 V[Tt nUK) 12+ 22n2U2(K)

=y —-1]. (79 E/N=&=¢kint €int - (78)
- = .
Tit2nTiU (o Our model provides the correct short-range behavior of
. ) the pair distribution functiorg(r). So we can first evaluate
Now, restarting from Eq(72) and making use of the system eini(7), and then obtain the total ener¢8) by means of the
of Egs.(75) and(58) instead of that of Eqe57) and(58), we  ye|l-known expression often called the Hellmann-Feynman
arrive at Eq.(70). The term given by Eq(73) is now can-  thegrem, which is just the variational theorem for the ground

celed due to the correcting tern{@U?(k) involved in Eq.  gtate obeying thél-body Schidinger equation
(75). So we face a rather complicated situation: namely, to

get the correct result70) in the direct calculations starting SE=(5H). (79
from Eq. (8), we have to abandon E¢57) in favor of Eq.

(75), while fOFhlﬂ(k). WE can.;axploit Eq(58). The ][nﬁst.im- Ln Eq. (79) SE and SH are infinitesimal changes of the av-
portant point here is the uniform convergence of the integra _/0 e

in Eq. (72) provided Eq.(75) is used. This allows for em- rage energy&=(H)) and the Hamiltonian
ploying Eq. (75) together with Eq.(58) in spite of the fact R h2v?
that the latter has been found in the leading ordernn ( H=—E om
—ng)/n. The higher-order corrections to E§8) do not in- !
fluence the result of calculating the integral in E£Q) if we tivelv. Th lati 6). (77). (79 d(80) lead t
limit ourselves to the leading and next-to-leading orders ir{ﬁ:piemcpl(\)/retgﬁt eqeu;}i(?ngn@ ), (77, (79), and(80) lead to
na’. It is worth noting that replacing Eq75) by Eq. (57)

1
+§2_ yO(|ri—ry)), (80)
i+j

does not influence Eq$65) and (69). So the preliminary Je Je
result fore found in[3] and corresponding to E70) with Sim =750 Sn= "Moo (82)
the second term multiplied by the factor 1—5b/(8a) has
to be abandoned in favor of E(70). From the first expression in E¢81) it follows that
The analysis carried out in this section demonstrates the
crucial role of the subtle balance of the terms coming from [t Em(y)
the boson scatterin@r, in other words, from the short-range &= JO dy y (82)

boson correlations Disturbance of this fine interplay, which

seems to be insignificant, can nevertheless lead to wrongo evaluates,(y) in the leading and next-to-leading orders

conclusions. We stress that the strong-coupling model oin na?, it is convenient to rewrite Eq71) as

Ref. [3] is balanced because it takes into consideration the

supracondensate-condensate scattering waveloth the a(r)=w(na®[ ()1, (83
air distribution function and the relation connecting the mo- .

Pnentum distribution with the pair wave functionsg.] On thewhere Eqgs(64) and(65) are taken into account avd(na’)

contrary, the effective-interaction approach is not balancelf 9iven by

with respect to the supracondensate-condensate scattering

waves, which are missed in the pair distribution function but w(nad) =1+ ﬁ\/ﬁi (84)

make a contribution to the dressed potenfste Sec. V. 3\/;
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The range of particle separations for which E8@) is cor- dd(r)

rect coincides with that of Eq71) (see the discussion there J=—f 3r( T r+2‘1)(f))[(P(O)(f)]ZZU(O)(O)-
Keeping in mind Egs(21), (23), (76), (82), and (83), we

obtain

The last equation can be derived after a little algebra with the
onh2n (a help of Eqs.(9)—(12). As is seen, Eq(90) together with Eq.
J' da’'w(na’3). (84) leads to the low-density expansi¢ro).
m Jo Thus, all four ways of calculating within the strong-
coupling model developed in Rdf3] leads to Eq(70).

2wh2nfld Ja s
&=, 75W(na(7))—

Thus, using Eq(84), we arrive at Eq(70) again.

) - E. Interaction and kinetic energies
D. Energy expansion through the virial theorem . . i .
For any physical quantity there usually exist various cal-

This method was proposed by Bogoliubov in his original cyjating procedures leading to the same result provided the
paper[6] in order to obtain the leading-order term in the nodel considered is consistent. By contrast, in the presence
energy expansion. Here we consider this method in @ morgs 5 thermodynamic inconsistency different ways of calcu-
general form. As in Sec. VIII C, we start from the expression|ating any thermodynamic quantity are able to produce dif-
for the pair distribgtion functiorg(r:n) which is.as_sumgd 10 ferent resultg26,27]; one of them can be reasonable but
be a known function of the density. The basic idea is to  gthers are completely inadequate. Such a situation is realized

derive the differential equation far(n). when evaluating the interaction and kinetic energies via the
On the one hand, from the virial theorem we get the fol-effective-interaction method. This is demonstrated below.
lowing expression for the pressure: The interaction(76) and kinetic(77) energies of a dilute
2 2 d(r) Bose gas can be evaluated on the basis of the Hellmann-
P=Zexin(nn— —f d3r rg(r,n), (85 Feynman theorem with the help of E€70). Representing
3 6 dr this expansion fok in the form
whereg,(n) is given by Eq.(77). On the other hand, we 27h2an 3
have the thermodynamic relation €= f(na”), (91)
P=n2 a‘z(nn) (86) and keeping in mind Eqg81) and(23), one can derive
27h3(a—b)n df(na®
valid at zero temperature. Heegn) is the energy per par- gimzu< f(na®)+3na’ ( 5 )>, (92
ticle (8), which can be written as m na’)
_ L 27h°bn a\df(na®)
e(n)=exin(N)+ 5| drg(r,n)®(r). 87 Ein= f(na®)+3na’| 1- — . (93
m b/ d(na®)

The system of Eq985)—(87) yields a differential equation

for £(n) whose general solution is of the form According to Eq.(70) f(x)=1+128/x/(15\7), which to-

gether with Eqs(92) and(93) yields

oz L[ 5 [dD(r)
e=Con™—¢ | d¥r| — =1 +2d(r) [x(r,n), (88 2wh2(a—b)n(1 64\/_3 90
Eint= + na*+--- |,
int m 3\/;
where the functiorny(r,n) stands for
2mhi%bn 64 3a
n r,n’ L= 1+ ynad| 1— —|+---|. (95
x(r,n)=n2’3f an2 ,2/3) (89) okinT aym o7 Bb (95)
0 n

As is seen from Eqg91)-(93), terms involvingb are present

and C, is the integration constant. Note that E¢R8) and . . o : X .
(89) are valid for both the Bose and Fermi systems becausd the expressions for the kinetic and interaction energies and

o L mutually canceled in the total energy We emphasize that
we h"’?"e not used the_ type of statistics when deriving thesﬁwe reasoning of this paragraph can be fulfilled for both the
equations. For a Fermi system the cons@gts not equal to

zero, while for a Bose system we should @g=0 provided effective-interaction approach and the model developed by

. ) ) I the present authors.
Bose-Einstein condensation takes place. Substituting Ed. . . , . .
(83) in Eq. (89), from Eq. (88) we get Our approach is fully consistent, which makes it possible

to derive Egs.(94) and (95) in another way using direct

calculations. Indeed, Eq76) taken aty=1 in conjunction

n23 n  w(n'a®) 3 " -

SZJ_f dn’ (90) with Egs. (21) and (83) results in Eq.(94). Notice that the

6 Jo n’23 ’ supracondensate-condensate scattering waves make a signifi-
cant contribution to the next-to-leading term of the low-

where density expansion fog;,; . It is also not difficult to find the
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low-density expansion for the kinetic ener@95) with the  (9). Then, in the general case of E@1) the relationse;,;
help of Egs.(63), (65), and(75). =0, gyip=¢ come from Eqs(92) and(93). Thus we arrive

In contrast, due to the thermodynamic inconsistency, thet an interesting property of the Bose gas with the pairwise
effective-interaction scheme does not allow for obtainingpotential (18): namely, although the Bose gas is strongly
Egs. (94) and (95) directly, beyond the Hellmann-Feynman interacting, the interaction energy is equal to zero. Hence,
theorem taken with Eq70). Let us show this for the pseudo- the total energy of a dilute Bose gas made of hard spheres is
potential approach discussed in Sec. V. To evaluate the kiexactly equal to the kinetic energy. One can see that this
netic energy in this case, one can start from &) and use result is rather generdior the hard-sphere potenti#l8) the
the Bogoliubov formula35) with the pseudopotential sub- interaction energy is equal to zero for any densitydeed,
stitution (47). In so doing the divergent integrdld®k/k?>  ®(r) given by Eq.(18) can be thought of as the limiting case
should be ignoredsee the discussion in Sec).\Similarly,  of the repulsive potential
the interaction energy at=1 can be derived from Eq&25),
(35), (36), and(47) using the same regularization. However, Vo,
to simplify the calculations, we adopt another way leading to D(r)= 0
the same results and based on the low-density expansion ’
(42), found within the Bogoliubov model. The original Bo- |t js clear that saturation takes place whegse: further
goliubov scheme is fully consistent, which implies equiva-jncrease of the parametey, does not change the energy per
lence of different ways of calculating any thermodynamicpariicle, e. Hence, according to Eqé76) and (81), &, =0
quantity. Therefore, we can first find the kinetic and interacecaysese/gy=0 at y=1 in the limit Vo— +%. Notice
tion energies by using the Hellmann-Feynman theorem togat, even taken in the order linear in the densitgqs.(98)
gether with Eq(42) and then replace, by aanda; by 0in - 54 (99) lead to the opposite case, =&, &.,=0. This

r<a
r>a.

the derived expressions. From the definitid®) it follows
that

Ja,  0ag e
m—=ay, y——=m——=2a,.
gm0 Vg, TMgm TR

')’(9_,)/_

Hence, within the Bogoliubov model we can arrive at

incorrect redistribution of the energy of a dilute Bose gas in
the pseudopotential approach is also notel@8], where the
leading order of the low-density energy expansion is consid-
ered.

Note that the relation Eq23) enables us to obtain the
lengthb in an experimental way by the isotopic shift of the

scattering lengtta:

27h?n 64
Eint= ap+2a;+ag——=ynaj+--- |, (96 dlna Aa m
3 b=a| 1= 5inm) =2\ 1~ 3 am)
2
8km:27-rﬁ n —a;—ag 4 ynag+- - ) (97  Hence, we are able to evaluate the intera_c_ﬁ% and ki-
m 5\ netic (95) energies per particle via quantities that can be

provided Egs.(42) and (81) are taken into consideration. found experimentally.

Now, replacinga, by a and substituting 0 foe; (the latter
allows for escaping the ultraviolet divergence; see Seg¢. V
we obtain the following expressions:

IX. CONCLUSION

In conclusion, we remark that this paper concerns the

2h2an 64 thermodynamic; of a diluteT Bose gas with a st_rongly repul-
Eint= 1+ nas+--- ) (98  sive interaction in the leading and next-to-leading orders of
m 3w the low-density expansion. The strong-coupling generaliza-
tion of the Bogoliubov model proposed by the present au-

2mh’an 64 3 thors is shown to reproduce the res0) of Lee and Yang
Ekin= T Ty N na’+---, (99 [25] found via the binary collision expansion method. Con-

trary to the effective-interaction approach of Rpf], the
which should be compared with the correct results given bynodel considered in this paper is thermodynamically consis-
Eqgs.(94) and(95). As is seen, the sum of the rhs of E¢38) tent and free of ultraviolet divergences. These advantages are
and (99) gives the rhs of Eq(70) but at the expense of a due to accurate treatment of the short-range spatial boson
negative value of the kinetic energ®9). Notice that the correlations, whose picture is inadequate within the
Bogoliubov model is free from this nonphysical feature be-effective-interaction scheme. The present paper thus demon-
causea; <0, which leads toe,;,>0 at sufficiently small strates that the effective-interaction scheme, which is re-
densities. Thus, Eq$98) and(99), found within the pseudo- duced to the Bogoliubov model with an effective pairwise
potential model, are inadequate. The reason is obvious: thgotential, is not acceptable for investigating a dilute strongly
pseudopotential scheme allows for restoring the functionainteracting Bose gas. In addition to the arguments mentioned
dependence on the scattering lengtin Eqgs.(98) and(99)  above, this also follows from the results for the kinetic and
while it completely ignores the additional lendtithat can-  interaction energies found in this paper.
not be involved in the pseudopotential model due to the ul- In some sense the strong-coupling model discussed can be
traviolet divergence. considered as a generalization of the Brueckner approach
Note that in the case of the hard-sphere interactid®)  taken in its representation given by Bethe and Goldstone
we geta=b from the solution of the Schdinger equation [29]. The new essential point is that the in-medium pair wave
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functions are calculateith conjunctionwith the particle mo- mediate momenta is implied, rather than the linear phonon
mentum distribution on the basis of the variational proce-sector, which should be the same according to the thermody-
dure. So, to go further, additional investigations should benamic prescription. This problem is closely related to inves-
carried out to establish more accurate approximations of thégation of long-range spatial boson correlations beyond the
relation connecting the boson momentum distribution witheffective-interaction approach.

the scattering parts of the in-medium pair wave functions. In

particular, this improvement is needed to clarify to what ex- ACKNOWLEDGMENT

tent the correct spectrum of elementary excitations in a dilute
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