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Distributions and size scalings for strength in a one-dimensional random lattice
with load redistribution to nearest and next-nearest neighbors
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Lattice and network models with elements that have random strength are useful tools in explaining various
statistical features of failure in heterogeneous materials, including the evolution of failure clusters and overall
strength distributions and size effects. Models have included random fuse and spring networks where Monte
Carlo simulation coupled to scaling analysis from percolation theory has been a common approach. Unfortu-
nately, severe computational demands have limited the network sizes that can be treated. To gain insight at
large size scales, interest has returned to idealized fiber bundle models in one dimension. Many models can be
solved exactly or asymptotically in increasing sizen, but at the expense of major simplification of the local
stress redistribution mechanism. Models have typically assumed either equal load-sharing among nonfailed
elements, or nearest-neighbor, local load-sharing~LLS! where a failed element redistributes its load onto its
two nearest flanking survivors. The present work considers a one-dimensional fiber bundle model under
tapered load sharing~TLS!, which assumes load redistribution to both the nearest and next-nearest neighbors
in a two-to-one ratio. This rule reflects features found in a discrete mechanics model for load transfer in
two-dimensional fiber composites and planar lattices. We assume that elements have strength 1 or 0, with
probability p and q512p, respectively. We determine the structure and probabilities for critical configura-
tions of broken fibers, which lead to bundle failure under a given load. We obtain rigorous asymptotic results
for the strength distribution and size effect, asn→`, with precisely determined constants and exponents. The
results are a nontrivial extension of those under LLS in that failure clusters are combinatorially much more
complicated and contain many bridging fibers. Consequently, certain probabilities are eigenvalues from recur-
sive equations arising from the structure of TLS. Next-nearest neighbor effects weaken the material beyond
what is predicted under LLS keeping only nearest neighbor overloads. Our results question the validity of
scaling relationships that are based largely on Monte Carlo simulations on networks of limited size since some
failure configurations appear only in extremely large bundles. The dilemma has much in common with the
Petersburg paradox.

PACS number~s!: 05.40.2a, 62.20.Mk
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I. INTRODUCTION

A. Background

The size effect in the strength of brittle materials has b
known since the time of Leonardo da Vinci~ca. 1500! who
observed that wires weaken with increasing length@1#, and
in perhaps the first published work on the subject@2# Galileo
noted that the strength of geometrically similar structu
decreases as the dimensions increase. Fifty years
Weibull @3,4# presented a statistical theory built on weake
link concepts coupled with statistical variation in small vo
ume elements representing the links. For a material un
constant stress levelx over volumeV, he proposed that its
strength,X, has the cumulative distribution function

F~x!512exp@2~V/V0!~x/x0!r#, x>0, ~1!

wherer is the shape parameter, andx0 is the scale paramete
measured at reference volumeV0 .

In Weibull’s model the strength scales algebraically w
volume following x0V21/r. In this and other models@5,6#,
the resulting form of the distribution for strength and its s
PRE 621063-651X/2000/62~2!/1622~24!/$15.00
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scaling depends strongly on the assumed functional form
the strength of small volume elements at low failure pro
abilities. Physically, such elements are often viewed as sm
enough to contain at most one cracklike flaw, where va
tion in the flaw size gives rise to variation in the strength
the element, and hence, overall material strength@7#. How-
ever, a firm foundation for specifying the form of th
strength distribution in the high reliability regime~apart from
mathematical scaling arguments@6#! has proven elusive both
from physical fundamentals and experimental observatio

Brittle materials, such as monolithic ceramics, are ac
ally heterogeneous when viewed at the microscale, o
containing nonuniform distributions of grain shapes a
sizes with flaws of various types at their boundaries~such as
voids, inclusions, and microcracks!. Failure often results
from the local interaction and coalescence of several sma
flaws, rather than just the catastrophic growth of just o
Therefore identification of a ‘‘critical flaw’’ after failure~not
to mention before! is extremely problematic. Moreover
many advanced materials are multiphase, with the poten
to design their microstructure to enhance strength, toughn
and reliability. Experimentally achieving such improvemen
1622 ©2000 The American Physical Society
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by ‘‘trial and error’’ has proven costly, so that attention h
turned to modeling of the failure process. Obtaining a go
theoretical description of this process has required delv
into microstructural and statistical details of the interact
of the various flaw features@8#, and this has proven to be
deceptively difficult task.

One approach to accounting for such detail has bee
develop discrete network or lattice models of the failure p
cess. Early work in the engineering literature has borrow
from the classic work of Daniels@9# on simple fiber bundles
under equal load sharing~ELS! among nonfailed fibers. Ma
terial failure models have often assumed a chain-of-bun
structure@10,11,12#, with m bundles in series, and where th
length of a single bundle is the characteristic length for fi
load transfer~often a few fiber diameters in magnitude!. The
material fails when the weakest bundle fails. Though anal
cally tractable, these ‘‘mean field’’ models and their glob
load-sharing~GLS! generalizations@13,14# are more appli-
cable to the strength of weakly-bonded, fibrous mater
than to tightly-bonded materials, which display more loc
ized breakdown and flaw sensitivity. In the strength of sm
bundles, mild size effects exist@11,14# as the number of
fibersn increases, but convergence of the strength to a fin
nonzero limit is rapid since the variability in strength deca
as 1/An. Likewise the sensitivity of material strength to in
creasing chain lengthm rapidly diminishes asn increases.

Study of the failure of fiber-reinforced composites wi
strong, well-bonded, elastic matrices has led to ano
branch of network models, where the load-sharing is m
more localized@15–22#. A chain-of-bundles framework is
also commonly used. The basic fiber elements are often
sumed to follow Eq.~1!, but failed elements are assumed
redistribute their loads locally onto unfailed neighbors,
creasing their probabilities of failure and thus the likeliho
of a catastrophic cascade across the bundle. Rendering
models analytically tractable has required highly idealiz
assumptions in the form of load-sharing ‘‘rules’’ on the loc
load redistribution mechanism in a bundle. One such mo
called local load-sharing~LLS! assumes that the loads o
failed fibers are shifted in equal portions onto the near
flanking survivors. For planar versions with one-dimensio
bundle structure, various recursive@18,21,22# and asymptotic
methods@17,19,20# have been used with success. One ma
result is that the distribution function,Gn(x), for the strength
Xn of a bundle containing a total ofn fiber elements~Xn is
the total bundle load divided byn! is given by a quasi-
weakest-link form

Gn~x!'12@12W~x!#n'12exp@2nW~x!#, x>0,
~2!

whereW(x) is one minus the largest eigenvalue of a cert
transition matrix describing probabilities for local failur
configurations. Longer composites viewed as a chain om
such bundles follow the same distribution but withmn re-
placing n. Except for the simple discrete fiber strength d
tribution where a fiber has strengthx0 with probabilityp, and
strength zero with probabilityq512p, precise analytical
forms for W(x) have remained elusive. Nevertheless, Sm
@17,20# was able to argue that for fiber elements followi
Eq. ~1! and LLS, the median strengthx* follows:
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x* '
r2121/rx0

logn
. ~3!

~Here and throughout the paper, log refers to the natu
logarithm loge or ln!. Recent progress on LLS, GLS, an
ELS models is summarized in Phoenix and Beyerlein@23#.

In recent years, network or lattice models of material fa
ure have received considerable attention in the statist
physics literature particularly in connection to percolati
theory. Models have been developed to treat conducti
breakdown in random fuse networks@24–31#, dielectric
breakdown in materials with randomly dispersed conduct
inclusions @31,32# critical currents in disordered superco
ducting networks@25,33,34#, and catastrophic failure of elas
tic lattices with random element strength@35–38#. The ran-
dom fuse model, introduced by de Arcangeliset al. @24#, has
become a useful prototypical model. Such network mod
often consider a planar square lattice of sizeL3L, where the
conducting elements are initially fuses with probabilityp or
insulators with probabilityq512p. Of interest is the range
p.pc , wherepc is the percolation threshold, so that a lar
network is initially conducting. A voltage gradientv ~the
applied voltage normalized byL! is applied in the longitudi-
nal dimension, and calculation of the currents in all the s
viving fuses is done through numerical solution of Kirchoff
laws. Each fuse has constant resistance when the calcu
voltage across it is less than a critical valuevc , but burns out
to become an insulator when its voltage exceedsvc .

Monte Carlo simulations on sample fuse networks ha
been carried out@24,27# under a continually increasing volt
age gradient to empirically determine the respective distri
tions of the gradientV1 that fails the initially ‘‘hottest’’ fuse,
and the gradientVb when a catastrophic ‘‘crack’’ finally sev
ers the material. Because of the computational demands
sults have been generated only for relatively small lattices
to about 2003200. Results show a difference between t
mean values ofV1 andVb and their dependence on sizeL2.
For the most homogeneous networks~p near 1!, V1'Vb as
the failure process appears to be self-sustaining after the
bond failure.

Duxbury et al. @27# noticed anomalous scaling~i.e., dif-
ferent from that found in percolation theory! in the two
breakdown voltagesV1 andVb , which were seen to continu
ally decrease with increasing network size with no appar
positive lower bound. To explain this size dependence t
considered Lifshitz-type arguments on the effect of a ‘‘def
cluster’’ in a large lattice in the form of a contiguous tran
verse row of missing fuse elements, focusing on the curr
enhancement at the row tips. They attempted to determ
the statistics of the largestcritical defect cluster in the lattice
in the dilute limit ~p near 1!. They assumed that the mo
critical defect would be the one with the most current e
hancement, namely a transverse slit or ‘‘crack.’’ Using
continuum approach involving the solution to Laplace
equation they determined the current enhancementsĩ tip

; ĩ (11k* Aj ) where j is the number of adjacent missin
fuses in the defect cluster,ĩ is the externally applied curren
to the network per unit width andk* is a constant. They also
appreciated the importance of defect cluster geome
whereby current enhancement was proposed to be app
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mately proportional toj ~rather thanAj ! when a single intact
fuse bridges two adjacent collinear defect clusters of sizej /2.
Li and Duxbury @29# later revised this dependence toĩ tip

; ĩ j / log j. In such configurations, failure of the bridging fus
caused the two clusters to coalesce forming a larger clu
of size j 11 but with lower current enhancement at its edg
than was in the bridging fuse. Thus, an even larger exte
voltage is needed to fail the network. ConsequentlyV1 and
Vb would have different scaling behavior.

A key analytical step by Duxburyet al. @27# was to
estimate the probability that no cluster ofj 11 or more
transversely adjacent fuses will be missinganywhere

in the L3L network obtaining (12pqj 11)L2

;exp@2pqL2 exp(2jk)#, wherek52 logq. Appealing to the
statistical theory of extremes, they then argued that the
tribution functions for the normalized breakdown voltag
V1 andVb , respectively, must have the forms~in 2D!

GL2~vs!512exp@2csL
2 exp~2ksvs

21/as!#, s51,b, ~4!

wherecs andks are constants depending onp, andas is an
exponent independent ofp. They recognized the difficulties
in obtaining analytical expressions for the various consta
and exponents for generalp. However, for the dilute case o
p near one~or 0,q!1! the above arguments suggesteda1
'1, k1'2 logq andc1'pq for V1 , andab'1/2 andkb}
2 logq, for Vb . The size effect for the breakdown voltage
obtained by solvingGL2(vs* )51/2 in Eq. ~4!, yielded the
median

vs* 51/@As~p!1Bs~p!logL#as, s51,b, ~5!

where As(p)5(logcs2log log 2)/ks, and Bs(p)52/ks . For
s51, Eq. ~5! is asymptotically of the same form as Eq.~3!.
The above distributional form and size effects inV1 andVb
were largely supported by Monte Carlo simulations of n
works up to 2003200 in size@27#.

Similarly, in studies of network models of dielectr
breakdown in metal-loaded dielectrics@31,32#, and elastic
failure in a two-dimensional triangular lattice@36#, the analo-
gous initial and final breakdown fields and size effects w
argued to have forms Eqs.~4! and~5!, and the critical defect
was argued to be an arrangement of two close collinear
ure clusters. On the contrary, for the initial and final brea
down fields it was argued that this type of defect leads
equivalentrather than different distributional forms and si
effects, as was supported by Monte Carlo simulations
networks of limited size.

The general size scalings and distributional forms
scribed above have not always been apparent from sim
tions in spring networks@35,37,39,40#. Further increasing the
disorder in a network through randomizing the elastic spr
stiffnesses@35# may increase dispersion in the load redist
bution, thus driving the network away from LLS-like beha
ior towards ELS or GLS behavior, especially at smaller s
scales. This may mask the emergence of the ultimate la
scale LLS behavior. Various continuous distributions for
ement strengthX have also been used, as described
Hansen@39# who discussed results under the probability de
sity function of the power formp̂(x)5(12a)x2a for 0
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,x<1 anda near 1. These forms appeared to have scali
similar to those in percolation, rather than Eqs.~3! and ~5!.
On the other hand Hansenet al. @37# assumed a continuous
uniform distribution p̂(x)51 for 0,x<1, and argued for
power-law scaling in applied force per unit width,Fmax/L
}Lb21, whereb53/4. In factb53/4 was argued to be in
sensitive to the choice ofp̂(x). They suggested that dis
agreement with the scaling of Eq.~5! results from the differ-
ence in assumptions on the form ofp̂(x), which in the case
of Eq. ~5! is distinctly discrete with only two possible
strengths, 0 or 1; that isp̂(x)5pd(x21)1qd(x) whered is
a Dirac delta function. In later work, Hansenet al. @40# ar-
gued that forp.pc , rescaling through a renormalization a
gument leads to the disappearance of disorder as the e
tive value of p, defined at scaleL, converges to 1 asL
→`. Thus such models were thought to be asymptotica
equivalent to a disorderless system which would have afinite
average strength in an infinite lattice limit, and so, obser
tions of the form of Eq.~5! were suggested to be transie
effects. Perhaps the main origin of the controversy over
particular form of the size scaling is that simulations cov
ing many orders of magnitude in sample dimensions are n
essary to arrive at definitive conclusions on the size effect
most cases, such sizes have been inaccessible by M
Carlo simulation alone as lattices approaching 100031000
in size rapidly become too demanding computationally. T
model developed in this paper will show that lattices of ev
this computationally formidable size are often much t
small to reveal the ultimate large scale behavior. This is
important issue since real structural components, such a
brous composite pressure vessels or bridge cables, may
from 108 to 1016 fiber elements.

Regardless of their points of view, many investigato
have turned to rigorous study of idealized, one-dimensio
models of failure@41–48# in an attempt to put approximat
analyses and interpretations from simulations of more co
plex networks on firmer ground. Such models, which a
often variations on the LLS models of Harlow and Phoen
@18,41#, are analytically solvable, rich in behavior, and qua
tatively show the many features seen in simulations. In m
cases, results in LLS fiber bundle models support the lo
rithmic size scaling in Eqs.~3! and ~5!, but more generally,
such results depend on the load-sharing scheme~LLS vs
ELS! and on the assumed form of the distribution for e
ment failure. For example, in an LLS setting involving tim
dependent breakdown of elements, Curtin and Scher@49,50#
analytically uncovered transitions from scaling as in Eqs.~3!
and ~5! to ELS-type scaling asL→`, simply by changing
the value of a distribution parameter. Subtle scalings a
transitions have also been noticed in fiber bundle mod
with heirarchical load-sharing as discussed in Newmanet al.
@51# and references therein.

B. Overview of paper and main results

This paper continues the study of series-parallel model
two dimensions with the basic analytical structure of on
dimensional load sharing. The LLS model is modified to
more diffuse tapered load-sharing~TLS! rule whereby 2/3 of
the load of a failed fiber is redistributed equally onto t
nearest unfailed neighbors and 1/3 is redistributed equall
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the next nearest unfailed neighbors, except when a fibe
surrounded by breaks whereby it takes half the shed l
coming from each side. Again we assume that fibers h
strength 1 with probabilityp and strength 0 with probability
q512p. We motivate the key aspects of the load-shar
rule in the context of aligned fibrous composites through
of results for transverse patterns of aligned fiber breaks in
classic shear-lag model of Hedgepeth@52–57#, which also
turn out to be characteristic of elastic lattice models. O
focus will be to determine the structure and probabilities
critical failure configurations with a view towards determi
ing the extent to which the most critical defects are sin
clusters, or double clusters separated by a single intact fi
or much more complicated configurations. We will also
vestigate the extent to which the load at first element fail
scales as the load at final failure. Though the detailed ca
lations are tedious, the model is solvable asymptotically
the bundle sizen increases. Thus we obtain preci
asymptotic results for the various distributions and size s
ings, giving error estimates and rates of convergence an
→` andx→0. In particular, we are able to evaluate all t
constants in the model in terms of the total number of fib
n ~the volume!, andp andq and the TLS rule.

The analysis is based on the Chen-Stein method of P
son approximation as described in Arratiaet al. @58# and
Barbouret al. @59# and used earlier by Harlow and Phoen
@41# for LLS bundles. These problems have a strong conn
tion to probabilities for long head runs in coin tossing e
periments@60#. The key idea is to determine all possib
local failure configurations with sufficient detail to rend
them suitably distinct. Such problems have a history of be
difficult. In fact, the dramatic differences between expec
tion and realized outcome have provided the basis for
historical Petersburg paradox@61,62#.

The remainder of the paper is organized as follows:
Sec. II we describe the behavior of load redistribution in
model of Hedgepeth. In Sec. III we idealize the key featu
seen in Sec. II to describe the tapered load-sharing rule f
1D bundle of n fibers, and the relationship between t
bundle strength and the load-sharing constants in the fa
configurations that arise. In Sec. IV we gain experience
studying the various local failure configurations and th
probabilities, which are associated with bundle failure
loadsx in the range 1/3,x<1. In Sec. V we build on this
experience and describe the general structure of the l
failure configurations for 0,x<1. In Sec. VI we presen
expressions for the probabilities of occurrence of the do
nant failure configurations obtained in Sec. V at any giv
location in the bundle. In Sec. VII we study the asympto
structure of these probabilities as the bundle loadx becomes
smaller, which is relevant to very large bundles. In Sec. V
we use the Chen-Stein theorem to develop key results
allow us to estimate the distribution function for bund
strength,Gn(x). In the analysis we pay particular attentio
to errors of approximationrelative to Gn(x). We show that
these errors become negligible as the bundle sizen increases
andx decreases.

In Sec. IX we study the dependence of the bundle stren
on n taking special care to evaluate the error terms. In p
ticular we show that bundle strengthXn satisfies Xn;
2 log q̂/logn in probability as n→` where q̂5q2d and
is
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where d solves the characteristic equationd22qd1q(1
2q)50 arising from certain key failure configurations. I
fact, d'Aq1q/2 for small q. In Sec. X we consider the
behavior of the cumulative distribution functionGn(x) for
the bundle strength, and determine the approximation

Gn~x!'12expH 2nP* ~q!D~1/x!S 1

xD 2

3expF2~2 log q̂!S 1

xD G J , x.0,

whereP* (q) is a known constant andD(1/x) is a known
function that is asymptotically periodic in 1/x asx→01.

On the other hand, the load at first fiber failure,Xn
(1) ,

follows Xn
(1);22 logq/logn asn→`, and thus, scales dif

ferently from the bundle strength,Xn . An approximation for
the cumulative distribution functionGn

(1)(x) for Xn
(1) is found

to be

Gn
~1!~x!'12expH 2n~p/q!2D~1!~2/x!S 2

xD
3expF2~2 logq!S 2

xD G J , x.0,

where D (1)(2/x) is asymptotically periodic in 2/x as x
→01, varying between 1 andq.

In Sec. XI we discuss extensions to chain-of-bundle str
tures applicable to 2D. We also consider how the bun
strength will behave when other important features of
Hedgepeth load-sharing model are taken into account suc
the growth in load concentration with the square-root of
size of the failure cluster.

In all, when we draw the correspondence between
breakdown voltagesV1 andVb in the random fuse network
given by Eqs.~4! and ~5! and the bundle strengthsXn

(1) and
Xn in the TLS bundle model, we find that the distribution
and scalings are much more complicated than represente
Eqs.~4! and~5! of earlier work. We also see that the eventu
size scaling emerges only for extremely large networks. T
points to the pitfalls in expecting Monte Carlo simulation
networks of limited size to reveal the true large scale beh
ior.

II. HEDGEPETH LOAD-REDISTRIBUTION MODEL

To motivate our fiber load-sharing rule we review briefl
some results from the classic micromechanics model de
oped by Hedgepeth@52# and extended by others@53–57#.
The results are for load concentrations in fibers near mult
broken fibers in a unidirectional, planar composite sheet,
we also present some new results for multiple collinear cl
ters or ‘‘cracks’’ of various separations and sizes. In t
Hedgepeth model the equispaced fibers are elastic, de
and carry loads only in tension, and are well-bonded to
matrix. The matrix is also elastic but deforms and carr
load only in simple shear, and thus, is the vehicle for tra
mitting the tensile load of a broken fiber to its intact neig
bors. These are the classic shear-lag assumptions in ela
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1626 PRE 62S. LEIGH PHOENIX AND IRENE J. BEYERLEIN
ity, which work well when the elastic shear modulus of t
matrix is much smaller than the Young’s modulus of t
fibers. The 2D Hedgepeth model is discrete in the transv
dimension but continuous in the longitudinal dimension,
compared to a fully discrete square elastic network with l
gitudinal tensile springs and transverse shear springs. In
latter, lattice Green function methods have been used to
termine load concentrations around broken elements@63–
65#. It can be shown that the Hedgepeth model is a nat
continuous limit of these 2D lattice models when the ratio
the transverse element shear stiffness to longitudinal ex
sional stiffness goes to zero but with longitudinal distan
rescaled through maintaining a fixed characteristic length
longitudinal load transfer@23,65#. An electrical analogy of
the Hedgepeth model@66# involves thin conducting wires in
a weak electrolyte; near wire breaks, current enhancem
are the analog of load enhancements and voltage drop
break opening displacements. This parallels the analogy
tween spring networks and random fuse networks. Rece
load and current concentrations in both discrete netwo
and the Hedgepeth model have been studied by Taylor
Sweitzer@67# and Taylor@68,69# by drawing a mathematica
connection to random walk theory@70#.

A. Load concentrations and connections with continuum
fracture mechanics

Hedgepeth originally considered load concentrations p
duced by an aligned row oft contiguous fiber breaks trans
verse to the fiber and loading direction. The magnitudes
the load concentrations in unbroken fibers along the tra
verse plane of the breaks turn out to be independent of
stiffness moduli, spacings, and cross-sectional areas of
fibers and matrix~though the longitudinal length scale o
load transfer depends on these quantities!. For this row oft
consecutive fiber breaks, letz be the count of an intact fibe
away from the last break; that is,z51 for the adjacent fiber
z52 for the subadjacent fiber and so on. Best known
Hedgepeth’s result~proven rigorously by Hikami and Cho
@57#! for the peak load concentrationK(t,1) on the first in-
tact fiber (z51) adjacent to thet-break cluster, which is

K~ t,1!5
~4!~6!¯~2t12!

~3!~5!¯~2t11!
, t51,2,3, . . . , ~6!

with K(0,1)51. This evaluates toK(1,1)51.333 and
K(2,1)51.600,K(3,1)51.829, etc. More generally Hikam
and Chou@57# determined that

K~ t,z!5~ t12z21!

3
~2z!~2z12!~2z14!¯~2z12t22!

~2z21!~2z11!~2z13!¯~2z12t21!
,
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t,z51,2,3, . . . , ~7!

with K(0,z)51. For t51, Eq. ~7! givesK(1,z)5111/(4z2

21) which yields K(1,1)54/3 and K(1,2)516/15. Note
that the shifted load scales as 1/(4z2) for largerz.

Beyerlein et al. @54# have favorably compared Eqs.~6!
and ~7! with elastic fracture mechanics results for a mod
central crack of lengtht in an infinite continuum sheet. An
extremely accurate approximation to Eq.~6! with the correct
asymptotics ast→`, was found by Phoenix and Beyerlei
@23# to be

K~ t,1!'A11pt/4. ~8!

They also showed that@23#

K~ t,z!'K~ t,1!F z

~2z21!K~z21,1!G' K~ t,1!

A11p~z21!
.

~9!

Both Eqs.~8! and ~9! have small error though the latter re
quires z!t. Note that forz51, 2, 3, and 4, the factor in
square brackets takes the values 1, 1/2, 3/8, and 15/48, s
a large cluster of breaks, the load concentration on the n
nearest neighbor is onlyhalf that on the nearest neighbo
These asymptotic results are of the same form as the
tinuum results for theK-field at the tip of a crack@54#, re-
flecting the continuum solution above the length scale of
fiber spacing. Thus the Hedgepeth model gives discrete
sults for loads surrounding a single transverse crack that
in close agreement with results from linear elasticity b
without being singular. We note that in the discrete spr
network with equal tensile and shear springs, the load c
centrations, while having scaling int andz similar to that in
Eqs. ~8! and ~9!, are less severe on the nearest neigh
@67,68#, and slightly more severe on the next-nearest nei
bor. For example, K(1,1)51.273 versus 1.333, an
K(20,1)53.737 versus 4.088. For larget the difference is
about 10%.

B. Load concentrations on bridging fibers

Previous discussion mentioned the important role of fi
elements bridging long clusters of breaks. We have c
structed an accurate approximation for the load concentra
K(t1 ,t2 ,b) in a single fiber or an adjacent pair of fibe
~ignoring minor differences in the two! lying between two
collinear clusters of sizet1 andt2 respectively. This approxi-
mation is
K~ t1 ,t2 ,b!'
2At1t2~N1b!

~ t11t2!bH 11
N1b

4~N12b!
1

1

p
logF N~N13b!

2b~2N1b!G J
, b51,2, and N51,2,3, . . . , ~10!
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where N5(t11t2)/2, b51,2 is the number of consecutiv
bridging fibers, andt1 ,t2@1. Whent15t2 , Eq. ~10! has the
same asymptotics as a result given in Taylor and Swei
@67# for a square lattice. Fort1Þt2 Eq. ~10! has the asymp-
toticsK(t1 ,t2 ,b);pAt1t2/log(t11t2) as pointed out by Tay-
lor @69# who has mentioned a connection to results in Kes
@69# for random walks. However this last approximation
very inaccurate unlesst1 and t2 are very large.

The good performance of Eq.~10! for b51, as compared
to numerical results, is seen in Fig. 1, which shows the lo
concentration in a lone intact ‘‘bridging’’ fiber between tw
t-fiber break clusters~open circles! and those in the fibers a
the tips~triangles!, respectively. Also shown isK(2t11,1)
according to Eq.~6! for a 2t11 straight crack~solid circles!
after failure of the bridging fiber. The key feature is th
while the single bridging fiber effectively reduces the lo
concentration at the tip as compared to a 2t11 ~and also 2t!
straight crack, it sustains a divergingly higher load conc
tration. For example, fort56 ~or 12 breaks in total!, when
the bridging fiber breaks under the load concentration
4.65, the load concentration at the tips jumps from 2.66
3.35 for the new cluster of 13 breaks.

The good performance of Eq.~10! for b52 is shown in
Fig. 2, which shows numerical results for the load conc

FIG. 2. Load concentrations predicted by the Hedgepeth mo
for two t-sized fiber break clusters separated by a pair of in
fibers,b52, before and after their failure. Also shown is the an
lytical result, Eq.~10!.

FIG. 1. Load concentrations predicted by the Hedgepeth mo
for two t-fiber break clusters separated by a single intact fibeb
51, before and after its failure. Also shown is the analytical res
Eq. ~10!.
er

n

d

t

-

f
o

-

tration in a pair of intact fibers ‘‘bridging’’ between two
t-fiber break clusters~open circles!, those in the fibers at the
tips @triangles from Eq.~6!#, as well as those at the tips of
single cluster of 2t12 contiguous breaks~solid circles!, re-
spectively. These two bridging fibers powerfully suppre
the load concentrations at the tips as compared to the s
tion for a crack of 2t12 contiguous broken fibers. They als
require a higher applied load to fail them than fibers at the
of a fairly long contiguouscluster of nearly 20 fiber breaks
The opposite is true for 2t>20. Thus pairs of bridging fibers
act as effective ‘‘crack arrestors.’’ It can be shown that
triplet of intact bridging fibers is even more effective and f
much longer cracks.

A third important feature is that it is possible to spre
2N11 breaks over an extended 2N* 11 length such that
this cluster is considerably weaker than a contiguous row
2N11 adjacent breaks. This can be seen by considerin
symmetric configuration of breaks arranged as shown in F
3. There is a central core cluster of 2t11 contiguous breaks
flanked on each side by 2(N2t) alternating intact and bro
ken fibers, giving a total length 2t1114(N2t)52@N
1(N2t)#1152N* 11, so N* 5N1(N2t). For 2N11
521 and 51, Fig. 4 plots, versust, the ratio of the load
concentrationKc(2t11) on the fiber at the edge of the 2t
11 core ~while embedded in the 2N* 11 configuration!
over the load concentrationK(2N* 11,1) at the tip of a full
crack of 2N* 11 breaks,~representing the case in which a
the bridging fibers have broken!. When this ratio is equal to
or greater than one, failure of the two fibers at the edge of
core ~and all subsequent bridging fibers flanking them! oc-
curs at a lower load than that required to cause catastro
failure in a 2N* 11 contiguous crack. For example, the d
luted configuration containing 21~51! breaks, has the
strength of a contiguous crack of about 26~63! breaks, rep-
resenting effectively a 25% expansion in length. This

el
t

-

FIG. 3. Symmetric configuration of breaks corresponding
load calculations in Fig. 4.

el

t,

FIG. 4. Ratio of the load concentration in the nearest bridg
fiber to a cluster of 2t11 breaks, shown in Fig. 3, to that in the firs
intact fiber ahead of a 2N* 11 straight crack, as calculated und
the Hedgepeth model.



ed
th
-
ia

s
s
on
ak
se
an
m
ac
g
or
o
m

lo
th

e
r

ha
a-
h
ra

, a
lie

e
g
at

s

ce

th

nd-
its
on

f

g
e
nt to
1,

the

dja-
q.

not
ec.
s-
a

e-

ect
er-
s in
e

ure
nd
to
ve

ts of
ble

e
eas-

r
us

evo-
s in
me
n
rg-

1628 PRE 62S. LEIGH PHOENIX AND IRENE J. BEYERLEIN
rangement of an initiating core cluster flanked with a dilut
fringe of a few alternating bridging fibers, is by no means
weakest arrangement of 2N11 breaks that can be con
structed. This is a key phenomenon seen in real mater
and is the theme of this paper.

C. Summary of important load redistribution features

The key points illustrated in these figures are as follow
First, isolated surviving fibers will fail at much lower load
than the cracks they become part of once broken. Sec
configurations consisting of a core of contiguous bre
flanked by fringes of a few isolated bridging fibers will cau
catastrophic failure at significantly lower loads th
‘‘cracks’’ consisting of either the same number or the sa
length of contiguous breaks. Third, isolated pairs of int
fibers act as crack arrestors for much longer break confi
rations surrounding them. One of the main tasks of this w
will be to enumerate the probabilities for the preexistence
all the various types of such configurations that lead to co
posite failure at a given applied load. In Sec. III we deve
an idealized tapered load-sharing rule which captures
three important features just described, but is amenabl
rigorous analytical treatment, as shown in the remainde
this work.

III. TAPERED LOAD-SHARING RULE AND PARTITION
OF THE LOAD RANGE

We now create an idealized rule called tapered load s
ing ~TLS!, which is specifically designed to reflect the fe
tures of load redistribution in fibers as seen in Sec. II. T
rule must allow us to analytically obtain the load concent
tion factors for all surviving fibers inall possible failure
configurations, and it must lead to tractable analysis. Also
a special case TLS should reduce to LLS of much ear
work @41–48#.

A. Structure of TLS

First we consider a linear bundle with fibers number
1, 2, 3, . . . ,n, from left to right. Then consider a survivin
fiber that is adjacent to at least one other survivor, and th
directly adjacent toi contiguous fiber breaks~found only on
one side! and is subadjacent toj fiber breaks, wherei , j >0.
Wheni 50 and subadjacent breaks are found on both sidej
is the sum of both. For fixedu satisfying 2/3<u<1, the load
concentration factor,Ki , j , on this survivor is given by

Ki , j511 iu/21 j ~12u!/2. ~11a!

On the other hand, for anisolated survivor adjacent toi
contiguous breaks counting on both sides, the load con
tration factor is given by

Ki* 511 i /2. ~11b!

Otherwise a fiber’s load-sharing constant isK0,051. Thus, in
Eq. ~11a!, a broken fiber shiftsu/2 of its load to each of the
closest survivors on each side and (12u)/2 to each of the
next closest survivors, which are directly adjacent to
e
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closest survivors. If, however, the closest survivor is sa
wiched by single breaks or rows of breaks on both of
sides, it takes 1/2 the shifted load of the broken fibers
both sides, as described by Eq.~11b!. The special case o
LLS is obtained by settingu51 in Eq. ~11!, so that a failed
fiber shifts half of its load onto each of its two flankin
survivors. Also, in the caseu52/3 and for a single break, th
fibers that are adjacent, subadjacent, and sub-subadjace
this break have load concentration factors 4/3, 7/6, and
respectively, as compared to 4/3, 16/15, and 36/35 in
case of the Hedgepeth model, Eq.~7! where load is even
more diffusely distributed. Note also that whenu52/3 and
there is a large isolated cluster ofi breaks, the load on the
adjacent fiber is approximately double that on the suba
cent fiber in keeping with the behavior mentioned after E
~9!.

The tapered load-sharing rule we have devised does
reflect some of the features in the Hedgepeth model of S
II, which are the result of longer range effects in load tran
fer. In particular, the load concentration on a fiber next to
large isolated cluster ofi breaks does not have the squar
root dependence oni, reflected in Eq.~8!, but rather is linear
in i. Nevertheless our TLS scheme can be revised to refl
such behavior provided that we are willing to neglect ov
loads beyond the next nearest neighors, although the load
surviving fibers will no longer sum to the applied load. Th
effects of such an adjustment will be clear from the struct
of the final results. Note that in interpreting random fuse a
spring network simulation results, using analysis leading
Eqs.~4! and~5!, loads shifted beyond nearest neighbors ha
been neglected in the past@27,31,32,36#. The present analy-
sis represents a major step towards assessing the effec
such simplifications, which turn out to lead to considera
inaccuracies in prediction.

Denoting an intact fiber by ‘‘1’’ and a failed fiber by ‘‘0’’
we show a few possibilities below:

B. Crack arrestor pairs

Under LLS@41#, when all surviving fibers have the sam
strength, the strength of a bundle observed under an incr
ing applied loadx is determined by thelargest load concen-
tration factor initially found in the bundle. Failure of a fibe
always results in an even higher load on its survivors, th
forcing catastrophic collapse. There can be no damage
lution under increasing load in the form of stable increase
the number of fiber fractures. Under TLS, however, for so
configurations and loadsx, the most overloaded fibers ca
fail without the bundle failing. This occurs because the la
est load concentration factorK in the resulting configuration
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is such thatKx,1, and the bundle is stable. For example,
u52/3 andx>1/Ki 1 j* , the configuration

l

changes upon failure of the isolated fiber to

and if 1/Ki 1 j* <x,1/Ki 1 j 11,0 this configuration will be
stable, but ifx.1/Ki 1 j 11,0 this configuration will result in
failure. On the other hand, for the configuration

where i> j , failure of the fiber underKi , j will thereafter
produce load concentration factors in all subsequent confi
rations of at leastKi , j in magnitude so that the bundle wi
collapse instantaneously. This was the idea behind Fig
Also if j 50, failures underKi ,0 will always lead to higher
load concentration factors. Consequently, we think of a p
of adjacent survivors, ‘‘1 1,’’ as acrack arrestor pair. Once
a fiber in the pair fails, the bundle collapses catastrophica
For a given loadx, to determine the bundle strength we mu
be careful to consider those configurations where failure
not only initiated but sustained to catastrophic failure un
the TLS rule. The previous examples have demonstrated
it is those configurations where the largest load concentra
factor is of the typeK j* of Eq. ~11b! that require careful
study.

Three other points should be made: First, TLS is mo
tone; that is, the load concentration factor on any given s
vivor does not decrease by the failure of other fibers. Seco
all fibers loaded beyond their strength at any stage fail
stantly; that is, we need not be concerned with the orde
failures. Third, a fiber subadjacent to broken fibers can ne
be the most heavily overloaded fiber sinceKi , j>K j ,i for i
> j .

C. Load partitioning for uÄ2Õ3

Unless otherwise stated, we assume henceforth thau
52/3 in the TLS rule since the contrast with LLS is the mo
striking. In this case, Eqs.~11a! and ~11b! indicate that the
various load concentration factors associated with broken
bers have possible values 11k/6 for k51,2,3, . . . . For k
>2, all values ofk are connected with certain values ofKi*
andKi , j , which are the largest load concentration factors
certain configurations. In particularKi* 5113i /6 for i
52,3,4,5, . . . , which corresponds tok56,9,12,15, . . . .
Also Ki ,05112i /6 for i 51,2,3,4, . . . , which corresponds
to k52,4,6,8, . . . , and Ki ,1511(2i 11)/6 for i
51,2,3,4, . . . , which corresponds tok53,5,7, . . . . Note
r

u-

2.

ir

y.
t
is
r
at
n

-
r-
d,
-

of
er

t

fi-

n

that Ki ,05Ki 21,25Ki 22,45¯ , and Ki ,15Ki 21,35Ki 22,5
5¯ , where our interest is in all cases where the seco
subscript is less than or equal to the first.

For a bundle ofn fibers, we let the random variableXn
denote its strength~the smallest load under which the bund
fails!, and we letGn(x), x>0 be its distribution function.
Since the strength of an intact fiber is 1, the strength o
bundle must be a loadx satisfying Kx51, where K51
1k/6 for some non-negative integerk. Note thatK is asso-
ciated with an unfailed fiber within some local fiber bre
configuration occurring as the bundle fails, and which b
comes catastrophically unstable once that fiber fails. ThusXn
has the possible outcomes

xk5
6

61k
, k50,1,2,3,4,5, . . . , ~12!

with the exception ofx156/7 which cannot occur under TLS
with u52/3. ThusGn(x) is a discrete distribution. Note in
particular that if all fibers in the bundle are intact, thenxk
51 and thus,Gn(x)51, 1<x,`.

For a given load 0,x,1, to determine the probabilitie
for failure of a bundle it is useful to consider two ways
partitioning the failure load range 0,x,1 into coarse and
fine partitions as illustrated in Fig. 5. The coarse partition
described in terms ofload spans, and is given by

1

11s11
<x,

1

11s
, s50,1,2,3, . . . . ~13!

The fine partition is described in terms ofload regionsand is
given by

6

61k
<x,

6

61k21
, k51,2,3, . . . . ~14a!

Note that for a loadx in load regionk, the bundle fails if
Xn<6/(61k) but survives ifXn>6/(61k21). Note also
that thesth load span is the union of load regionsk56s
11,6s12, . . . ,6s16. To study certain similarities that oc

FIG. 5. Plot ofL@k(x)# versusx for q50.05 ands50,1, and
r 51,2, . . . ,6, and wherek56s1r where the dependence ofk, r
and s on x is given by Eq.~15!. The probability of failure of a
bundle ofn fibers isGn(x)'12exp$2nL@k(x)#%.
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1630 PRE 62S. LEIGH PHOENIX AND IRENE J. BEYERLEIN
cur in failure configurations in different load spans it is us
ful to divide each load span into sixsubspans, which actually
correspond to load regions. Specifically, thekth load region
may be writtenk56s1r for some subspanr in spans where
r 51,2, . . . ,6.Thus Eq.~14a! can be written as

6

616s1r
<x,

6

616s1r 21
,

r 51,2,3, . . . 6, and s51,2,3, . . . . ~14b!

The following relationships can be seen by inspection
Eqs.~13! and ~14!:

s5 d~12x!/xc215 d1/xc21, ~15a!

k5 d6~12x!/xc5 d6/xc2611, ~15b!

and

r 5 d6/xc26d1/xc115k26s, ~15c!

where ‘‘d c’’ denotes the integer part of a real number exce
when the number is an integer, in which case, we take
next smallest integer.

The partitioning scheme we have devised allows us
characterize all possible failure configurations for a bun
under load 0,x<1 in terms of their local structure of ‘‘0’’s
and ‘‘1’’s, and to assess their probabilities of occurren
This task is considered next and is tedious. Much of
complication arises from the fact that the structure of
configurations differs in adjacent load regions in Eq.~14a!.
However, for fixedr in Eq. ~14b! this structure turns out to
be similar for differents, so there is a quasiperiodicity ins.

IV. FAILURE CONFIGURATIONS AND PROBABILITIES
FOR SMALL s

We now study how to identify a local fiber configuratio
that will result in failure of a bundle under a given loadx.
The idea is that bundle failure will occur if and only if a
least one such configuration occurs somewhere in the bun
and there will be some position in the bundle working fro
left to right, where such a failure configuration first appea
With the exception of very small bundles, such configu
tions will involve the breakdown of a crack arrestor pa
defined earlier as a pair of consecutive ones, ‘‘1 1’’ with
‘‘0’’ on one or both sides. If one of the fibers in the pair
overloaded, then the pair fails and the whole bundle c
lapses as all remaining fibers suffer increased loads in
cession.

First we consider an arbitrary interior fiber,i, and associ-
ate with it a list of irreducible, local failure configuration
associated with a given loadx. These configurations are de
scribed in terms ofk ands, which are determined fromx by
Eqs. ~13! and ~14!. Each failure configuration will have ei
ther one or two crack arrestor pairs, and fiberi will be the
second fiber in the first~leftmost! crack arrestor pair. When
configuration has only one crack arrestor pair, the configu
-
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tion will be constructed such that fiberi is the first of the pair
to succumb to overloads, which will come from breakdow
of the configuration to its right~or both may fail simulta-
neously!. When a configuration has a second crack arres
pair to the right of the first, the second pair will fail first du
to a failure progression that causes failure of the leftm
fiber in that pair~or both may fail simultaneously!. In this
way we account for crack arrestor pairs failing under ov
loads coming from the left, or the right. Note that bundl
with a crack arrestor pair at fiberi that fails from the left are
accounted for in configurations for some other fiberi 8, i .

For all possible configurations associated with fiberi lead-
ing to failure within load regionk, we letP(k) be the sum of
their probabilities. Note that these configurations repres
disjoint events.P(k) will be essential to determining th
distribution functionGn(x) for bundle strength, and ignoring
boundary effects will be independent ofi.

A. Critical load concentrations and initiating clusters

For load regionk, whereby 6/(61k)<x,6/(61k21),
there are two critical load concentration factors to keep
mind:

Ki ,k511~1/2!b~k12!/3c, ~16!

the minimal load concentration factor associated withcrack
initiation, and

Kc,k511k/6, ~17!

the minimal load concentration factor associated withcata-
strophic crack propagation, where ‘‘b c’’ denotes integer
value. If a configuration is to fail under loadx in load region
k, a load of at leastKc,kx must occur on some fiber~typically
requiring failure of several fibers after initiation underKi ,kx
on a fiber!. ClearlyKi ,k>Kc,k . Crack initiation in a configu-
ration requires aninitiating cluster of either I k contiguous
‘‘0’’s, or I k ‘‘0’’s interrupted by at most one ‘‘1,’’ where
from Eq. ~16!

I k5 b~k12!/3c52s1 b~r 12!/3c. ~18!

This is most easily seen by writing out casesk51,2,3, . . .
and observing the patterns. For example, if there is a ‘‘
interrupting I k ‘‘0’’s, then it will fail under load Ki ,kx. An
I k11 cluster results, which will grow by failing sequentiall
any isolated ‘‘1’’s it encounters on either side, until it e
counters a crack arrestor pair. Such a pair, in turn, will fai
and only if at least one of its two fibers comes under a lo
at leastKc,kx, thus causing bundle collapse. Note that t
critical load concentrationKc,kx may occur in one or both
fibers in a crack arrestor pair.

B. Load spansÄ0

We study first the uppermost load span 1/2<x,1 associ-
ated withs50, starting with the upper load region,k51 and
working on down~see Fig. 5!. In general, the number o
failure configurations, their lengths and their complexiti
increases asx decreases. Therefore to gain insight, it is b
to study these simple configurations before trying to und
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stand their general structure. As we progress to failure c
figurations associated with largerk and s, i.e., to smaller
applied loadsx, we will illustrate the emergence of certa
features that are part of the more complex, general struc
As the complexity increases with largers, it is necessary to
impose special conventions, such that these failure confi
rations areirreducible, i.e., as short as possible on the rig
end, and that no double counting occurs asi varies over the
bundle.

Two cases are trivial: Forx>1 all fibers are overloaded
and the bundle fails automatically, so its probability of fa
ure is Gn(x)51. The case 3/4<x,1 ~which covers k
51,2; s50, r 51,2! is also trivial since just one ‘‘0’’ in the
bundle causes collapse. ThusGn(x)512(12q)n.

For the case 2/3<x,3/4 ~k53; s50, r 53!, three non-
trivial failure configurations can be constructed. From E
~18!, I 351, so the initiating cluster can have no interrupti
‘‘1’’s, and from Eqs.~16! and ~17!, Ki ,35Kc,353/2, so ini-
tiation implies collapse. The configuration list and associa
probability sumP(k53) associated with fiberi in the bundle
is

P~3!5p3q~q1pq1p2q!'3q2, ~19!

where the rightmost approximation inP(k) assumes smallq.
Here ‘‘Y’’ implies the fiber is either a ‘‘1’’ or a ‘‘0’’ and
hence has probabilityp1q51. ~This designation will be
convenient later.! The required crack arrestor pair is desi
nated on the left in all three configurations with the nec
sary ‘‘0’’ to its right. Note that we have specified the fib
furthest to the left as a ‘‘1’’ because failure of fiberi must,
by convention, be caused from the right. Note, however,
the third configuration has a second crack arrestor pair wh
fails first and by both ‘‘1’’s failing simultaneously.

The case 3/5<x,2/3 ~k54; s50, r 54! gives I 452,
Ki ,452 andKc,455/3 and has the following nontrivial con
figuration list and associated probability sum:

P~4!5p3q2~11q!~11p!'2q2. ~20!

Since initial failure gives rise to a load concentration grea
than Kc,4 , the first break again implies collapse. Here, w
see crack initiation at the interrupting ‘‘1’’~2nd and 4th con-
figurations! outside of fiberi. Note that configurations with
two crack arrestor pairs are not needed because to fail be
the first, the second crack arrestor pair would need to
from its right. But then the critical segment of this config
ration would be a configuration for a later fiberi 8. i .
n-
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The case 6/11<x,3/5 ~k55; s50, r 55! gives I 552,
Ki ,552 andKc,5511/6 and yields configurations and pro
ability sum:

P~5!5p3q2@11q~11p!2#'q2. ~21!

The last configuration has two crack arrestor pairs. The s
ond pair is~and must be! flanked by ‘‘0’’s, has an initiating
cluster (I 552) to its left, and fails first through failure of its
leftmost ‘‘1.’’ In the fourth configuration, the first isolate
‘‘0’’ is necessary to ‘‘help’’ the initiation cluster fail the
second fiber of the crack arrestor pair. By convention
string of ‘‘0’’s to the left of the first crack arrestor pair mus
be shorter thanI k to ensure that the failure initiates on th
right.

The last case ins50 is 1/2<x,6/11 ~k56, s50, r 56!,
which hasI 652, Ki ,652 andKc,652, and the following list
and probability sum~using various reductions, such asp
1q51!:

P~6!5p3q2~11q!@11pq1q2~p21q2!#'q2. ~22!

Interestingly, in some of the above configurations anI 6 ini-
tiation cluster~e.g., ‘‘0 0’’! by itself may not cause failure
For example, in the last two configurations we see two ca
where the second crack arrestor pair fails by overload
both its fibers in a ‘‘tie.’’ Note also that removing
all fibers to the left of fiberi in both configurations leave
‘‘1 0 0 1 1 0 10,’’ which might seem to be a possible failur
configuration for fiberi 85 i 14. But the crack arrestor pai
has anI 6 to its left so both fibers will fail in a tie, thus
violating our convention. In this way double counting
avoided.

We still must consider boundary effects as follows: F
fibers 1< i<I k12 near the left boundary, some or all co
figurations in the list must be truncated on the left, and o
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1632 PRE 62S. LEIGH PHOENIX AND IRENE J. BEYERLEIN
those that still cause failure of fiberi ~assuming the truncate
fibers transmit no load! must remain in the list. Truncation i
also possible at the right end of the bundle by a similar ru
By this scheme some load is lost at the edges, but the eff
turn out to be negligible asn grows large.

Regarding the above constructions there are several
portant points to be made: First our failure configuratio
must be constructed carefully to take advantage of the Ch
Stein method of Poisson approximation to tightly estim
Gn(x). ~See Appendix B.! It may be tempting to delete th
left-most ‘‘1’’ in each configuration, but it turns out that th
resulting estimate ofGn(x) would be too inaccurate, that is
in using the Chen-Stein theorem, the error bounds would
of the order ofGn(x) and thus, would be too loose. Th
occurs because without the leftmost ‘‘1,’’ configurations
the respective lists of two fibers,i and i 8, which are close to
each other, would share too many common fibers. On
one hand, we must construct configurations for fiberi that
overlap minimally those for a neighboring fiberi 8, but, on
the other hand, we must be careful that no possible fai
configuration is neglected. Second, for configurations t
have two crack arrestor pairs, as occurs fork55 and 6, the
fiber sequence between them must contain an initiating c
ter. Third, the failure configurations we construct must
irreducible.

The local failure configurations listed for fiberi may not
seem at first to exhaust all local possibilities. However, th
that are omitted will have structureimplying the occurrence
of a failure configuration in the list of some other fiberi 8
, i to the left ~including the special boundary lists!; that is
they will actually be redundant extensions of these ear
configurations, which would already have failed the bund
For example, consider the configuration ‘‘1 0 0 1 1 0 0 1 0’’
for k56, which is not in our list, but which clearly cause
failure of fiberi ~the 2nd fiber in the crack arrestor pair!. This
configuration violates the convention that the string of 0’s
the left of fiberi must be less thanI k . To explain, we note
that this configuration can be reduced to ‘‘1 0 0 1 1 0 0’’ and
still cause failure. Now to its left must be a ‘‘1,’’ or ‘‘1 0’’ or
‘‘1 0 0’’ or ‘‘1 0 0 0’’ and so on. If it is a ‘‘1,’’ then to the
left of that must be another ‘‘1,’’ or ‘‘1 0’’ or ‘‘1 0 0’’ or
‘‘1 0 0 0’’ and so on again. If the latter is a ‘‘1,’’ we have
‘‘1 1 1 0 0 1 1 0 0’’ which is in the list of fiberi 85 i 24, and
the same is true if the latter is a ‘‘1 0.’’ On the other hand
we add ‘‘1 0’’ to the reduced configuration, we obta
‘‘1 0 1 0 0 1 1 0 0’’ which can be reduced further t
‘‘1 0 1 0 0.’’ We can then add to the left of this configuratio
and so on, so that eventually~with reductions along the way!
we arrive at a failure configuration for some fiberi 8, possi-
bly near the left boundary. For example ‘‘1 0 0 1 1 0 0’’ is a
boundary configuration fori 51.

C. Load spansÄ1

We now turn to the load span,s51, wherein 1/3<x
,1/2, and present only a few cases for illustration. The c
6/13<x,1/2 ~k57, s51, r 51! gives I 753, Ki ,755/2
and Kc,7513/6 and has the failure configuration list an
.
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probability P(k):

P~7!5p3q3~11q1q2!@11p1p/~12pq!#2p3q3~p3!

'2q3. ~23!

We now see the emergence of unbounded sequences in
ber and length to the right of the first crack arrestor pa
Such configurations have initiating clusters only at the v
right end, which can be far from the crack arrestor pa
Configurations here with two crack arrestor pairs cannot
constructed to have ‘‘1 0 0’’ at the left end, since they cou
then be reduced to ones with one pair.

The case 3/7<x,6/13 ~k58, s51, r 52! gives I 853,
Ki ,855/2 and Kc,857/3, and is similar tok57 except
‘‘1 0 1 1 0 0 0 Y’’ is replaced by ‘‘1 0 1 1 0 0 0 0 Y’’ and
‘‘1 0 1 1 0 0 0 1 0Y.’’ Also the last configuration is replaced
by

as well as these same ones but with ‘‘1 0’’ replacing ‘‘1’’
the left end. Unlike all previous cases, the configuratio
with two crack arrestor pairs can be unbounded in num
and length. We find
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P~8!5p3q3~11q!@q1pq1p1p/~12pq!#

1p3q3~q2!@11p1p/~12pq!#

1p3q3~11q!@p2q21p3q3/~12pq!#

'2q3. ~24!

For k59 the configurations are longer, but the structure
basically the same as fork58. For k510, however, more
complex right endings of the type ‘‘1 0 1 0 0 0’’ and
‘‘1 0 0 1 0 0’’ emerge, which come from longer initiatin
clusters (I 1054) occurring only at the far right. Fork511,
arrangements of fibers between the crack arrestor pairs
be longer thus permitting initiation clusters with interruptin
‘‘1’’s ~for example ‘‘1 1 1 0 1 0 0 0 1 1 0’’!. The same is true
for k512. For even largerk this feature becomes mor
prominent as the distance between crack arrestor pairs
creases further to make more room for largeI k . Generally,
I k will be about 2s in length, whereas up to about 3s fibers
are possible between crack arrestor pairs. For smallq, we
find that P(9)'10q4, P(10)'3q4, P(11)'14q5, and
P(12)'8q5. Interestingly, this simple structure in integ
powers ofq, will not prevail for largers, as quantities related
to eigenvalues of certain recursions begin to emerge.

As a final comment, we see already the probability
failure of a bundle at loadx51/3 @at the bottom end of load
regionk512 by Eq.~13!#, is becoming rather small, makin
Monte Carlo simulation problematic. To explain, we take
example q51/10 where we findP(12)'0.00008. Thus
bundles would need to have aboutn512 500 fibers to have
roughly an equal chance of failing or not failing. On th
other hand, the configurations that cause failure are still
long enough to reveal subtle probability features emerg
from eigenvalue analysis, which ultimately determine t
character of the distribution for strength and the size effe

V. GENERAL FAILURE CONFIGURATIONS

In this section, we describe the system of failure config
rations needed for failure of a bundle ofn fibers under loads
0,x,1/2 (s>1). Recall that upon fixings>1 and 1<r
<6, we are equivalently fixingk56s1r and the load re-
gion,

6

61k
<x,

6

61k21
. ~25!

Given this load region, we construct sets of configurations
‘‘1’’s and ‘‘0’’s such that the bundle fails if and only if a
least one of them occurs somewhere in the bundle, and
Chen-Stein method for Poisson approximation gives a su
ciently tight bound~Appendix B!, which roughly means tha
they should be sufficiently distinct in structure. We w
present their general structure and sizes in terms ofs and r.
As before we associate with these configurations some fibi
in the bundle, which is again the second fiber in the leftm
crack arrestor pair ‘‘1 1’’ in the configuration that also has
‘‘0’’ immediately to its right.

Before beginning, we caution that while the basic ide
motivated in Sec. IV may be straightforward to grasp, fu
appreciating the detailed structure of the configurations
s
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arise is difficult and tedious, and requires one to write o
and study the various cases. Much of the complication
tedium occurs because, for any givens, the configurations
needed for failure change subtly whenr varies over 1 to 6.
This occurs because the load redistribution involves units
1/6 to subadjacent fibers but 1/3 to adjacent fibers, as
seen in Sec. IV. Ideally we would write out below the cas
r 51,2, . . . ,6 insuccession but this is not practical due
space limitations. Thus we have devised the following co
pact description of the structure of the various failure
quences for each loadx.

To begin, we consider cases where fiberi is an interior
fiber of the bundle such that boundary effects can be igno
An interior fiber is at least 2s13 fibers from the left bound-
ary and about 5s16 fibers from the right boundary.

A. Type I configurations

The first failure configurations of interest are called typ
configurations, and contain only one crack arrestor pair. T
simplest set contains configurations with the structure

where X...X is a sequence of ‘‘0’’s and ‘‘1’’s such that n
two ‘‘1’’s are adjacent. Also, from Eq.~15! the key integers
used in defining the string lengths in these configurations

a5a~r !5 b~r 21!/2c, b5b~r !5 b~r 21!/3c,

t5t~r !5 b~r 1t !/2c2 br /2c, ~26a!

where ‘‘b c’’ means integer value. Thus 0<a<2 and 0<b
<1, and as before our convention dictates that 0<t<2s
1b,2s1b115I k , which is the initiating cluster length
defined by Eq.~18!. It can be seen that 0<t< bs1(r
1b)/2c2 br /2c and 0<t<s111a2b. To relatet to t, we
define

c5H 0 r 52,4,6,

1 r 51,3,5,
~26b!

so that by Eq.~26a! t50 for t50, but t52t2c, 2t2c
11 for t>1. Note that the first fibers to fail are the ‘‘1’’s in
X•••X starting from the left, followed by the crack arresto
pair beginning with fiberi.

Another set of type I configurations is similar to the fir
except that each has an isolated ‘‘1’’ introduced into thes
1b11 cluster and thus has the structure

where 1<u<2s1b and 0<t<s1a2b. Here the first fiber
to fail is the isolated ‘‘1’’ in the initiating cluster, followed
by the ‘‘1’’s in X¯X starting from the left followed by the
crack arrestor pair beginning with fiberi.

The most important set of type I configurations conta
configurations of the form
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where the subsequence X̄X is the same as X̄ X, except
that the terminal element on each end must be an ‘‘0’’ a
where ‘‘d’’ above an end of a subsequence means that
number of contiguous ‘‘0’’s at this end must be less thand.
In the above, 1<u<2s1b21, 1<v<s211a2b2t, w
5s211a2b2t2v, and 0<w<s1a2b2t22. Here the
failure progression begins with the isolated ‘‘1’’ in the init
ating cluster, followed by the ‘‘1’’s in X̄ X starting from
the left, followed by the ‘‘1’’s in X̄ X starting from the
right, followed by the crack arrestor pair beginning with fib
i. It turns out that the three sets of configurations just
scribed are thedominantconfigurations of type I in deter
mining the probability of bundle failure.

There is one more set of type I configurations, which h
long configurations structured as

where s1a2b2t<v<`. It turns out that these becom
negligible in importance for largek, that is, they contribute
negligibly to the probability of failure of large bundles
lower loadsx. Thus we label these as type I8 configurations.

B. Type II configurations

The second type of failure configurations of interest
called type II configurations, which contain two crack arre
tor pairs. The simplest of these have the structure

where 1<t<s1a2b, and t52t2c, and where 0<t8<t
21. Here the subsequence X̄X is the same as X̄ X, ex-
cept that the terminal element on the right must be a ‘‘0
Note that failure proceeds with failure of the ‘‘1’’s in X̄X
beginning from the left followed by thesecondcrack arrestor
pair starting with its first ‘‘1,’’ which requires the help o
loads from the rightmost string of ‘‘0’’s. Only then does th
first crack arrestor pair fail starting with fiberi, which re-
quires the help of loads shifted from the leftmost string
‘‘0’’s. Another set of type II configurations is constructed b
inserting an isolated ‘‘1’’ into the 2s1b11 initiation cluster
to get

where 1<t<s1a2b21, 0<t8<t21 andt52t2c. Here
the failure progression is as just described except that
isolated ‘‘1’’ in the initiating cluster fails first. Notably thes
only occur fors>3, that is,x,1/4.
d
e

-

s

e
-

’

f

e

The most important configurations of type II, are

where 1<t<s1a2b23, 0<t8<t21, t52t2c, 1<u
<2s211b, 1<v<s221a2b2t, and 0<w<s1a2b
2t23, and wherew5s1a2b2t2v22. Here failure pro-
ceeds with failure of the isolated ‘‘1’’ in the initiating clus
ter, followed by the ‘‘1’’s in X̄ X and X̄ X spreading out
from the initiating cluster, and then by thesecondcrack ar-
restor pair starting with its first ‘‘1,’’ which requires the hel
of loads from the rightmost string of ‘‘0’’s. Only then doe
the first crack arrestor pair fail starting with fiberi, and this
requires the help of loads shifted from the leftmost string
‘‘0’’s. These configurations only occur fors>3 and domi-
nate ass grows large.

All of the type II configurations can be taken as domina
in that we will sum over them all in determining the dom
nant terms in the probability of bundle failure for largek.

C. Type III configurations

We also have type III configurations, which are co
structed by modifying type II configurations at their rig
ends as follows: The simplest modification involves repla
ing the t contiguous ‘‘0’’s at the right end by

where 1<u8<t21 and automatically 1<u8<2s1b. We
modify only those configurations of type II where immed
ately to the left of the second crack arrestor pair, ‘‘1 1
there are fewer than 2(s1a2b)2c contiguous ‘‘0’’s. Oth-
erwise we would create configurations with type I config
rations as part of them~for some later fiberi 8!. A more
complex modification of type II configurations involves r
placing thet contiguous ‘‘0’’s at the right end by

where now 1<u8<2s1b21 and 1<v8<s1a2b23. We
modify only those that have fewer than 2(s1a2b22
2v8)2c contiguous ‘‘0’’s immediately to the left of the
second ‘‘1 1’’ pair.

The last modification covers the case where there ar
least 2(s1a2b222v8)2c contiguous ‘‘0’’s immediately
to the left of the second ‘‘1 1’’ pair, in which case 1<v8
,` ~i.e., until we run out of fibers in the bundle but sti
have failure!. Type III configurations are not dominant, a
they will be seen to be negligible in probability ask in-
creases.

Note that any other failure configuration we attempt
construct will in whole or in part coincide with a failur
configuration associated with some other fiberi 8. Though
the system described here for constructing failure configu
tions is not the only one possible, all properly selected s
tems ~structured to be sufficiently distinct and to avo
double counting! will give the same asymptotic results up
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the same order of error in the approximation.~See Harlow
and Phoenix@41# for two distinct constructions in the case
local load-sharing, one being more complex than the ot
and leading to a reduction in the error of approximation
very largek.!

D. Boundary effects

Finally, we need to account for boundary effects. Wh
the intact fiberi lies between 2, i<2s1b12 near the left
boundary, we associate with fiberi the part of the failure
configuration to the right of its first ‘‘0.’’ This first ‘‘0’’ must
be positioned no lower than the first fiber in the bundle, a
the first ‘‘1’’ is deleted if it lands at the fiber zero positio
~where there really is no fiber!. For i 51,2 we consider only
those configuration patterns beginning with ‘‘1 1 1,’’ i.e
t8,t50, then delete the ‘‘1’’s to the left of the first fiber i
the bundle: non existent fibers21 and 0 for fiberi 51 and
fiber 0 for i 52. Finally we add to the list of configuration
for fiber 1, all configurations that begin with ‘‘1 1 1 0’’
where the ‘‘0’’ is positioned at fiber 1, and then we delete t
‘‘1 1 1’’s on the left from each. For fiberi near the right end
of the bundle, we truncate all configurations extending p
the right end and then keep only those causing failure. N
that for i .n22s212b the list for fiber i has no failure
configurations. Note also that every fiber of the bundle w
have configurations in its list that must be truncated at
right, but fori ,n24s, the truncation will involve negligible
configurations. At the left end for 2s, i the truncations will
also be negligible. In conclusion, the total number of fib
with configurations significantly influenced by the bounda
is of order 6s, which will become negligible for largen.

VI. PROBABILITIES FOR CONFIGURATIONS
FOR MODERATE s

We now evaluate and sum the probabilities for types I,
and III configurations associated with a given interior fibei
as presented in Sec. V. These will apply to moderate va
of s. First we need to define several key quantities that a
in the summations. We note that carrying out these sum
tions to yield the quantities given below is very tedious a
once more we have omitted details in the interest of brev

A. Important quantities arising in failure
configuration probabilities

One key quantity is the functionF(s), which is

F~s!5q2s11dsp5S d

d12pD 2S d

q2D , ~27!

whered is the largest root of the characteristic equationd2

2qd1qp50 ~Appendix A!. We also let

b j~s,r !5S d12p

p D H d

p
1~2s1b!1I ~ j !~2s1b21!

3F q2p

d42 j~12d!G J , j 50,1,2,3, ~28!
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whereI ( j ) is an indicator function defined byI ( j )50, when
j 50 and I ( j )51, when j 51,2,3, and we recallb5b(r )
5 b(r 21)/3c. Two additional quantities of interest are

V1~s,r !5~11q! (
i 50

s1a2b22 S q2

d D i

~s1a2b222 i !

~29!

and

V2~s,r !5~11q!F12~q2/d!s1a2b21

12~q2/d! G , ~30!

where we recalla5a(r )5 b(r 21)/2c. Also we have the
quantity

j~s,r !5S q2

d D s1hF ~11q!S d

q2D 12g

b2~s,r !

1~12g!~11q! fb3~s,r !G , ~31!

where f 5 f (r )51, when r 51,4, and f (r )50, when r
52,3,5,6, and whereg5g(r )51, when r 53,6, andg(r )
50, whenr 51,2,4,5. Alsoh5h(r )5min$b(r),c(r)%, where
c(r )51, whenr 51,3,5 andc(r )50, whenr 52,4,6. A sum
that arises is

a i511q1¯1qi5S 12qi 11

12q D , i 51,2,3, . . . , ~32!

which is used in the following three functions:

z~s,r !5~d12p!2S 1

q3p2D S q2

d D s1b

3H a2~s1a2b!2c25F11
p

q
~2s1b11!G

1a2~s1a2b!2c23qF11
p

q
~2s1b!G

1a2~s1a2b!2c21q2J , ~33!

v1~s,r !5 (
i 50

s1b24

~s1b232 j !S q2

d D i

a2i 112c , ~34a!

and

v2~s,r !5 (
i 50

s1b24 S q2

d D i

a2i 112c . ~34b!

B. Probability sums for configurations of types I, II, and III

For a givenk56s1r and interior fiberi we letP1(k) and
P2(k) be the probability of occurrence of a configuration
type I or type II, respectively, as described in Sec. V.~We
include configurations of type I8 with those of type I, al-
though the former die out in importance ask increases.!
These become the dominating configurations in determin
the probability of bundle failure. Calculating these probab
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ties is tedious and requires summing the probabilities for
configurations of the corresponding types in Sec. V and
ing results in Appendix A. We let

P~k!5P1~k!1P2~k!, ~35!

and from the summations find that

P1~k!5F~s!qb2cda2b$~2s1b21!@V1~s,r !

2c~s1a2b22!#1b1~s,r !@V2~s,r !2c#

1j~s,r !% ~36!

and

P2~k!5F~s!qb2cda2b@~2s1b21!v1~s,r !

1b0~s,r !v2~s,r !1z~s,r !#S q3p2

d3 D . ~37!

We also letP3(k) be the probability for the occurrence o
a type III configuration at fiber locationi. It can be seen tha
type III configurations are not dominant because they h
two initiating clusters, so that

P3~k!,~2s111b!2~s1a!q4s1212b. ~38!

Note that because of the two initiating clusters, the powe
q is doubled as compared toF(s). Thus, ass increases,
P3(k) becomes negligible in magnitude compared toP(k)
5P1(k)1P2(k). In fact the ratio goes asO(sq2s) which
decreases dramatically ins for smallerq.

VII. ASYMPTOTIC FORMS OF PROBABILITIES
FOR LARGE s

The expressions presented in Sec. VI can be simplified
large s, corresponding to smallx, as seen by Eq.~15a!. In
particular Eq.~28! reduces to

b j~s,r !52sS d12p

p D F11I ~ j !
q2p

d42 j~12d!G@11O~1/s!#,

for j 51,2,3, ~39!

whereO(x)/x→const asx→0, and Eqs.~29! and ~30! re-
duce to

V j~s,r !5s22 j~11q!S d

d2q2D @11O~1/s!#, j 51,2.

~40!

An important factor in Eq.~40! is

V5~11q!S d

d2q2D . ~41!

In Eq. ~34b!, we can evaluate the sum to determine
ll
s-

e

n

or

(
j 50

` S q2

d D j

a2 j 112c

5(
j 50

` S q2

d D j S 12q2 j 122c

12q D
5

1

p F (
j 50

` S q2

d D j

2q22c(
j 50

` S q4

d D j G
5

1

p S d

d2q22
q22cd

d2q4 D , ~42!

and Eq.~34a! can be treated similarly so that

v j~s,r !5
s22 j

p S d

d2q22
q22cd

d2q4 D1O@s22 j~q2/d!s#,

j 51,2. ~43!

An important factor in Eq.~43! is

v~c!5
d

p S 1

d2q22
q22c

d2q4D , c50,1. ~44!

Evaluation of the order of Eqs.~31! and ~33! yields

j~s,r !5O@s2~q2/d!s# ~45!

and

z~s,r !5O@s2~q2/d!s#. ~46!

Thus the probabilitiesP1(k) of Eq. ~36! and P2(k) of Eq.
~37! simplify to

P1~k!52s2F~s!qb2cda2b~V2c!@11O~1/s!# ~47!

and

P2~k!52s2F~s!qb2cda2bS q3p2

d3 Dv~c!@11O~1/s!#,

~48!

where we recall thatk56s1r . Thus for larges, P(k) of Eq.
~35! becomes

P~k!52s2F~s!qb2cda2b

3FV2c1S q3p2

d3 Dv~c!G@11O~1/s!#

52s2F~s!Q~r !@11O~1/s!#, ~49!

where

Q~r !5qbda2bFd1qd12c

d2q2 1S q2p

d2 D S 1

d2q22
q22c

d2q4D G .
~50!

The key factor in Eq.~49! is calledL(k), and it is defined as

L~k!52s2F~s!Q~r !. ~51!
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Note thatL(k) reflects the larges behavior ofP(k), and
thus the probability that a failure configuration as co
structed in Sec. V is located at fiberi.

For smallq ~i.e., for bundles initially with very few ‘‘0’’s!
and for smallp ~i.e., for bundles initially with very few un-
broken fibers or ‘‘1’’s!, we can simplifyF(s) andQ(r ) in
Eq. ~51!. From Eq.~A3! we get

d'HAq1q/2, 0,q!1,

12p2, 0,p!1,
~52!

so substitution into Eqs.~27! and ~50!, respectively, gives

F~s!'q2s11~Aq!sS 1

4Aq
1

s

8D ~53a!

and

Q~r !'q~a1b!/2, ~53b!

for small q, and

F~s!'p5e2~2s21!p~12sp2! ~54a!

and

Q~r !'
1

p F11
p

4
~322b!G , ~54b!

for small p.

VIII. CHEN-STEIN BOUNDS
ON STRENGTH DISTRIBUTION

We now work towards determining the structure of
asymptotic approximation forGn(x) as the bundle sizen
grows large and the loadx becomes small~i.e., s becomes
large!, paying particular attention to the magnitudes of t
errors of approximation. In particular, we desire an appro
mation where the error divided byGn(x) ~i.e., relative error!
goes to zero asx goes to zero providedn is large enough to
avoid boundary effects. This will allow us to accurately e
timate failure probabilities even whenGn(x) itself is very
small. This has been the main stumbling block in treat
such problems in the literature.

Let Ŷi5Ŷi(x) be a 0–1 indicator random variable fo
fiber i, indicating whether or not a failure configuration o
curs there under loadx.0, where 1< i<n. Thus the bundle
survives if and only if

Tn5Tn~x![(
i 51

n

Ŷi~x!50. ~55!

Our goal is to determine the asymptotic behavior of the d
tribution function for bundle failure,

Gn~x!5P$Tn~x!.0%, x>0. ~56!

It is useful to breakŶi into Yi andEi corresponding to the
dominant configurations~type I and type II! and negligible
configurations~type I8 and type III!, respectively, as de
scribed in Sec. V. Thus we may write
-

i-

-

g

-

P$Tn. j %5PH (
i 51

n

Ŷi. j J
5 (

v50

j

PH (
i 51

n

Yi. j 2v and (
i 51

n

Ei5vJ ,

j 50,1, . . . ,n. ~57!

It can be seen that the probability of occurrence for a ne
gible failure configuration for fiberi ~of type I8 or type III! is
less than (1/s)P(k) for s sufficiently large.@See the steps
leading to Eq.~49! wherek56s1r , and also recall Eq.~38!
where the key iss3q4s/(s2q2sds)→0 ass→` sinceq,d.#
Thus

PH (
i 51

n

Ei.0J ,~n/s!P~k! ~58!

so that fors sufficiently large~x sufficiently small!

UP$Tn. j %2PH (
i 51

n

Yi. j J U,«E,n[~n/s!P~k!. ~59!

This is an important fact in showing thatTn and( i 51
n Yi have

approximately the same distribution.
We now focus on the Chen-Stein theorem to establis

key step, namely

UPH (
i 51

n

Yi. j J 2 (
v5 j 11

`
@nP~k!#v exp@2nP~k!#

v U,«n ,

~60!

where«n,O(ns3q2s111b)P(6s1r ), which becomes negli-
gible as s increases. To use the Chen-Stein theorem~see
Appendix B! the most difficult task is to show that

b25(
i 51

n

(
j ¹Ji
j Þ i

E@YiYj # ~61!

is negligible compared toln5nP(k) as k grows large,
where E@YiYj #5P$YiYj51%, and whereJi is a suitable
neighborhood of fibers around fiberi such thatYj is indepen-
dent of Yi for j ¹Ji . The size of this neighborhood is dic
tated by the furthest distance to the right and left that
variousdominantfailure configurations can extend. Caref
inspection of the ranges of the various indices for the vari
dominant configurations leads to the choice

Ji5$ j :u j 2 i u<6s131r %. ~62!

For j ¹Ji the dominant configurations forj will not overlap
those fori.

For YiYj51 to occur, a dominant configuration corre
sponding to fiberi and one corresponding to fiberj must both
occur such that either they do not overlap at all, or, th
overlap but have the same values~‘‘0’’ or ‘‘1’’ ! for each
fiber that is common to both. Thus we consider first case
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overlapping dominant configurations, and note that each
ure configuration has at least one crack arrestor pair wh
the second ‘‘1’’ in the first pair is the index fiberi or j.

Consider an interior fiberi and fiber j PJi such that j
Þ i . For fixed i and j PJi , there are four cases of overlap
n-
t-

h.
d

na
nd
a-
W

-

il-
re
ping configurations to consider: The first is where domin
configurations of type I for fiberi „excluding those of type I8,
which are accounted for in Eq.~58!… overlaplater dominant
configurations of type I for fiberj. The probability that such
overlapping occurs is
t

f type I,
for i , j . Here Z•••Z is part of a right-end pattern in a type I configuration and Z8•••Z8 is a full right-end pattern of such a
configuration. Also( t1

and( t2
implies summation over all allowable values oft1 andt2 . The key observation to make is tha

such an extended configuration must have two crack initiating clusters with at mosts1a positions forj for each configuration
of i. It can be shown that fors larger than some threshold values8

« i , j~ I,I !,P1~6s1r !@~2s111b!~s1a!q2s111b#, ~63!

where it is helpful to review the derivation ofP1(k).
The second case we consider is where dominant configurations of type II overlap later dominant configurations o

in which case we consider two distinct possibilities, giving the following probabilities:

~when t1 , i and j are all given,t2 becomes fixed! or
we
where Z•••Z is a piece of a middle pattern in a type II co
figuration and Z8•••Z8 is a possible complete right end pa
tern in a type I configuration. For a given choice ofi andj, it
can be seen that one or the other may occur, but not bot
either case we must have two crack initiating clusters, an
can be shown that fors sufficiently large

« i , j~ II,I !,P2~6s1r !@~2s111b!~s1a!q2s111b#.
~64!

There are two cases that remain, such as type I domi
configurations overlapping later type II configurations a
type II configurations overlapping later type II configur
tions. These are handled similarly so we omit the details.
find that

« i , j~ I,II !,P1~6s1r !@~2s111b!~s1a!q2s111b#
~65!

and

« i , j~ II,II !,P2~6s1r !@~2s111b!~s1a!q2s111b#
~66!

Also for i , j sufficiently far apart overlapping will be neg
ligible and in those cases the probability that bothi and j
have a failure configuration occurring,« i , j* , satisfies

« i , j* ,Pi~6s1r !Pj~6s1r !, i , j 51,2. ~67!
In
it

nt

e

In fact there are fewer than (6s131r ) such cases@see Eq.
~62!#. Thus letting

« i85 (
j PJi
j Þ i

E@YiYj #, ~68a!

and taking account of all possible positions of fiberj in Ji ,
and notingP(k)5P1(k)1P2(k), we sum« i , j , « j ,i , « i , j* ,
and« j ,i* ~because the positions of fibersi and j can be inter-
changed in the above discussion! to get

« i8<4~6s131r !@~2s111b!~s1a!q2s111bP~6s1r !#

12~6s131r !P~6s1r !2. ~68b!

It turns out that this bound suffices also for fiberi near the
boundaries, where there are approximately only 6s such fi-
bers whose dominant configurations are affected. Thus
can write

b25(
i 51

n

« i8<4n~6s131r !

3@~2s111b!~s1a!q2s111bP~6s1r !#

12n~6s131r !P~6s1r !2. ~69a!
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Note that in doing the above calculations, the reason for
leftmost terminal ‘‘1’’ in defining our configurations be
comes clear; without it the overlapping possibilities explo
yielding bounds of the same order as the probability,Gn(x),
being estimated, which are clearly of little value.

Lastly, we considerb1 andb3 in the Chen-Stein theorem
presented in Appendix B. Clearlyb350 because the neigh
borhoodJi was constructed to ensure that anyYj outside the
neighborhood would be independent ofYi . For b1 we see
that

b1<(
i 51

n

(
j PJi

E@Yi #E@Yj #<2n~6s131r !P~6s1r !2.

~69b!

Finally we sumb1 , b2 , andb3 , and calculate the erro
estimate~not counting the possible occurrence ofnegligible
configurations associated withEi!

«n[b11b21b3<10n~6s131r !

3@~2s111b!~s1a!q2s111bP~6s1r !#

5O~ns3q2s111b!P~6s1r !, ~70!

where we have used the fact thatP(6s1r ),2(2s11
1b)(s1a)q2s111b for s sufficiently large, as is checke
through study of Eqs.~47! and ~48!.

In summary, in view of Eqs.~49!, ~51!, ~56!, ~59!, ~60!
and ~70!, we have established a key result, namely

Gn~x!5$12exp@2nP~6s1r !#%@11O~1/s!#

5$12exp@2nL~6s1r !#%@11O~1/s!#, ~71!

wheres5s(x) and r 5r (x) are related tox by Eq. ~15!. A
main idea in what follows is that as the bundle sizen be-
comes large, so musts andk to keep the probability of fail-
ure,Gn(x) roughly fixed. This will mean thatx must become
smaller and smaller, approaching zero. A crucial fact will
that these error and remainder terms will vanish in mag
tude compared to the probability of failureGn(x) regardless
of its magnitude.

IX. THE SIZE EFFECT AND RATE OF CONVERGENCE
AS n\`

Here we use the results of Sec. VII to determine the ev
tual size effect for composite strength asn→`, paying strict
attention to the decay of error terms. Recall from Eq.~49!
that P(k)5L(k)$11O(1/s)%, where k56s1r , and r
51, . . . ,6.From Eq.~51! we rewriteL(k) as

L~6s1r !52s2F~s!Q~r !5s2~q2d!sP~r !, ~72!

where

P~r !52Q~r !p5S d

d12pD 2S d

qD . ~73!

From Eq. ~71! the probability of failure of a large bundl
under loadx is
e

,

i-

n-

Gn~x!'12exp@2nP~k!#'12exp@2nL~6s1r !#,
~74!

where we recall the relationshipss5 d1/xc21, k5 d6/xc26
11, andr 5k26s of Eq. ~15!.

To see the effects of bundle sizen on the various error
estimates in terms ofs, we fix a probability level of bundle
failure 0, P̄,1 and integer 1<r<6, and from Eqs.~72!
and ~74! seek to invert

ns2~q2d!sP~r !52 log~12 P̄! ~75!

to getsn5sn(r ,P̄). Using results in Appendix C we get

s̄n~r ,P̄!52
1

log~q2d!
$ logn12 log logn

22 log@2 log~q2d!#2 log@2 log~12 P̄!#

1 logP~r !%1o~1!. ~76!

For n above some small threshold value, these values os̄n
form an increasing sequence inn but are not integers. Fo
large n, taking the integer partsn5 b s̄nc corresponds to the
load regionk56sn1r which gives a higher probability o
bundle failure thanP̄, and taking the next highest intege
sn11 gives a load regionk56(sn11)1r corresponding to
a lower probability of failure. Note that by adjustingr, we
can adjustk amongst its 12 possible values here to obt
two consecutive load regions,k8 and k811, whose prob-
abilities bracketP̄, but it is not generally possible to solv
for an exact loadx given P̄ because the bundle streng
distribution is discrete.

Nevertheless, the effect of bundle sizen is easily seen.
Using the fact that2 log(12P̄) is approximatelyP̄ we can
interpret Eq.~76! as

sn5OF2
log~n/ P̄!

log~q2d!
G . ~77!

Also, it can be shown that the size effect in bundle streng
Xn , is such that

Xn logn→2 log~q2d! ~78a!

in probability asn→`, or

failure load;
2 log~q2d!

logn
, ~78b!

being asymptotically true no matter what the value ofP̄. To
see this note that asn grows large, the loadsx in the corre-
sponding load spanssn or sn11 are all (1/sn)@1
1O(1/sn)# and the choice ofP̄ has a negligible effect on
this value, even in relative terms. It turns out that the co
ficient of variation in strength~standard deviation divided by
the mean! also goes to zero asn→`.

Returning to the Chen-Stein theorem, we are now in
position to evaluate the magnitudes of the various error te
asn grows large. In Eq.~59! we see from Eqs.~72!, ~75!, and
~77! that
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«E,n5S n

sn
D P~k!5nL~6sn1r !S 1

sn
D F11OS 1

sn
D G

5OF P̄

log~n/ P̄!
G . ~79!

Similarly, for b1

b1<2S 1

nD ~6sn131r !@nP~6sn1r !#25OF P̄2 log~n/ P̄!

n
G .

~80!

For b2 we note that

b2<4~6sn131r !@~2sn111b!~sn1a!q2sn111b

3nP~6sn1r !#12~6sn131r !@nP~6sn1r !#2,

~81!

but

~sn!3q2sn5OH @ log~n/ P̄!#2

~n/ P̄!22 log qJ , ~82!

and the second term is given already by Eq.~80! so

b25OH P̄@ log~n/ P̄!#2

~n/ P̄!22 log q J . ~83!

These error terms all go to zero asn→`, but also impor-
tant is the fact that they are proportional to the probabi
level P̄. The error of approximation in Eq.~60! is «n which
according to Eq.~70! is b11b21b3 . In view of Eqs.~80!
and ~83! and the fact thatb350, the error«n decreases no
only in absolute terms~it is uniformly bounded inP̄! but in
terms relative to the probability levelP̄ of interest~also uni-
formly!. That is, the error divided by the probability of in
terest,«/ P̄, can be made arbitrarily small forn.n« , inde-

pendent of P̄, no matter how small.
We have neglected boundary effects in this discuss

The number of fibers affected, however, is approximatelys

out of n, which is O@ log(n/P̄)#. So in the above approxima
tions, the error is about the same as that introduced
changingn by O@ log(n/P̄)#, and this makes no substanti
difference in the asymptotics~as can be seen also by repla
ing n by n2sn in the derivations!. As a practical matter, to
avoid boundary effects we want

n@
26 log~n/ P̄!

log~q2d!
. ~84!

X. APPROXIMATIONS FOR THE PROBABILITY OF
FAILURE OF LARGE BUNDLES AT LOW LOADS

Since we know how the error terms are structured ins, we
seek to develop simple but accurate approximations to
distribution functionGn(x) for bundle strength. This task i
complicated by the fact that, ask increases,L(k) of Eq. ~51!
has a factorQ(r ) of Eq. ~50! that imparts quasiperiodic be
n.

y

e

havior in k as k56s1r changes withr through 1 to 6 for
each value ofs. To bound this periodicity recall thats
5 d1/xc21. Then careful inspection of the structure ofL(k)
given by Eqs.~50! and ~51! shows that a lower bound is

L l~x!52S 1

xD 2

q2@~1/x!21#21d~1/x!2113
p5

~d12p!2 Q~1!

52S 1

xD 2

q2/xd1/xS d

d12pD 2S p5

q3DQ~1!. ~85!

Except whenx51/(11s), s51,2,3, . . . , which occurs at
the beginning of load spans @wherebyr 51, so thatQ~1!
applies# this approximation asymptotically~larges! yields an
underestimate of the probability of failure. The maximu
underestimate is by the factorqQ(1)/Q(2). Thus we let

Lu~x!5
Q~2!

qQ~1!
L l@k~x!#

52S 1

xD 2

q2/xd1/xS d

d12pD 2S p5

q4DQ~2!. ~86!

We can then write

L@k~x!#5S 1

xD 2

~q2d!1/xP* ~q!D~1/x!, ~87!

where

P* ~q!52S d

d12pD 2S p5

q4DQ~2!, ~88!

and

D~1/x!5~xd1/xc2x!2~q2d! d1/xc21/xH qQ@r ~x!#

Q~2! J , ~89!

where we recall from Eq.~15c! that r (x)5k(x)26s(x)
5 d6/xc26d1/xc11. Note thatD(1/x) is asymptotically~as
x→01! periodic in 1/x, varying between 1 and
qQ(1)/Q(2) with period 1, corresponding to integer in
creases ins.

A. Approximation for bundle strength distribution for large n
and small x, and some numerical results

In view of Eq. ~71! and Eqs.~87! to ~89! our main
asymptotic result is

Gn~x!'12expF2nS 1

xD 2

~q2d!1/xP* ~q!D~1/x!G , ~90!

where we find that therelative error @absolute error divided
by Gn(x)# is O(x), which follows directly from Eq.~71!.

In Fig. 5 we have plottedL@k(x)# versusx for q50.05
and for the range ofx defined bys50,1 ~i.e., 0.333,x,1!
and r 51,2, . . . ,6. Thedependence ofk, r, and s on x is
given by Eq.~15!. This figure shows the discrete, ‘‘step
behavior ofL@k(x)# where the periodic feature is noticeabl
A similar result is shown in Fig. 6 for the range ofx defined
by s512 ~i.e., 0.0714,x,0.0769! and for q50.1 and 0.2.
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Also shown is the smallq approximation Eqs.~52!, ~53a!,
~53b!, ~87!, and~88! whered'Aq1q/2.

We note thats of the order of 12 is necessary to devel
a fairly full set of type I and type II failure configurations, a
described in Sec. V. Note that the probability of failure o
bundle ofn fibers isGn(x)'12exp$2nL@k(x)#%, so n must
be of the order of 1/L@k(x)# to have a significant probability
of failure. For q50.2 ands512, Fig. 6 shows that suc
configurations would not be observable by Monte Ca
simulation sincen.1018. One can check from Eq.~90! that
only whenq is significantly greater than 0.5 will such con
figurations readily occur.

The size effect is also easily obtained from Eq.~90!. Set-
ting the quantity inside the exponential of Eq.~90! equal to
one and solving forx yields the characteristic strengthxn* .
We find that

xn* ;
2 log~q2d!

log@P* ~q!n#~11an!
, ~91a!

asn→` where

an5
2$ log log@P* ~q!n#2 log@2 log~q2d!#%

log@P* ~q!n#22
. ~91b!

We note that the correction terman , while decaying to zero
asn→`, does so very slowly, and thus cannot be ignor
This again points to a difficulty in using Monte Carlo sim
lation alone to establish the eventual size scaling, since
bundles would have to be extremely large to fully subdue
error terman . It can be shown that the coefficient of vari
tion ~c.o.v.! also decreases as 1/logn.

B. Approximation for distribution function for load at first
fiber failure

The analysis for thefirst fiber to fail is similar to that for
complete failure under LLS (u51) as described in Harlow
and Phoenix@41#, but with a few modifications. For ex

FIG. 6. Plot ofL@k(x)# versusx for q50.1, 0.2 for the range
s512, andr 51,2, . . . ,6, and where k56s1r where the depen-
dence ofk, r, ands on x is given by Eq.~15!. Also shown is the
small q approximation~52!, ~53a!, ~53b!, ~87!, and ~88! whered
'Aq1q/2. The probability of failure of a bundle ofn fibers is
Gn(x)'12exp$2nL@k(x)#%.
.

he
e

ample, the most important configurations in TLS involve is
lated ‘‘1’’s underKi* 511 i /2, wherei is the number of ad-
jacent neighbors, but the configuration ‘‘1 1 0̄0’’ with i
contiguous ‘‘0’’s will not necessarily cause failure und
Ki ,0x since Ki ,0,Ki* . Thus configurations where the firs
fiber to fail is one of the fibers in a crack arrestor pair requ
i 853i /2 breaks, i.e.,i /2 extra breaks as compared to an is
lated ‘‘1.’’ Nevertheless, the same asymptotic results as
Harlow and Phoenix occur, though with slightly differe
error estimates. Thus an approximation can be developed
the distribution function for the bundle load when thefirst
fiber fails. This distribution turns out to be

Gn
~1!~x!'12expF2nS 2

xDq2/x~p/q!2D~1!~2/x!G , ~92!

where

D~1!~2/x!5~ d2/xcx/22x!qd2/xc22/x11. ~93!

Note thatD (1)(2/x) is asymptotically~asx→01! periodic in
2/x, varying between 1 andq with period 1. In this case the

characteristic load at first fiber failure,xn
(1)* decreases as

xn
~1!* ;22 logq/ logn ~94!

@where we have not calculated the small correction term a

Eq. ~91b!#. Also the c.o.v. varies as 1/logn. Clearly xn
(1)*

scales differently formxn* given by Eqs.~91a! and ~91b!.

XI. DISCUSSION AND EXTENSIONS

A. Some extensions

The above analysis can be extended to a quasi-t
dimensional material structure in the form of a chain ofm
independent bundles withn fibers each. The analysis is th
same upon replacingn by mn except that the boundary con
ditions need to be handled with some care. In the asymp
ics we must letm and n grow large simultaneously noting
that boundary effects will dominate unless

n@
26 log~mn/ P̄!

log~q2d!
~95!

and a sufficient condition ism→` and n→` such that
(logm)/n→0. The physical meaning is that the bundle sizen
remains much larger than the longest local failure configu
tion in the material for a desired probability levelP̄.

Other types of boundary conditions are possible. T
above analysis applies with more accuracy for circu
bundles and chains thereof, and for spiral boundary con
tions, but again, the above condition Eq.~95! must be satis-
fied. We also could have modified the load-sharing rule
the boundaries to prevent losing load at the edges by refl
ing it back to the interior, but this strongly affects the boun
ary configurations at the very edges. The probabilities
certain failure configurations occurring for these bound
fibers would increase since, at the very edge, initiation a
catastrophic failure configurations need to be about hal
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long as those for the interior to cause failure. But the init
tion has to be at the boundary for this to occur so the frac
of configurations involved is of order 1/s for largers ~small
loadsx, large bundles,n! compared to edge configurations
the previous case, and the probability for each is of or
(q2d)s/2 roughly the square root of that for interior fiber p
sitions. A straightforward calculation shows thatn should be
large compared to (m/ P̄)/@ log(mn/P̄)#2 for such boundary
effects to be negligible.

Our analysis thus far has applied to bundles withu52/3
in the tapered load-sharing rule. However, one can in p
ciple apply the same procedure to any value ofu in the range
2/3<u,1. For example, foru53/4 we still haveKi* 51
1 i /2, but Ki ,05113i /8 andK0,i511 i /8. But since 3 does
not divide 8, we actually need a load span ofr 51, . . . ,12
steps instead of 8 to obtain a repetitive pattern. The b
ideas all carry through~albeit tediously!, and one obtains
results of similar structure. In particular, foru53/4, one has
for a given probability of failureP̄ roughly

strength'2
log~q2d2/3!

log~n/ P̄!
. ~96!

For general 2/3<u,1 we conjecture

strength'2
log~q2d2/u22!

log~n/ P̄!
. ~97!

In Sec. II, we discussed the characteristics of load re
tribution in a model of Hedgepeth. One aspect was that n
to break clusters of sizet, load is redistributed beyond nex
nearest neighbors in decreasing amounts in distancez ~vary-
ing as 1/Az for large t! and also that the load on the fibe
adjacent to a cluster oft breaks does not grow linearly int
but rather as;Apt/2. It should be possible to generalize th
tapered load-sharing scheme to such situations where lo
shifted also to third-nearest neighbors, and so on. In this c
failure might proceed through the existence of a crack ini
tion core of s0(x) ‘‘0’’s possibly interrupted by one ‘‘1,’’
then through a sequence ofs1(x) fibers with no ‘‘1 1’’s
adjacent, followed by propagation through a sequence
s2(x) fibers with no ‘‘1 1 1’’s, and so on. One envision
solving a sequence of eigenvalue problems ford1 ,d2 ,... .
Since the nearest neighbor overload factor is roughlyApt/2,
ultimate breakdown may require a total string length
s0(x)1s1(x)1¯1sl (x)(x)'(4/p)/x2. Thus strength may
decrease as some functionC(n/ P̄,q,d1 ,d2 ,...d l (x))/
( logn)1/2. However, the nature ofC is likely to be more
complicated than suggested by formulas given in the In
duction ~as suggested below for the first fiber to fail!.

The analysis for thefirst fiber to fail is similar to that for
complete failure under local load-sharing (u51). The size
effect result was that strength decreased
22 logq/@log(n/P̄)#. On the other hand, our results fo
Hedgepeth load sharing, Eq.~10!, suggested that a lon
string of v ‘‘0’’ s interrupted by a single ‘‘1’’ in the middle
-
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has load (p/2)v/ logv on it. In Appendix C we show that this
leads to the size effect for the bundle load at first fiber fa
ure, which is

xn
~1!* '

2

p

logq log log~n/ P̄!

log~n/ P̄!
, ~98!

which differs from the form Eq.~5! given in the Introduction
or Eq. ~94! for TLS. In addition, Eq.~10! also indicates that
this load concentration factor holds approximately for is
lated fibers in a neighborhood of width perhaps proportio
to v around the center fiber. This leads to a distribution
the first fiber to fail, namely Eq.~92! modified perhaps to

Gn
~1!~x!'12expF2nC* ~q,x!logS 1

xD S 1

xD 11~ log q!/xG ,
~99!

whereC* (q,x) is a positive function bounded from below
and above asx→0. Again this form is more complicated
than Eq.~4! or Eq. ~92! for TLS. These are issues to pursu
in future work.

B. Discussion

Comparing with results quoted in Sec I, we first compa
the distributionsGn

(1)(x) in Eq. ~92! to F(V1) in Eq. ~4! for
first fiber failure. Sinceq2/x5exp@22 log(12p)(21/x)# and
a1'1, the structure is similar except our result has the p
factor (1/x) to this exponential. As just mentioned the si
effect results Eqs.~94! and ~5! are the same, both havin
inverse dependence on the log of the volume, but we a
discussed the plausibility of a size effect followin
(log logn)/logn in Eq. ~98! through analysis of a more accu
rate model. This all points to the pitfalls in using simp
arguments.

A comparison ofGn(x) of Eq. ~90! to F(Vb) in Eq. ~4!, is
carried out upon noting that (q2d)1/x5exp@2log(q2d)
(21/x)#, and because log(q2d) does not have the same b
havior in q512p as 2 log(12p), we have an immediate
difference in the dependence of the constants onp. This dif-
ference stems from the fact that the most critical local bre
down configurations are not contiguous strings of breaks
rather extended strings with interrupting survivors especia
near the fringes. This led earlier to determining an eig
value d from a special recursion discussed in Appendix
Beyond our idealization, the more realistic Hedgepeth mo
in Sec. II indicates that such a feature will persist in mo
complex models. Second, the factorab , in Eqs.~4! and~5!,
is about 1/2, whereas in our analysis the corresponding
ponent is 1. This difference comes from assumptions on h
the load at the edge of a long strings of ‘‘0’’s scales with
length, and as mentioned, our model would suggest the s
exponent, 1/2, if we crudely used Hedgepeth load redistri
tion, Eq. ~8!, showing dependence on thesquareof the ap-
plied load. But we caution that use of a more realistic str
analysis is likely to introduce further complications. As di
cussed in Sec. II, it is possible for an ‘‘extended’’ failu
configuration consisting of a central cluster with a series
broken and unbroken fibers at both its tips to be more de
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mental than a central crack involving the same number
breaks. Proper treatment of this situation will change
factors log(q2d) and (1/x)2 in Eq. ~90! and possibly the size
effect Eqs.~91a! and ~91b! to more complicated quantitie
~the first involving perhaps an unbounded number of eig
values!.

If one were to perform Monte Carlo simulation on th
system, it is interesting to ask what bundle sizen would be
needed for the asymptotic results to firmly dominate the
havior. As was mentioned in Sec. IV,P(k) up tok512 ~the
end of spans51! does not yet reveal the impact of th
eigenvalued which is q1/2 for small q. Reviewing the deri-
vations in Secs. V, VI, and VII shows that the leadings2

behavior and the domination of the eigenvalue structure
all the dominant configurations does not really emerge u
s'8, which corresponds to loadsx,1/6. From Eq.~77!, for
a probability of failure for a bundle ofP̄ we can see that the
size of the bundle involved is

n' P̄/@P* ~q!s2~q2d!s#. ~100!

For P̄51/2, s58, q51/4 ~one in four elements is initially a
‘‘0’’ !, we get from Eq.~A3! d50.593, and from Eqs.~88!,
~53a!, and~53b! P* (q) is roughly 2.5, son'3.43106. This
is a large bundle from a simulation point of view if one is
do many Monte Carlo replications. Thus the large size sc
behavior is difficult to access through simulation alone. T
situation worsens very quickly asq becomes smaller. In
some sense this situation is a manifestation of the Peters
paradox@61,62# in that an actual material of huge size—s
1014 elements—will show behavior not accessible by curr
computer technology and algorithms for simulation.

Finally, in studying microstructure-property relationshi
for strength and toughness in heterogeneous ceramics, C
@8# used a Monte Carlo model to study the statistical asp
of crack growth by introducing a large crack and watching
grow to instability under increasing load. He found that m
terials exhibit lower strength, toughness and reliability, th
anticipated from continuum models of crack bridging bas
on local average properties. Though our model does no
troduce a crack artificially but rather allows one to initia
naturally and grow, our conclusion is basically the sam
Fracture initiation and propagation is difficult to captu
through simplifying arguments because they neglect extre
events.
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APPENDIX A: PROBABILITIES FOR FIBER SEQUENCES
WITH NO ADJACENT ‘‘1’’s

Recall that X̄ X is a sequence of ‘‘0’’s and ‘‘1’’s such
that no two 1’s are adjacent, and letXu5Pu$X¯X% be the
initial probability of occurrence of such a sequence of len
f
e
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n
d
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h

u. Inspection shows that all such configurations, can be g
erated by adding a ‘‘0’’ to the right end of those of leng
u21, or a ‘‘0 1’’ to the right of those of lengthu22. Thus
one may write the recursion

Xu5qXu211pqXu22 , u>2, ~A1!

with initial conditionsX05X151. ThusX2512p2, and we
add the natural extensionX2151/q. A solution of the form
Xu5Cdu yields the characteristic equation

d22qd1qp50 ~A2!

with positive and negative roots

d5
q1Aq214pq

2
, d* 5

q2Aq214pq

2
, ~A3!

where the first is largest in absolute value. Thus

Xu5C1du1C2d* u, ~A4!

where the initial conditions giveC11C251, and C1d
1C2d* 51, whose solution is

C15
12d*

d2d*
, C25

d21

d2d*
. ~A5!

Manipulating Eq.~A5! using d1p5d2/q from Eq. ~A2!,
d* 5q2d from Eq. ~A3!, and p1q51, we obtain alterna-
tive relations forC1 and C2 so that Eqs.~A4! and ~A5!
combine to give

Xu5
d2

q2 S d

d12pD du1
d2

q2 S d

d12pD S d21

d1pD d* u. ~A6!

Therefore, we have

Pu$X¯X%5
d2

q2 S d

d12pD du$11«u%, ~A7!

where

«u5~21!uS d21

d1pD S d2q

d D u

→0 as u→`. ~A8!

Finally, consideringPu$X¯X% and Pu$X¯X% where X
means that the terminal element on the side implied mus
a ‘‘0,’’ we easily see that

Pu$X¯X%5qPu21$X¯X%5q2Pu22$X¯X%. ~A9!

In particular, note the casesP1$X¯X%5q and P1$X¯X%
5q. Finally we note that
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Pu$X¯X
v

%5Pu$X¯X%2Pu$X¯Xù the last v positions are all ‘‘0’’s%5Pu$X¯X%2Pu2v$X¯X%qv

5S d

d12pD duF11«u222S q

d D v21

~11«u2v21!G . ~A10!
ng
,
h

s’

od
g
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e

-

APPENDIX B: CHEN-STEIN THEOREM

We give here a form of the Chen-Stein theorem followi
Barbour and Eagleson@59#. Let I be an arbitrary index set
and suppose that$Yi ,i PI % are 0 or 1 random variables wit
probabilitiespi5P$Yi51%512P$Yi50%5E@Yi #.0. Also
let Tn5( i PIYi and ln5E@Tn#5( i PI pi , and letWn be a
Poisson random variable with meanln , wherelnP(0,̀ ).
Let Ji denote an arbitrarily chosen set of ‘‘near neighbor
of i, and letVi5Tn2( j PJi

Yj5( j ¹Ji
Yj . We think ofJi as a

‘‘neighborhood of dependence’’ fori, such thatYi is inde-
pendent or nearly independent ofYj for j ¹Ji . Then for
A#Z1 ,

uP$TnPA%2P$WnPA%u

<D f(
i P j

(
j PJi

pipj1D f(
i PI

(
j PJi
j Þ i

E@YiYj #

1U(
i PI

E$~Yi2pi !% f ~Vi11!U5b11b21b3 ,

~B1!

wheref is a particular function~depending onA! for which

sup
x

u f ~x!u<1, and D f 5sup
x

u f ~x11!2 f ~x!u<1.

Loosely speaking,b1 measures the size of the neighborho
of i, b2 measures the expected number of events occurrin
the neighborhood of a given event, andb3 measures the de
pendence between the eventYi and those occurring outsid
the neighborhood ofi.

APPENDIX C: ASYMPTOTICS FOR LOAD x AT FIRST
FIBER FAILURE

Suppose we have positive integersr andn, positive con-
stantc, constant 0,q,1, and integerw with possible values
w521,1,2. Then the quantity

crwqr5
1

n
~C1!
es
d

’

in

can be written as

@2 log~qr !#wqr5
~2 logq!w

cn
. ~C2!

As n→`, this can be inverted to yield

r n52
1

logq
@ logn1w log logn2w log~2 logq!1 logc#

1o~1! ~C3!

as can be verified by direct substitution.
Now supposev is an integer, and

q2r5v, n5
1

x
, and

2 logq

c
5

p

2
. ~C4!

Then using Eq.~C1! with w51, we have

v
logv

5
2/p

x
~C5!

which using Eqs.~C2! and ~C3! is inverted and exponenti
ated to give

vx;
2

p S 1

xD logS 1

xD . ~C6!

Next suppose

vqv5
P̄

n
, ~C7!

wherep is a constant. Then using Eqs.~C1!, ~C3!, and~C6!
and keeping dominant terms we find that

x

logx
;

2

p

logq

log~n/ P̄!
, ~C8!

which inverts to give

xn;
2

p

logq log log~n/ P̄!

log~n/ P̄!
. ~C9!
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