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Lattice and network models with elements that have random strength are useful tools in explaining various
statistical features of failure in heterogeneous materials, including the evolution of failure clusters and overall
strength distributions and size effects. Models have included random fuse and spring networks where Monte
Carlo simulation coupled to scaling analysis from percolation theory has been a common approach. Unfortu-
nately, severe computational demands have limited the network sizes that can be treated. To gain insight at
large size scales, interest has returned to idealized fiber bundle models in one dimension. Many models can be
solved exactly or asymptotically in increasing sizebut at the expense of major simplification of the local
stress redistribution mechanism. Models have typically assumed either equal load-sharing among nonfailed
elements, or nearest-neighbor, local load-shafiridgS) where a failed element redistributes its load onto its
two nearest flanking survivors. The present work considers a one-dimensional fiber bundle model under
tapered load sharin@fLS), which assumes load redistribution to both the nearest and next-nearest neighbors
in a two-to-one ratio. This rule reflects features found in a discrete mechanics model for load transfer in
two-dimensional fiber composites and planar lattices. We assume that elements have strength 1 or 0, with
probability p andq=1—p, respectively. We determine the structure and probabilities for critical configura-
tions of broken fibers, which lead to bundle failure under a given load. We obtain rigorous asymptotic results
for the strength distribution and size effect,ras o0, with precisely determined constants and exponents. The
results are a nontrivial extension of those under LLS in that failure clusters are combinatorially much more
complicated and contain many bridging fibers. Consequently, certain probabilities are eigenvalues from recur-
sive equations arising from the structure of TLS. Next-nearest neighbor effects weaken the material beyond
what is predicted under LLS keeping only nearest neighbor overloads. Our results question the validity of
scaling relationships that are based largely on Monte Carlo simulations on networks of limited size since some
failure configurations appear only in extremely large bundles. The dilemma has much in common with the
Petersburg paradox.

PACS numbds): 05.40—a, 62.20.Mk

[. INTRODUCTION scaling depends strongly on the assumed functional form for
the strength of small volume elements at low failure prob-
abilities. Physically, such elements are often viewed as small
The size effect in the Strength of brittle materials has bee@nough to contain at most one cracklike flaw, where varia-
known since the time of Leonardo da Vin@a. 1500 who  tjon in the flaw size gives rise to variation in the strength of
observed that wires weaken with increasing lendth and  the element, and hence, overall material strefi@h How-
in perhaps the first published work on the subj@jtGalileo  ever, a firm foundation for specifying the form of the
noted that the strength of geometrically similar structuresstrength distribution in the high reliability regintapart from
decreases as the dimensions increase. Fifty years agfathematical scaling argumen&) has proven elusive both
Weibull [3,4] presented a statistical theory built on weakest-from physical fundamentals and experimental observations.
link concepts coupled with statistical variation in small vol-  Brittle materials, such as monolithic ceramics, are actu-
ume elements representing the links. For a material undejly heterogeneous when viewed at the microscale, often
constant stress leved over volume), he proposed that its containing nonuniform distributions of grain shapes and

A. Background

strength,X, has the cumulative distribution function sizes with flaws of various types at their boundafimsch as
voids, inclusions, and microcragksFailure often results
F(x)=1—exd —(VVo)(x/Xp)"], x=0, (1)  from the local interaction and coalescence of several smaller

flaws, rather than just the catastrophic growth of just one.
wherep is the shape parameter, axglis the scale parameter Therefore identification of a “critical flaw” after failurénot
measured at reference volurig. to mention beforg is extremely problematic. Moreover,
In Weibull's model the strength scales algebraically withmany advanced materials are multiphase, with the potential
volume following XV~ . In this and other modelg5,6],  to design their microstructure to enhance strength, toughness,
the resulting form of the distribution for strength and its sizeand reliability. Experimentally achieving such improvements
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by “trial and error” has proven costly, so that attention has p2t~ ey,
turned to modeling of the failure process. Obtaining a good X~ ——
theoretical description of this process has required delving

into microstructural and statistical details of the interaction
of the various flaw featurg8], and this has proven to be a
deceptively difficult task.

()

logn

(Here and throughout the paper, log refers to the natural
logarithm log or In). Recent progress on LLS, GLS, and
ELS models is summarized in Phoenix and Beyer|@iB.

develop discrete network or lattice models of the failure pro- In recent years, netwo_rk or lattice moglels_of material_fa_il-
cess. Early work in the engineering literature has borrowed'T® have. received co_n3|deraple attention in the stat|s.t|cal
from the classic work of Danief@] on simple fiber bundles physics literature particularly in connection to percolat!o.n
under equal load sharin@&LS) among nonfailed fibers. Ma- theory. MOd?IS have been developed to treat f:ondu_c:t|V|ty
terial failure models have often assumed a chain—of—bundIe%reakdown n rand_om fl.Jse networl{§4—3]], dielectric .
structure[10,11,13, with m bundles in series, and where the . reakdown in mater_lals with rando_mly_dlspersed conducting
length of a single bundle is the characteristic length for ﬁberjnclqsmns[31,32 critical currents in d|sor_der§d supercon-
load transferoften a few fiber diameters in magnityd&he QUctm_g netwp rk$25,33,34, and catastrophic failure of elas-
material fails when the weakest bundle fails. Though analyti-;[jIC Iatftlces W'Lh Irandor(r; eledmt?ngst’r&ang[%e—;al. T2h46 rhan—
cally tractable, these “mean field” models and their global om fuse model, intro uced by de Arcang sal. [24], has
load-sharing(GLS) generalization§13,14 are more appli- become a useful prototypical model. Such network models

cable to the strength of weakly-bonded, fibrous material§"cten consideraplanar square lattice ofsl@z)eL, Whef.?‘ the
than to tightly-bonded materials, which display more |0ca|_ponduct|ng glements are initially fuse_s with pr_obablhiyor
ized breakdown and flaw sensitivity. In the strength of smalinsulators with probab|l|t)q= 1_, p. Of interest is the range
bundles, mild size effects exi§i1,14 as the number of P~ Pec: wherep, is the percolation threshold, so that a large

fibersn increases, but convergence of the strength to a finitd?€tWOrk is initially conducting. A voltage gradient (the
nonzero limit is rapid since the variability in strength decays2PPlied voltage normalized Hy) is applied in the longitudi-

as 14/n. Likewise the sensitivity of material strength to in- nal dimension, and calculation of the currents in all the sur-
creasiné chain length rapidly diminishes as increases. viving fuses is done through nume'rical solution of Kirchoff’s
Study of the failure of fiber-reinforced composites with laws. Each fuse has constant resistance when the calculated

strong, well-bonded, elastic matrices has led to anotheyo'tage across.it is less than a.critical valye but burns out
0 become an insulator when its voltage exceeds

branch of network models, where the load-sharing is much : .
Monte Carlo simulations on sample fuse networks have

more localized[15—-22. A chain-of-bundles framework is ) . i .
] 2 Q_een carried out24,27 under a continually increasing volt-

also commonly used. The basic fiber elements are often a . - . . S
sumed to follow Eq(1), but failed elements are assumed to age gradient to empirically determine the respective distribu-
tions of the gradienV that fails the initially “hottest” fuse,

redistribute their loads locally onto unfailed neighbors, in- : . .
creasing their probabilities of failure and thus the likelihood@nd the gradieni?,, when a catastrophic “crack” finally sev-

of a catastrophic cascade across the bundle. Rendering the&s the material. Because of the computational demands, re-
models analytically tractable has required highly idealizecfults have been generated only for rel_atlvely small lattices up
assumptions in the form of load-sharing “rules” on the local {0 @Pout 206<200. Results show a difference between the
load redistribution mechanism in a bundle. One such modefféan values o¥; andV;, and their dependence on sizé.
called local load-sharingLLS) assumes that the loads of -0 the most homogeneous networksnear 3, Vi~V;, as
failed fibers are shifted in equal portions onto the nearestt,he fallu_re process appears to be self-sustaining after the first
flanking survivors. For planar versions with one-dimensionafPond failure. , » _
bundle structure, various recursiM8,21,23 and asymptotic Duxbury et al. [27] noticed anomalous scalinge., dif-
methodg17,19,2Q have been used with success. One majof€rént from that found in percolation theoryn the two
result is that the distribution functio, (x), for the strength ~ Préakdown voltage¥; andV,,, which were seen to continu-

X, of a bundle containing a total of fiber elementgX,, is ally decrease with increasing network size with no apparent

the total bundle load divided by) is given by a quasi- positive lower bound. To explain this size dependence they
weakest-link form considered Lifshitz-type arguments on the effect of a “defect

cluster” in a large lattice in the form of a contiguous trans-
verse row of missing fuse elements, focusing on the current
Gn(x)~1-[1-W(x)]"~1-exd —nW(x)], x=0, enhancement at the row tips. They attempted to determine
2 the statistics of the largestitical defect cluster in the lattice

hereW(x) i . he | . | ¢ . in the dilute limit (p near 2. They assumed that the most
whereW(x) is one minus the largest eigenvalue of & certaingiical defect would be the one with the most current en-

transition matrix describing probabilities for local failure hancement, namely a transverse slit or “crack.” Using a

configurations. Longer composites ‘."eV.Ved as a F:hanmof continuum approach involving the solution to Laplace’s
such bundles follow the same distribution but witin re- . . ~
equation they determined the current enhancemegis

placing n. Except for the simple discrete fiber strength dis-~"1 : o _ e
tribution where a fiber has strength with probabilityp, and ~ ~1(1+k*\j) where] is the number of adjacent missing
strength zero with probability=1—p, precise analytical fuses in the defect cluster,is the externally applied current
forms for W(x) have remained elusive. Nevertheless, Smithto the network per unit width anki* is a constant. They also
[17,2Q was able to argue that for fiber elements following appreciated the importance of defect cluster geometry
Eqg. (1) and LLS, the median strengit follows: whereby current enhancement was proposed to be approxi-
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mately proportional t¢ (rather than/j) when a single intact <x<1 anda near 1. These forms appeared to have scalings

fuse bridges two adjacent collinear defect clusters of gize
Li and Duxbury[29] later revised this dependence Ttg)p

~Tjlogj. In such configurations, failure of the bridging fuse
caused the two clusters to coalesce forming a larger clust
of sizej +1 but with lower current enhancement at its edge

voltage is needed to fail the network. Consequeltjyand
V, would have different scaling behavior.

A key analytical step by Duxbunet al. [27] was to
estimate the probability that no cluster pf-1 or more
transversely adjacent fuses will be missirapywhere
in the LxL network obtaining (tpg ‘Y-’
~exfd —pgl?exp(—jk)], wherek= —log q. Appealing to the

statistical theory of extremes, they then argued that the dis-
tribution functions for the normalized breakdown voltages

V; andV,, respectively, must have the forriis 2D)
GLa(ve)=1—exf —cl2exp —ko_ "™)], s=1b, (4

wherecg andkg are constants depending pnand ag is an

}ensitive to the choice op(x). They suggested that dis-

similar to those in percolation, rather than E¢®. and (5).
On the other hand Hanset al.[37] assumed a continuous,
uniform distributionp(x)=1 for 0<x=<1, and argued for
ower-law scaling in applied force per unit width,,,/L
%P1 whereB=3/4. In fact 3=3/4 was argued to be in-

agreement with the scaling of E(p) results from the differ-
ence in assumptions on the form @fx), which in the case

of Eqg. (5) is distinctly discrete with only two possible
strengths, 0 or 1; that i8(x) = pd(x—1)+qd(x) wheredis

a Dirac delta function. In later work, Hansem al. [40] ar-
gued that fop>p,.., rescaling through a renormalization ar-
gument leads to the disappearance of disorder as the effec-
tive value of p, defined at scald, converges to 1 a&

— . Thus such models were thought to be asymptotically
equivalent to a disorderless system which would hafieite
average strength in an infinite lattice limit, and so, observa-
tions of the form of Eq.5) were suggested to be transient
effects. Perhaps the main origin of the controversy over the
particular form of the size scaling is that simulations cover-
ing many orders of magnitude in sample dimensions are nec-

exponent independent @f They recognized the difficulties essary to arrive at definitive conclusions on the size effect. In
in obtaining analytical expressions for the various constantsnost cases, such sizes have been inaccessible by Monte
and exponents for general However, for the dilute case of Carlo simulation alone as lattices approaching 200000

p near onglor 0<g<1) the above arguments suggested
~1, ky=~—logq andc,~pq for V;, and a,~1/2 andk,x

in size rapidly become too demanding computationally. The
model developed in this paper will show that lattices of even

—logq, for V. The size effect for the breakdown voltages, this computationally formidable size are often much too

obtained by solvingG 2(v%)=1/2 in Eq. (4), yielded the
median

v =1[As(p)+By(p)logL]®, s=1b, ©)

where A¢(p) = (logcs—log log 2)ks, and B¢(p)=2/k,. For
s=1, Eq.(5) is asymptotically of the same form as HG).
The above distributional form and size effectsvp andV,

small to reveal the ultimate large scale behavior. This is an
important issue since real structural components, such as fi-
brous composite pressure vessels or bridge cables, may have
from 10° to 10' fiber elements.

Regardless of their points of view, many investigators
have turned to rigorous study of idealized, one-dimensional
models of failurel41-4§ in an attempt to put approximate
analyses and interpretations from simulations of more com-

were largely supported by Monte Carlo simulations of net-Plex networks on firmer ground. Such models, which are

works up to 20X 200 in size[27].

often variations on the LLS models of Harlow and Phoenix

Similarly, in studies of network models of dielectric [18,41], are analytically solvable, rich in behavior, and quali-

breakdown in metal-loaded dielectri¢81,32, and elastic
failure in a two-dimensional triangular latti¢86], the analo-

tatively show the many features seen in simulations. In most
cases, results in LLS fiber bundle models support the loga-

gous initial and final breakdown fields and size effects werdithmic size scaling in Eqs(3) and (5), but more generally,
argued to have forms Eqg}) and(5), and the critical defect Such results depend on the load-sharing schéim& vs
was argued to be an arrangement of two close collinear failELS) and on the assumed form of the distribution for ele-
ure clusters. On the contrary, for the initial and final break-ment failure. For example, in an LLS setting involving time-
down fields it was argued that this type of defect leads tgiependent breakdown of elements, Curtin and SpH2650
equivalentrather than different distributional forms and size @nalytically uncovered transitions from scaling as in Eg.

effects, as was supported by Monte Carlo simulations ornd (5) to ELS-type scaling ak —o, simply by changing
networks of limited size. the value of a distribution parameter. Subtle scalings and

The general size scalings and distributional forms delransitions have also been noticed in fiber bundle models

scribed above have not always been apparent from simuldvith heirarchical load-sharing as discussed in Newreiaal.
tions in spring networkg35,37,39,40 Further increasing the [51] and references therein.

disorder in a network through randomizing the elastic spring
stiffnesseq35] may increase dispersion in the load redistri-
bution, thus driving the network away from LLS-like behav-
ior towards ELS or GLS behavior, especially at smaller size This paper continues the study of series-parallel models in
scales. This may mask the emergence of the ultimate largsvo dimensions with the basic analytical structure of one-
scale LLS behavior. Various continuous distributions for el-dimensional load sharing. The LLS model is modified to a
ement strengthX have also been used, as described bymore diffuse tapered load-sharifigLS) rule whereby 2/3 of
Hanser[39] who discussed results under the probability denthe load of a failed fiber is redistributed equally onto the
sity function of the power formp(x)=(1—a)x “ for 0  nearest unfailed neighbors and 1/3 is redistributed equally to

B. Overview of paper and main results
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the next nearest unfailed neighbors, except when a fiber iwhere & solves the characteristic equatiaff—qé+q(1
surrounded by breaks whereby it takes half the shed loae-q)=0 arising from certain key failure configurations. In
coming from each side. Again we assume that fibers havéact, 5~+/q+q/2 for small g. In Sec. X we consider the
strength 1 with probabilityp and strength 0 with probability behavior of the cumulative distribution functid®,(x) for
gq=1-p. We motivate the key aspects of the load-sharingthe bundle strength, and determine the approximation
rule in the context of aligned fibrous composites through use

of results for transverse patterns of aligned fiber breaks in the 1\2
classic shear-lag model of Hedgep¢&2—57), which also Gn(X)~1—9X4 —nll*(q)A(1/x) ;)
turn out to be characteristic of elastic lattice models. One

focus will be to determine the structure and probabilities for .

critical failure configurations with a view towards determin- Xexp{ —(~log q)(; ] x>0,

ing the extent to which the most critical defects are single

clusters, or double clusters separated by a single intact fibeyhere IT* (q) is a known constant and(1/x) is a known
or much more complicated configurations. We will also in-function that is asymptotically periodic inxtasx— 0.
vestigate the extent to which the load at first element failure  on the other hand, the load at first fiber failupe?
scales as the load at final failure. Though the detailed Calc‘#‘ollows Xgl)w —2logg/logn ash—c, and thus, scales dif-

lations are tedious, the model is solvable asymptotically a?erently from the bundle strengtx,,. An approximation for

the bundle sizen increases. Thus we obtain precise . o ) 1)
asymptotic results for the various distributions and size Scal'ggebceumulatlve distribution functioG,”(x) for X" s found

ings, giving error estimates and rates of convergencae as
—o0 andx—0. In particular, we are able to evaluate all the
constants in the model in terms of the total number of fibers 2
n (the volume, andp andq and the TLS rule. Ggl>(x)~1—exp{ B n(pIQ)ZA(l)(ZIX)(i)
The analysis is based on the Chen-Stein method of Pois-
son approximation as described in Arragaal. [58] and () <
Barbouret al. [59] and used earlier by Harlow and Phoenix xexp —(~logq) X
[41] for LLS bundles. These problems have a strong connec-
tion to probabilities for long head runs in coin tossing ex-where A®)(2/x) is asymptotically periodic in &/ as x
periments[60]. The key idea is to determine all possible —0", varying between 1 and.
local failure configurations with sufficient detail to render In Sec. XI we discuss extensions to chain-of-bundle struc-
them suitably distinct. Such problems have a history of beingures applicable to 2D. We also consider how the bundle
difficult. In fact, the dramatic differences between expectastrength will behave when other important features of the
tion and realized outcome have provided the basis for théledgepeth load-sharing model are taken into account such as
historical Petersburg parad$&1,62. the growth in load concentration with the square-root of the
The remainder of the paper is organized as follows: Insize of the failure cluster.
Sec. Il we describe the behavior of load redistribution in the In all, when we draw the correspondence between the
model of Hedgepeth. In Sec. Il we idealize the key featuresreakdown voltage¥; andV, in the random fuse network
seen in Sec. |l to describe the tapered load-sharing rule forgiven by Egs.(4) and(5) and the bundle strengthél) and
1D bundle ofn fibers, and the relationship between thex in the TLS bundle model, we find that the distributions
bundle strength and the load-sharing constants in the failurgnd scalings are much more complicated than represented by
configurations that arise. In Sec. IV we gain experience bygs.(4) and(5) of earlier work. We also see that the eventual
studying the various local failure configurations and theirsjze scaling emerges only for extremely large networks. This
probabilities, which are associated with bundle failure atpyoints to the pitfalls in expecting Monte Carlo simulation of

loadsx in the range 1/3'x<1. In Sec. V we build on this networks of limited size to reveal the true large scale behav-
experience and describe the general structure of the locay.

failure configurations for &cx<1. In Sec. VI we present
expressions for the probabilities of occurrence of the domi-
nant failure configurations obtained in Sec. V at any given
location in the bundle. In Sec. VII we study the asymptotic To motivate our fiber load-sharing rule we review briefly
structure of these probabilities as the bundle Irdetcomes some results from the classic micromechanics model devel-
smaller, which is relevant to very large bundles. In Sec. Vllloped by Hedgepeth52] and extended by othef&3-57.
we use the Chen-Stein theorem to develop key results thathe results are for load concentrations in fibers near multiple
allow us to estimate the distribution function for bundle broken fibers in a unidirectional, planar composite sheet, and
strength,G,(x). In the analysis we pay particular attention we also present some new results for multiple collinear clus-
to errors of approximatiomelative to G,(x). We show that ters or “cracks” of various separations and sizes. In the
these errors become negligible as the bundle simereases Hedgepeth model the equispaced fibers are elastic, deform
andx decreases. and carry loads only in tension, and are well-bonded to the
In Sec. IX we study the dependence of the bundle strengtmatrix. The matrix is also elastic but deforms and carries
on n taking special care to evaluate the error terms. In parload only in simple shear, and thus, is the vehicle for trans-
ticular we show that bundle strengtK, satisfies X,~ mitting the tensile load of a broken fiber to its intact neigh-
—logé&/logn in probability asn—e where §=qg?5 and bors. These are the classic shear-lag assumptions in elastic-

], x>0,

IIl. HEDGEPETH LOAD-REDISTRIBUTION MODEL
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ity, which work well when the elastic shear modulus of the t,z=1,23..., (7)
matrix is much smaller than the Young’s modulus of the
fibers. The 2D Hedgepeth model is discrete in the transverse. .
dimension but continuous in the longitudinal dimension, asVith K(02)=1. Fort=1, Eq.(7) givesK(1z)=1+1/(4z*
compared to a fully discrete square elastic network with lon-— 1) Which yields K(1,1)=4/3 and K(1,2)=16/15. Note
gitudinal tensile springs and transverse shear springs. In thtgat the shn‘ted load scales as 1} for largerz

latter, lattice Green function methods have been used to de- Beyerl_eln et al.. [54] have favoraply compared Eqé5)
termine load concentrations around broken elem@és- and (7) with elastic fracture mechanics results for a mode |

65]. It can be shown that the Hedgepeth model is a naturgfentral crack of length in an in_finite continyum sheet. An
continuous limit of these 2D lattice models when the ratio of€X{Fémely accurate approximation to &) with the correct

the transverse element shear stiffness to longitudinal exte isymptotics as—, was found by Phoenix and Beyerlein
sional stiffness goes to zero but with longitudinal distanc 23] to be
rescaled through maintaining a fixed characteristic length of
longitudinal load transfef23,65. An electrical analogy of
g [23,69 gy K(t,1)~ 1+ mt/a.

the Hedgepeth modg66] involves thin conducting wires in ®

a weak electrolyte; near wire breaks, current enhancements

are the analog of load enhancements and voltage drops They also showed th§23]

break opening displacements. This parallels the analogy be-

tween spring networks and random fuse networks. Recently,

load and current concentrations in both discrete networks 7 K(t,1)

and the Hedgepeth model have been studied by Taylor and K(t,z)~K(t,1) ~ .

Sweitzer[67] and Taylor[68,69 by drawing a mathematical (22=DK(z=1.D] 1+m(z-1)

connection to random walk theofyQ]. ©)
A. Load concentrations and connections with continuum Both Egs.(8) and (9) have small error though the latter re-

fracture mechanics quiresz<t. Note that forz=1, 2, 3, and 4, the factor in

Hedgepeth originally considered load concentrations proSduare brackets takes the values 1, 1/2, 3/8, and 15/48, so for

duced by an aligned row dfcontiguous fiber breaks trans- a;g;gztcrl]ﬁtirbgfr bi;egﬁfy’;ﬁ'eﬂ:g?%rﬂ?}zeEggﬁg)sr; (r)]r;ithhebgrext-
verse to the fiber and loading direction. The magnitudes o hese as n? totic results are of the same form asgthe c;)n-
the load concentrations in unbroken fibers along the trans% ymp

verse plane of the breaks turn out to be independent of th [nuum results fpr theK-ﬂeId'at the tip of a crack54], re-
thgctlng the continuum solution above the length scale of the
[

er spacing. Thus the Hedgepeth model gives discrete re-

load transfer depends on these quantiti€sr this row oft ;ults for loads surroundmg a single transverse crac.k_that are
in close agreement with results from linear elasticity but

consecutive fiber breaks, letbe the count of an intact fiber without being singular. We note that in the discrete spring

away from the last break; that is=1 for the adjacent fiber, K with | i h ; he |
z=2 for the subadjacent fiber and so on. Best known isnetvvor with equal tensile and shear springs, the load con-

Hedgepeth’s resulfproven rigorously by Hikami and Chou centrations, while having scaling trandz similar to that in

. . Egs. (8) and (9), are less severe on the nearest neighbor
57]) for the peak load concentratidf(t,1) on the first in- ) .
Eacg)fiber (z=[:)L) adjacent to thebreak( clu)ster which is [67,68, and slightly more severe on the next-nearest neigh-

bor. For example, K(1,1)=1.273 versus 1.333, and
K(20,1)=3.737 versus 4.088. For largethe difference is

stiffness moduli, spacings, and cross-sectional areas of t
fibers and matrix(though the longitudinal length scale of

(4)(6)---(2t+2) about 10%.
K(t,l)—(3)(5)“_(2t+l), t=123..., (6
with K(0,1)=1. This evaluates toK(1,1)=1.333 and B. Load concentrations on bridging fibers
K(2,1)=1.600,K(3,1)=1.829, etc. More generally Hikami  Previous discussion mentioned the important role of fiber
and Choy57] determined that elements bridging long clusters of breaks. We have con-
structed an accurate approximation for the load concentration
K(t,z)=(t+2z—-1) K(ty,t5,b) in a single fiber or an adjacent pair of fibers
(ignoring minor differences in the twdying between two
(22)(2z+2)(2z+4)---(2z+2t—-2) collinear clusters of sizg, andt, respectively. This approxi-
(2z—1)(2z+1)(2z+3)--+(2z+2t—-1)’ mation is
2 Jt1to(N+b
K(ty,tp,b)~ NE( 1) NINT3D) T b=1,2, andN=1,23..., (10)

(ty+1,)b{ 1+

aN+2b) T 7°Y 2b(2N+D)
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L e 2+ crack f 2t+1 :

6T O bridging fiber 2N* + 1

[ A tip fiber

~Eq. (10, b=1_

FIG. 3. Symmetric configuration of breaks corresponding to

M4 load calculations in Fig. 4.
3r tration in a pair of intact fibers “bridging” between two
) _ t-fiber break clustergopen circleg, those in the fibers at the
: tips [triangles from Eq(6)], as well as those at the tips of a
T N R S R single cluster of 2+2 contiguous breakssolid circles, re-
0 2 4 6 8 10 spectively. These two bridging fibers powerfully suppress

the load concentrations at the tips as compared to the situa-

FIG. 1. Load concentrations predicted by the Hedgepeth moddion for a crack of 2+ 2 contiguous broken fibers. They also
for two t-fiber break clusters separated by a single intact fiber, require a higher applied load to fail them than fibers at the tip

=1, before and after its failure. Also shown is the analytical result,0f @ fairly long contiguouscluster of nearly 20 fiber breaks.
Eqg. (10). The opposite is true fortz=20. Thus pairs of bridging fibers

act as effective “crack arrestors.” It can be shown that a

whereN=(t;+1,)/2, b=1,2 is the number of consecutive triplet of intact bridging fibers is even more effective and for
bridging fibers, and;,t,>1. Whent,;=t,, Eq.(10) has the much longer cracks.
same asymptotics as a result given in Taylor and Sweitzer A third important feature is that it is possible to spread
[67] for a square lattice. Far, #t, Eq. (10) has the asymp- 2N+1 brea_ks over an extended\2 + 1 Iength.such that
toticsK (t1,t,,b) ~ 7\t;t,/log(t, +1,) as pointed out by Tay- this cluste_r is considerably \(veaker than a contlguou_s; row of
lor [69] who has mentioned a connection to results in Kester?N+ 1 adjacent breaks. This can be seen by considering a
[69] for random walks. However this last approximation is Symmetric configuration of breaks arranged as shown in Fig.
very inaccurate unless andt, are very large. 3. Thereis a centr_al core cluster af21 _con_tlguous breaks
The good performance of EGLO) for b= 1, as compared fIanke.d on eaph side by R(—t) alternating intact and bro-
to numerical results, is seen in Fig. 1, which shows the load€n fibers, giving a total length t21+4(N—-t)=2[N
concentration in a lone intact “bridging” fiber between two +(N—1)]+1=2N*+1, so N*=N+(N—t). For 2N+1
t-fiber break clustergopen circley and those in the fibers at =21 and 51, Fig. 4 plots, versus the ratio of the load
the tips (triangles, respectively. Also shown iK(2t+1,1)  concentratiorK (2t+1) on the fiber at the edge of the 2
according to Eq(6) for a 2t+ 1 straight cracksolid circles ~ +1 core (while embedded in the I* +1 configuration
after failure of the bridging fiber. The key feature is thatover the load concentratidd(2N* +1,1) at the tip of a full
while the single bridging fiber effectively reduces the loadcrack of 2N* +1 breaks(representing the case in which all
concentration at the tip as compared tota-2 (and also )  the bridging fibers have brokgrWhen this ratio is equal to
straight crack, it sustains a divergingly higher load concenor greater than one, failure of the two fibers at the edge of the
tration. For example, fot=6 (or 12 breaks in tot3) when  core (and all subsequent bridging fibers flanking them-
the bridging fiber breaks under the load concentration ofurs at a lower load than that required to cause catastrophic
4.65, the load concentration at the tips jumps from 2.66 tdailure in @ 2N* +1 contiguous crack. For example, the di-
3.35 for the new cluster of 13 breaks. luted configuration containing 2151) breaks, has the
The good performance of EGLO) for b=2 is shown in  strength of a contiguous crack of about @3) breaks, rep-
Fig. 2, which shows numerical results for the load concenfesenting effectively a 25% expansion in length. This ar-

5 12
® 2r+2 crack 10: M
I O pair of bridging fibers -l

4T Atip fiber =) ot
[ —-Eq.(10),6=2 ,; T

a3 S o6} *2N+1=21
[ = r O2N+1=51
i . L

N 50.4
L M" [
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FIG. 2. Load concentrations predicted by the Hedgepeth model FIG. 4. Ratio of the load concentration in the nearest bridging
for two t-sized fiber break clusters separated by a pair of intacfiber to a cluster of 2+ 1 breaks, shown in Fig. 3, to that in the first
fibers,b=2, before and after their failure. Also shown is the ana-intact fiber ahead of al®* + 1 straight crack, as calculated under
lytical result, Eq.(10). the Hedgepeth model.
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rangement of an initiating core cluster flanked with a dilutedclosest survivors. If, however, the closest survivor is sand-
fringe of a few alternating bridging fibers, is by no means thewiched by single breaks or rows of breaks on both of its
weakest arrangement ofN2-1 breaks that can be con- sides, it takes 1/2 the shifted load of the broken fibers on
structed. This is a key phenomenon seen in real materialgoth sides, as described by Ed.1b. The special case of

and is the theme of this paper. LLS is obtained by setting=1 in Eq.(11), so that a failed
fiber shifts half of its load onto each of its two flanking
C. Summary of important load redistribution features survivors. Also, in the case=2/3 and for a single break, the

The key points illustrated in these figures are as follows:flbers that are adjacent, subadjacent, and sub-subadjacent to

First, isolated surviving fibers will fail at much lower loads this break have load concentration factors 4/3, 7/6, and 1,

than the cracks they become part of once broken. SeconffSPectively, as compared to 4/3, 16/15, and 36/35 in the
configurations consisting of a core of contiguous breakgase of the Hedgepeth model, Eq) where load is even
flanked by fringes of a few isolated bridging fibers will causemore diffusely distributed. Note also that whér-2/3 and
catastrophic failure at significantly lower loads thanthere is a large isolated cluster obreaks, the load on the
“cracks” consisting of either the same number or the sameadjacent fiber is approximately double that on the subadija-
length of contiguous breaks. Third, isolated pairs of intactcent fiber in keeping with the behavior mentioned after Eq.
fibers act as crack arrestors for much longer break configu9)-

rations surrounding them. One of the main tasks of this work The tapered load-sharing rule we have devised does not
will be to enumerate the probabilities for the preexistence ofeflect some of the features in the Hedgepeth model of Sec.
all the various types of such configurations that lead to comll, which are the result of longer range effects in load trans-
posite failure at a given applied load. In Sec. lll we developfer. In particular, the load concentration on a fiber next to a
an idealized tapered load-sharing rule which captures thiarge isolated cluster af breaks does not have the square-
three important features just described, but is amenable 9ot dependence anreflected in Eq(8), but rather is linear
rigorous analytical treatment, as shown in the remainder o i. Nevertheless our TLS scheme can be revised to reflect

this work. such behavior provided that we are willing to neglect over-
loads beyond the next nearest neighors, although the loads in
lIl. TAPERED LOAD-SHARING RULE AND PARTITION surviving fibers will no longer sum to the applied load. The
OF THE LOAD RANGE effects of such an adjustment will be clear from the structure

of the final results. Note that in interpreting random fuse and

We now create an idealized rule called tapered load shakpring network simulation results, using analysis leading to
ing (TLS), which is specifically designed to reflect the fea- Egs.(4) and(5), loads shifted beyond nearest neighbors have
tures of load redistribution in fibers as seen in Sec. Il. Thebeen neglected in the pd$t7,31,32,36% The present analy-
rule must allow us to analytically obtain the load concentrasis represents a major step towards assessing the effects of
tion factors for all surviving fibers irall possible failure such simplifications, which turn out to lead to considerable
configurations, and it must lead to tractable analysis. Also, amaccuracies in prediction.
a special case TLS should reduce to LLS of much earlier Denoting an intact fiber by “1” and a failed fiber by “0”
work [41-48. we show a few possibilities below:

A. Structure of TLS
K30 Koz Koo Ko2 K20

First we consider a linear bundle with fibers numbered 100 01 1 1 1 1 0 0 1
1, 2,3,...,n, from left to right. Then consider a surviving e ke K
fiber that is adjacent to at least one other survivor, and thatis ..., 4 o o 1 1 1 o0 o 1
directly adjacent to contiguous fiber breakgound only on
one sid¢ and is subadjacent fofiber breaks, wherg,j=0. oo o Ki’z K? 0 o
Wheni =0 and subadjacent breaks are found on both sjdes, .
is the sum of both. For fixed satisfying 2/3< #<1, the load &5
concentration factor; ;, on this survivor is given by o160 010 0 |

Kij=1+i6/2+](1-06)/2. (11a B. Crack arrestor pairs

On the other hand, for aisolated survivor adjacent ta Under LLS[41], when all surviving fibers have the same
contiguous breaks counting on both sides, the load concergirength, the strength of a bundle observed under an increas-
tration factor is given by ing applied loadk is determined by théargestload concen-

tration factor initially found in the bundle. Failure of a fiber
always results in an even higher load on its survivors, thus
K =1+i/2. (11b  forcing catastrophic collapse. There can be no damage evo-

lution under increasing load in the form of stable increases in
Otherwise a fiber’s load-sharing constankKigo=1. Thus, in  the number of fiber fractures. Under TLS, however, for some
Eq. (113, a broken fiber shift$/2 of its load to each of the configurations and loads, the most overloaded fibers can
closest survivors on each side and—(#)/2 to each of the fail without the bundle failing. This occurs because the larg-
next closest survivors, which are directly adjacent to theest load concentration factér in the resulting configuration
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is such thakx< 1, and the bundle is stable. For example, for 107 ¢ | ONEY
6=2/3 andx=1/K,;, the configuration  ¢=005 | 21=7r
10-2 E | 4 3
| * F le 5 — 3
K. . [ — 4
i+] 10°L i 6 5
111 0 6 1r 0 -~ 011 = F g 7|
. . ; A
l ! Z 10* 3 o
3 10 3 !
changes upon failure of the isolated fiber to w'l 4 |
= |
g %? |
-6 |
107 s=1— s s=0
Kisjs1,0 Kisjs1,0 T A
11 10 0 1 1 0.33 0.5 1.0
——— il ——— x

. N . . . . FIG. 5. Plot of A[k(x)] versusx for q=0.05 ands=0,1, and
and if 1K{ <x<1/Ki,j. 10 this configuration will be —_j35 6 and Werek=6s+r where the dependence kf r
stable, but ifx>1/K ;1 this configuration will result i ands on x is given by Eq.(15). The probability of failure of a

failure. On the other hand, for the configuration bundle ofn fibers isG,(x)~1—exp{—nA[K(X)]}.
P that K;o=Ki_1,=Kj_24=""-, and K;1=K;_13=K;_35
ij o B _ . .
1110 -+ 01 10 -+ 011 1 =---, yvht_'-zre our interest is in all cases where the second
-— i — subscript is less than or equal to the first.

For a bundle ofn fibers, we let the random variabbe,
where i=j, failure of the fiber undeK;; will thereafter denote its strengtfthe smallest load under which the bundle

produce load concentration factors in all subsequent config2ils), and we letG,(x), x=0 be its distribution function.
rations of at leask; ; in magnitude so that the bundle will Since the strength of an intact fiber is 1, the strength of a
collapse instantaneously. This was the idea behind Fig. 2undle must be a load satisfying Kx=1, whereK=1
Also if j=0, failures undek; , will always lead to higher ~+k/6 for some non-negative integkr Note thatK is asso-
load concentration factors. Consequently, we think of a paifiated with an unfailed fiber within some local fiber break
of adjacent survivors, “1 1,” as arack arrestor pair Once configuration occurring as the bundle fails, and which be-
a fiber in the pair fails, the bundle collapses catastrophicallycomes catastrophically unstable once that fiber fails. Thus
For a given load, to determine the bundle strength we musthas the possible outcomes

be careful to consider those configurations where failure is

not only initiated but sustained to catastrophic failure under

the TLS rule. The previous examples have demonstrated that =g K=012345..., (12

it is those configurations where the largest load concentration

: * .
factor is of the typeK of Eq. (110 that require careful with the exception ok, = 6/7 which cannot occur under TLS

study. . : . S :
. . . with 6=2/3. ThusG,(x) is a discrete distribution. Note in
Three other points should be made: First, TLS is mono-__ . . n . :
tone; that is, the load concentration factor on any given surgalrt';zI(?:;S:gf(i;l_ﬁ?erli 'Q;Ece bundle are intact, then
1 i 1 ‘B ~n e .
vivor does not decrease by the failure of other fibers. Second, For a given load &x<1, to determine the probabilities

all fibers loaded beyond their strength at any stage fail |n—Etor failure of a bundle it is useful to consider two ways of

stantly; that is, we need not be concerned with the order o artitioning the failure load range<ox<1 into coarse and
failures. Third, a fiber subadjacent to broken fibers can nevel ng . rang N
ine partitions as illustrated in Fig. 5. The coarse partition is

kiej the most heavily overloaded fiber singg;=K;; for i described in terms dbad spansand is given by
1

C. Load partitioning for 6=2/3 =x<
1+s+1 1+s’

s=0,1,23... . (13)

Unless otherwise stated, we assume henceforth ghat
=2/3 in the TLS rule since the contrast with LLS is the most . e . . . .
striking. In this case, Eq¢118 and (110 indicate that the T_he fine partition is described in termslofd regionsand is
various load concentration factors associated with broken fi9'V€" by

bers have possible valuestk/6 for k=1,2,3 ... . Fork
=2, all values ofk are connected with certain values kf 6 - 6 _

: : O =x< , k=123.... (14a
andK; ;, which are the largest load concentration factors in 6+k 6+k-1
certain configurations. In particulaK*=1+3i/6 for i
=2,3,4,5..., which corresponds tok=6,9,12,15.... Note that for a loadk in load regionk, the bundle fails if
Also K;,=1+2i/6 for i=1,2,3,4..., which corresponds X,<6/(6+Kk) but survives ifX,=6/(6+k—1). Note also
to k=246,.8..., and K;;=1+(2i+1)/6 for i that thesth load span is the union of load regioks- 6s

=1,2,3,4..., which corresponds t&«=3,5,7.... Note +1,6s+2,...,6+6. To study certain similarities that oc-
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cur in failure configurations in different load spans it is use-tion will be constructed such that fibeis the first of the pair
ful to divide each load span into spubspanswhich actually  to succumb to overloads, which will come from breakdown
correspond to load regions. Specifically, #tb load region  of the configuration to its rightor both may fail simulta-
may be writterk=6s+r for some subspanin spanswhere  neously. When a configuration has a second crack arrestor
r=1,2,...,6.Thus Eq.(14a can be written as pair to the right of the first, the second pair will fail first due
to a failure progression that causes failure of the leftmost
fiber in that pair(or both may fail simultaneouslyIn this
6 <x< 6 way we account for crack arrestor pairs failing under over-
6+6s+r 6+6s+r—1"' loads coming from the left, or the right. Note that bundles
with a crack arrestor pair at fibéthat fails from the left are
accounted for in configurations for some other fibexi.
r=123...6, ands=123.... (14b For all possible configurations associated with fiblead-
ing to failure within load regiork, we letP(k) be the sum of
heir probabilities. Note that these configurations represent
disjoint events.P(k) will be essential to determining the
distribution functionG,(x) for bundle strength, and ignoring

The following relationships can be seen by inspection o
Egs.(13) and(14):

s=[(1—x)/x|—1=[1/x]—1, (153 boundary effects will be independent iof
A. Critical load concentrations and initiating clusters
k=[6(1—x)/x|=[6/x|—6+1, (15b) )
For load regionk, whereby 6/(6+k)<x<6/(6+k—1),
and there are two critical load concentration factors to keep in
mind:
r=[6/x|—6[1/x|+1=k—6s, (150

Ki =1+ (1/2)|(k+2)/3], (16)
where ‘[ |’ denotes the integer part of a real number except o ) ] )
when the number is an integer, in which case, we take thE¢ minimal load concentration factor associated witack
next smallest integer. initiation, and

The partitioning scheme we have devised allows us to
characterize all possible failure configurations for a bundle
1 o o e vosines i scsatonce!e il load concentaton facor sssociaed e
This task, is considered next and is tedious. Much of th strophic crack_ propggajuqnwh_ere L I denotes Integer
complication arises from the fact that the structure of thekalule' I;afconlflnggtlon Is to fail under Ioadnf_ltc))ad r'eglli)n
configurations differs in adjacent load regions in Et4g. , aload of at leaski,x must occur on some fibétypically

However, for fixedr in Eq. (14b) this structure turns out to giq;';;gg)fac't raerIOI;C§e\/>(aer¢al I f'bgr;l:;t %ritliglttigrtll?r? :r(]:gii;ikxu-
be similar for differents, so there is a quasiperiodicity m ) YRik=Rek- 9

ration requires annitiating cluster of either |, contiguous

“0"s, or |, “0"s interrupted by at most one “1,” where
IV. FAILURE CONFIGURATIONS AND PROBABILITIES from Eq. (16)

FOR SMALL s

K¢ = 1+kI6, (17)

We now study how to identify a local fiber configuration _ _

that will result in failure of a bundle under a given load =Lkt 2)3)=2s+(r+2)/3) (18)
The idea is that bundle failure will occur if and only if at This is most easily seen by writing out cades1,2,3 . . .
least one such configuration occurs somewhere in the bundlg,q observing the patterns. For example, if there is a “1”
and there will be some position in the bundle working frominterruptinglk “0”s, then it will fail under load K; x. An

left to right, where such a failure configuration first appears; «+1 cluster results, which will grow by failing se'quentially
With the exception of very small bundles, such configura-ypy isolated “1”s it encounters on either side, until it en-
tions will involve the breakdown of a crack arrestor pair ;o nters a crack arrestor pair. Such a pair, in turn, will fail if
defined earlier as a pair of consecutive ones, “1 1" with angnq only if at least one of its two fibers comes under a load

“0” on one or both sides. If one of the fibers in the pair is 5¢ jeastic, ,x, thus causing bundle collapse. Note that the
overloaded, then the pair fails and the whole bundle col !

e . ; ) critical load concentratiorC; (x may occur in one or both
Iapse_:s as all remaining fibers suffer increased loads in SU¢ars in a crack arrestor pe{ir.
cession.

First we consider an arbitrary interior fiber,and associ-
ate with it a list of irreducible, local failure configurations
associated with a given load These configurations are de-  We study first the uppermost load span<#<1 associ-
scribed in terms ok ands, which are determined fromby  ated withs=0, starting with the upper load regioks=1 and
Egs. (13) and(14). Each failure configuration will have ei- working on down(see Fig. 5. In general, the number of
ther one or two crack arrestor pairs, and fibevill be the  failure configurations, their lengths and their complexities
second fiber in the firgleftmos) crack arrestor pair. When a increases az decreases. Therefore to gain insight, it is best
configuration has only one crack arrestor pair, the configurato study these simple configurations before trying to under-

B. Load spans=0
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stand their general structure. As we progress to failure con- The case 6/1%£x<3/5 (k=5; s=0, r=5) giveslg=2,
figurations associated with largérands, i.e., to smaller K;s=2 andX;s=11/6 and yields configurations and prob-
applied loads, we will illustrate the emergence of certain ability sum:

features that are part of the more complex, general structure.

As the complexity increases with largsrit is necessary to i
b y 98 y 111000Y

impose special conventions, such that these failure configu-

rations areirreducible, i.e., as short as possible on the right 111010Y

end, and that no double counting occurs asries over the 1110010

bundle. 101100Y
Two cases are trivial: Fox=1 all fibers are overloaded 1011010

and the bundle fails automatically, so its probability of fail- 11100110

ure is G,(x)=1. The case 3K x<1 (which coversk
=1,2;s=0,r=1,2 is also trivial since just one “0” in the
bundle causes collapse. Th@s(x)=1—(1—-q)". 3.2 272

For the case 28 x<3/4 (k=3; s=0, r=3), three non- P(®)=p T 1+a(l+p)T]~q" (21)
trivial failure configurations can be constructed. From Eq.
(18), 1,=1, so the initiating cluster can have no interrupting The last configuration has two crack arrestor pairs. The sec-
“1”s, and from Egs.(16) and (17), K; 5= K. 3=3/2, so ini- ond pair is(and must beflanked by “0”s, has an initiating
tiation implies collapse. The configuration list and associate@luster (5= 2) to its left, and fails first through failure of its

probability sumP (k= 3) associated with fibdrin the bundle  leftmost “1.” In the fourth configuration, the first isolated
is “0"” is necessary to “help” the initiation cluster fail the

second fiber of the crack arrestor pair. By convention the
i string of “0”s to the left of the first crack arrestor pair must
11100Y be shorter than, to ensure that the failure initiates on the

111010 right.
1110110 The last case is=0 is 1/2<x<6/11(k=6,s=0,r=6),

which hasls=2, ; 5=2 andK =2, and the following list
and probability sum(using various reductions, such @s
P(3)=p%q(q+pg+p?q)~3q?, 19 iq=1)

where the rightmost approximation (k) assumes smat].
Here “Y” implies the fiber is either a “1” or a “0” and ;
hence has probabilitp+q=21. (This designation will be 111000Y

convenient latej. The required crack arrestor pair is desig- 111010Y

nated on the left in all three configurations with the neces- 1110010

sary “0” to its right. Note that we have specified the fiber

furthest to the left as a “1” because failure of fibemust, 1011000Y

by convention, be caused from the right. Note, however, that 1011010Y

the third configuration has a second crack arrestor pair which 10110010

fails first and by both “1”s failing simultaneously. 111001100
The case 3/&x<2/3 (k=4; s=0, r=4) gives1,=2, 1011001100

Ki 4=2 andK. ,=5/3 and has the following nontrivial con- 1110011010

figuration list and associated probability sum:
10110011010

11100Y P(6)=p%q®(1+q)[1+pg+q*(p’+g’)]~q> (22
111010
101100Y Interestingly, in some of the above configurationsl gimi-
1011010 tiation cluster(e.g., “0 0”) by itself may not cause failure.

For example, in the last two configurations we see two cases
where the second crack arrestor pair fails by overloading
P(4)=p3g%(1+q)(1+p)~2092. (200 both its fibers in a “tie.” Note also that removing

all fibers to the left of fibeii in both configurations leaves
Since initial failure gives rise to a load concentration greatef’1 00 1 1 0 10,” which might seem to be a possible failure
than IC. 4, the first break again implies collapse. Here, weconfiguration for fiberi’ =i+ 4. But the crack arrestor pair
see crack initiation at the interrupting “1(2nd and 4th con- has anlg to its left so both fibers will fail in a tie, thus
figurationg outside of fiberi. Note that configurations with violating our convention. In this way double counting is
two crack arrestor pairs are not needed because to fail befoeoided.
the first, the second crack arrestor pair would need to fail We still must consider boundary effects as follows: For
from its right. But then the critical segment of this configu- fibers 1<i<I,+2 near the left boundary, some or all con-
ration would be a configuration for a later fibi€r>i. figurations in the list must be truncated on the left, and only
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those that still cause failure of fibefassuming the truncated probability P(k):
fibers transmit no loadmust remain in the list. Truncation is
also possible at the right end of the bundle by a similar rule. i
By this scheme some load is lost at the edges, but the effects 1110000Y
turn out to be negligible as grows large. 11100010

Regarding the above constructions there are several im- 1110100Y
portant points to be made: First our failure configurations 1110010Y
must be constructed carefully to take advantage of the Chen-  {{1010100*
Stein method of Poisson approximation to tightly estimate 11101010100
G, (X). (See Appendix B.It may be tempting to delete the
left-most “1” in each configuration, but it turns out that the 1110101010100
resulting estimate o6,(x) would be too inaccurate, that is, : (continue introducing ‘01" pairs)
in using the Chen-Stein theorem, the error bounds would be .
of the order ofG,(x) and thus, would be too loose. This
occurs because without the leftmost “1,” configurations in  1011000Y
the respective lists of two fibersandi’, which are close to 10110100Y
each other, would share too many common fibers. On the 10110010Y
one hand, we must construct configurations for fibénat
overlap minimally those for a neighboring fibgr, but, on 1011010100
the other hand, we must be careful that no possible failure *
configuration is neglected. Second, for configurations that
have two crack arrestor pairs, as occursker5 and 6, the
fiber sequence between them must contain an initiating clus- 100110000
ter. Third, the failure configurations we construct must be .
irreducible. * (same endings as just listed)

The local failure configurations listed for fibemay not .
seem at first to exhaust all local possibilities. However, those 111000110
that are omitted will have structuieplying the occurrence
of a failure configuration in the list of some other fikiér
<i to the left(including the special boundary ligtshat is P(7)=p%q3(1+q+g?)[1+p+p/(1-pg)]-p3ai(p®)
they will actually be redundant extensions of these earlier 3
configurations, which would already have failed the bundle. ~2q%. 23
For example, consider the configuratiot 0011001 0”
for k=6, which is not in our list, but which clearly causes
failure of fiberi (the 2nd fiber in the crack arrestor paifhis ~ We now see the emergence of unbounded sequences in num-
configuration violates the convention that the string of 0’s tober and length to the right of the first crack arrestor pair.
the left of fiberi must be less thah,. To explain, we note Such configurations have initiating clusters only at the very
that this configuration can be reduced th® 011 00” and right end, which can be far from the crack arrestor pair.
still cause failure. Now to its left must be a “1,” or“10"” or Configurations here with two crack arrestor pairs cannot be
“100”0r“1000” and so on. If itis a “1,” then to the ~ constructed to have “1 0 0" at the left end, since they could
left of that must be another “1,” or “1 0” or “1 0 0” or  then be reduced to ones with one pair. _
“1 0 0 0” and so on again. If the latter is a “1,” we have The case 3/&x<6/13 (k=8, s=1, r=2) gives =3,
111001100 whichis in the list of fibei’ =i —4, and ~ Kig=5/2 and Kcg=7/3, and is similar tok=7except

the same is true if the latter is a “1 0.” On the other hand, if 1 011000Y" 'S replaced by "1 0 11 0 0 O.O Y" and
we add “1 0" to the reduced configuration, we obtain bl 01100010Y."” Also the last configuration is replaced
“10100110 0" which can be reduced further to Y

“10100.” We can then add to the left of this configuration

and so on, so that eventuallyith reductions along the way 1110001100

we arrive at a failure configuration for some fiiér possi- 111000110100

bly near the left boundary. For examplda ©01100”is a

boundary configuration foir=1. 11100011010100

+ (endings continuing as above beginning with 't")
L]

C. Load spans=1

We now turn to the load spars=1, wherein 1/&x  as well as these same ones but with “1 0” replacing “1” at
<1/2, and present only a few cases for illustration. The casénhe left end. Unlike all previous cases, the configurations
6/13<x<1/2 (k=7, s=1, r=1) gives |,=3, K;;=5/2  with two crack arrestor pairs can be unbounded in number
and K;7,=13/6 and has the failure configuration list and and length. We find
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P(8)=p3q3(1+q)[q+pqg+p+p/(1—pg)] arise is difficult and tedious, and requires one to write out
s 3 and study the various cases. Much of the complication and
+p°a°(q)[1+p+p/(1-pg)] tedium occurs because, for any giventhe configurations

needed for failure change subtly wherwaries over 1 to 6.

3~3 2~2 3~3 _
TP+ a)lpTaTtpTa(1-pa)] This occurs because the load redistribution involves units of

~20°. (24) 1/6 to subadjacent fibers but 1/3 to adjacent fibers, as was
seen in Sec. IV. Ideally we would write out below the cases
Fork=9 the configurations are longer, but the structure i =1,2, ... ,6 insuccession but this is not practical due to

basically the same as fdc=8. For k=10, however, more space limitations. Thus we have devised the following com-
complex right endings of the type1“0 1 0 0 0” and pact description of the structure of the various failure se-
“1 001 00" emerge, which come from longer initiating quences for each loax

clusters (1p=4) occurring only at the far right. Fdt=11, To begin, we consider cases where filbés aninterior
arrangements of fibers between the crack arrestor pairs cdiber of the bundle such that boundary effects can be ignored.
be longer thus permitting initiation clusters with interrupting An interior fiber is at least 2+ 3 fibers from the left bound-
“1"s (forexample“11101000110). Thesameistrue ary and about §+6 fibers from the right boundary.

for k=12. For even largek this feature becomes more

prominent as the distance between crack arrestor pairs in- A. Type | configurations

creases further to make more room for latge Generally, The first fail . i fint " lled t |
I will be about & in length, whereas up to abous 3ibers € first failure configurations ot interest are catled type

are possible between crack arrestor pairs. For smalle configurations, and contain only one crack arrestor pair. The
Pt e il Salion P(11)'~14q5 and Simplest set contains configurations with the structure

P(12)~8q°. Interestingly, this simple structure in integer : -
powers ofqg, will not prevail for largers, as quantities related L0 s 0110 - 0X - X
to eigenvalues of certain recursions begin to emerge. s 25tlb o stla—boT —

As a final comment, we see already the probability of )
failure of a bundle at loast= 1/3 [at the bottom end of load Where X...X'is a sequence of “0”s and “1"s such that no
regionk=12 by Eq.(13)], is becoming rather small, making two “1"s are adjacent. Also, from Eq(15) the key integers
Monte Carlo simulation problematic. To explain, we take forused in defining the string lengths in these configurations are
example g=1/10 where we findP(12)~0.00008. Thus

bundles would need to have abaut 12 500 fibers to have a=a(r)=[(r—1)/2}, b=b(r)=[(r—1)/3],
roughly an equal chance of failing or not failing. On the
other hand, the configurations that cause failure are still not r=7(r)=[(r+t)/2]—r/2], (269

long enough to reveal subtle probability features emerging

from eigenvalue analysis, which ultimately determine thewhere ‘||’ means integer value. ThusQa<2 and O<b

character of the distribution for strength and the size effect=<1, and as before our convention dictates thatt&2s
+b<2s+b+1=I,, which is the initiating cluster length

V. GENERAL FAILURE CONFIGURATIONS defined by Eg.(18). It can be seen that 97<|s+(r
+b)/2|—|r/2] and O<7<s+1+a—b. To relatet to 7, we
In this section, we describe the system of failure configu-define
rations needed for failure of a bundle ofibers under loads

0<x<1/2 (s=1). Recall that upon fixingg=1 and I=<r 0 r=24,6,
<6, we are equivalently fixingk=6s+r and the load re- =11 (=135 (26b)
gion, 19,9,

6 6 so that by Eq.(269 t=0 for 7=0, butt=27—c, 27—c¢

(25) +1 for 7=1. Note that the first fibers to fail are the “1”s in
X---X starting from the left, followed by the crack arrestor
) ] ] ] ) Pair beginning with fiber.
Given this load region, we construct sets of configurations of - Another set of type | configurations is similar to the first
“1”s and “0"s such that the bundle fails if and only if at gycept that each has an isolated “1” introduced into thse 2
least one of them occurs somewhere in the bundle, and the ;4 1 cluster and thus has the structure
Chen-Stein method for Poisson approximation gives a suffi-

6+k X TBrk—1°

ciently tight bound(Appendix B, which roughly means that e et —
they shoulq be sufficiently distinct in structure. We will 10 ---0110 --- 010 -+ 0X --- X
present their general structure and sizes in termsasfdr. —r— > o 2stltbu o  — shabt —

As before we associate with these configurations someifiber

in the bundle, which is again the second fiber in the leftmosthere I<u<2s+b and O<r<s+a—Db. Here the first fiber

crack arrestor pair “1 1" in the configuration that also has anto fail is the isolated “1” in the initiating cluster, followed

“0” immediately to its right. by the “1”s in X---X starting from the left followed by the
Before beginning, we caution that while the basic ideascrack arrestor pair beginning with fiber

motivated in Sec. IV may be straightforward to grasp, fully = The most important set of type | configurations contains

appreciating the detailed structure of the configurations thatonfigurations of the form
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——————————————— 3s+2+a-T

i 2s+l+b—y
10 ---011X X10---010 00X -+ X
— > ey — —u— — 2tlbu 5 — w—>

where the subsequence-XX is the same as X-X, except
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The most important configurations of type Il, are

Istl4a-t ————————

2stltb-u

1X --- X10---010

— v — — u -

1 060X - X110---0

e~ 2stlbu > —w — — =

- 01
-

0 -
—

where I<r<s+a—b-3, 0<t'<t—1, t=27—c, 1<u

that the terminal element on each end must be an “0” and<2s—1+b, 1sv<s—2+a—b—r7, and Osw<s+a—b
where “d” above an end of a subsequence means that the- r— 3, and wherav=s+a—b—t—uv —2. Here failure pro-

number of contiguous “0"s at this end must be less tlan
In the above, ¥u<2s+b—-1, lsv<s—-1+a—-b—-7, w
=s—1+a—b—7—v, and Osw=s+a—b—r—2. Here the
failure progression begins with the isolated “1” in the initi-
ating cluster, followed by the “1”s in X:-X starting from
the left, followed by the “1”s in X%--X starting from the

ceeds with failure of the isolated “1” in the initiating clus-
ter, followed by the “1”s in X --X and X --X spreading out
from the initiating cluster, and then by tlsecondcrack ar-
restor pair starting with its first ““1,” which requires the help
of loads from the rightmost string of “0”s. Only then does
the first crack arrestor pair fail starting with fibigrand this

right, followed by the crack arrestor pair beginning with fiber requires the help of loads shifted from the leftmost string of
i. It turns out that the three sets of configurations just de+0”s. These configurations only occur fas=3 and domi-

scribed are thelominantconfigurations of type | in deter-
mining the probability of bundle failure.

nate ass grows large.
All of the type Il configurations can be taken as dominant,

There is one more set of type | configurations, which hasn that we will sum over them all in determining the domi-

long configurations structured as

25+1+b—u

X10 010 --- 0

v —— u —> — 2stlb-u —

10 ---011

X
—r— —

wheres+a—b—r<v=<o. It turns out that these become

negligible in importance for largk, that is, they contribute

negligibly to the probability of failure of large bundles at

lower loadsx. Thus we label these as typedonfigurations.

B. Type Il configurations

nant terms in the probability of bundle failure for large

C. Type lll configurations

We also have type lll configurations, which are con-
structed by modifying type Il configurations at their right
ends as follows: The simplest modification involves replac-
ing thet contiguous “0”s at the right end by

O --- 010 -+ 0

—u — — 2s+l+b-u' —

where I=u’'<t—1 and automatically £u’'<2s+h. We
modify only those configurations of type Il where immedi-

The second type of failure configurations of interest areately to the left of the second crack arrestor pair, “1 1,
called type Il configurations, which contain two crack arres-there are fewer than 8¢a—b)—c contiguous “0"s. Oth-

tor pairs. The simplest of these have the structure

i — 3stl4a-71 —m—

0110 0 X X110 --- 0

— 25tl+h -« stabT — — t—>

10 - -

— t'—

where I=r<s+a—b, andt=27—c, and where &t'=<t
— 1. Here the subsequence-X is the same as X-X, ex-

cept that the terminal element on the right must be a “0.”

Note that failure proceeds with failure of the “1”s in-xX
beginning from the left followed by theecondcrack arrestor

erwise we would create configurations with type | configu-
rations as part of thenffor some later fibeii’). A more
complex modification of type Il configurations involves re-
placing thet contiguous “0”s at the right end by

010 --- 0
— 2stlbu’ —

where now ku’'<2s+b—1 and l=v'<s+a—b—3. We
modify only those that have fewer than 2a—b-2

pair starting with its first “1,” which requires the help of —v’)—c contiguous “0”s immediately to the left of the
loads from the rightmost string of “0”s. Only then does the second “1 1" pair.

first crack arrestor pair fail starting with fibér which re- The last modification covers the case where there are at
quires the help of loads shifted from the leftmost string ofleast 26+a—b—2—v')—c contiguous “0”s immediately
“0"s. Another set of type Il configurations is constructed by to the left of the second “1 1" pair, in which case<lv’
inserting an isolated “1” into the &+ b+ 1 initiation cluster  <oo (i.e., until we run out of fibers in the bundle but still

to get have failure. Type Il configurations are not dominant, as
they will be seen to be negligible in probability &sin-
j e Ittt ——— creases.
to .-o0t10.-010 - 0X - X110--0 Note that any other failure configuration we attempt to

construct will in whole or in part coincide with a failure

configuration associated with some other filber Though
where I=r<s+a—b—1, O<t'<t—1 andt=2r—c. Here the system described here for constructing failure configura-
the failure progression is as just described except that thgons is not the only one possible, all properly selected sys-
isolated “1” in the initiating cluster fails first. Notably these tems (structured to be sufficiently distinct and to avoid
only occur fors=3, that is,x<1/4. double countingwill give the same asymptotic results up to
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the same order of error in the approximatigS8ee Harlow wherel(j) is an indicator function defined by{j) =0, when
and Phoenix41] for two distinct constructions in the case of j=0 andI(j)=1, whenj=1,2,3, and we recalb=b(r)
local load-sharing, one being more complex than the other|(r—1)/3|. Two additional quantities of interest are
and leading to a reduction in the error of approximation for .
very largek.) ! ,
> (s+ta—b—2-1i)

D. Boundary effects (29

sta—b—-2 2
Qq(s,r)=(1+q) 20 (

Finally, we need to account for boundary effects. Whenand
the intact fiber lies between 2 i<2s+b+2 near the left
boundary, we associate with fiberthe part of the failure _
configuration to the right of its first “0.” This first “0” must Ro(s)=(1+0)
be positioned no lower than the first fiber in the bundle, and
the first “1” is deleted if it lands at the fiber zero position Where we recalla=a(r)=|(r—1)/2|. Also we have the
(where there really is no fiberFori=1,2 we consider only duantity
those configuration patterns beginning with “1 1 1,” i.e.,
t’,t=0, then delete the “1"s to the left of the first fiber in &(s,r)=
the bundle: non existent fibersl and 0O for fiberi=1 and
fiber O fori=2. Finally we add to the list of configurations
for fiber 1, all configurations that begin with1*1 1 0” +(1-9)(1+q)'Bs(s,r)
where the “0” is positioned at fiber 1, and then we delete the
“1 1 1”s on the left from each. For fibeimear the right' end where f=f(r)=1, when r=1,4, and f(r)=0, when r
of the bundle, we truncate all configurations extending pas;2,3’5’6, and wherg=g(r)=1, whenr=3,6, andg(r)
the right end and then keep only those causing failure. Note 0, whenr=1,2,4,5. Alsoh=h(r)=min{b(r).c(r)}, where

that fori>n—2s—1—Db the list for fiberi has no failure _ _ _ _
configurations. Note also that every fiber of the bundle Wi||,([:|,$;z ;riléev;hiinr 1,3,5 ande(r) =0, whenr =2,4,6. A sum

have configurations in its list that must be truncated at the

right, but fori <n—4s, the truncation will involve negligible _
configurations. At the left end forsxi the truncations will o= 1+q+"'+Q':(
also be negligible. In conclusion, the total number of fibers

with configurations significantly influenced by the boundarywhich is used in the following three functions:
is of order &, which will become negligible for larga.

(30

1_(q2/5)s+a—b—1
1-(g°8) |

o

2\ s+h
) (1+q)

s\t
af) BZ(S!r)

: (31

1— i+1
I ) i=123..., (32

2\ s+b
q
_ 2 _— |2
VI. PROBABILITIES FOR CONFIGURATIONS {(s,r)=(6+2p) (qspz) ( o
FOR MODERATE s
p
We now evaluate and sum the probabilities for types I, Il X { Ap(sta-b)—c-5| 1+ a(ZSJr b+1)

and Il configurations associated with a given interior fiber

as presented in Sec. V. These will apply to moderate values

of s. First we need to define several key quantities that arise T @(s+a-b)-c-30
in the summations. We note that carrying out these summa-

1+g(23+b)

tions to yield the quantities given below is very tedious and 5

once more we have omitted details in the interest of brevity. T aysta-b)-c-107(, (33
sth—4 qz i
A. Important quantities arising in failure _ +b—3—i (_) ) 4
configuration probabilities G 26 (s+b=3-)) 5) “ati-c (343
One key quantity is the functio®(s), which is and
2
S s+b—4 2\ i
d(s)= 23+15S 5( (_)’ 2 q

(O=am o 5o |2 20 osn= 3 |5 anne @

where § is the largest root of the characteristic equatitn

—qgdé+qgp=0 (Appendix A. We also let
o+2p
p include configurations of type’ Iwith those of type I, al-
though the former die out in importance &sincreases.
qp 0123 28) These become the dominating configurations in determining
S I(1-96)|]” =548, the probability of bundle failure. Calculating these probabili-

B. Probability sums for configurations of types |, Il, and 1lI

For a giverk=6s+r and interior fibei we letP,(k) and
P»(k) be the probability of occurrence of a configuration of
type | or type Il, respectively, as described in Sec.(We

Bj(s,r)= §+(25+b)+l(j)(25+b—1)

X
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ties is tedious and requires summing the probabilities for all c (2]
configurations of the corresponding types in Sec. V and us- 2 (3) @gj+1-¢
ing results in Appendix A. We let =0
P(K)=P4(K)+ Py(K), (35) _ i (tf)'( 1—q2’+2‘°)
=olé 1-q

and from the summations find that

P,(K)=d(s)qP 6% P{(2s+b—1)[Q4(s,r) p JZO (F) — Eo (F)
—c(sta—b—2)]+B1(s,r)[Qy(s,r)—c] 1/ 6 g*>°¢
:_<5_ 75—z 4), (42)
+&(s,n)} (36) plé—q q
and and Eq.(349 can be treated similarly so that
I 5 9> % o
P,(K)=®(s)q° 5% P[(25+b—1)w;(s,I) wj(s,r)= 0 (5_q2 5= +0[s”!(q76)%],
342
+Botsneasn a0l | @ j=12 @3

An important factor in Eq(43) is
We also letP;(k) be the probability for the occurrence of
a type lll configuration at fiber locatioin It can be seen that of 1 q
type Il configurations are not dominant because they have w(c)= B(ﬁ?— 5_—q4
two initiating clusters, so that

2—cC
., ¢=0,1. (44)

Evaluation of the order of Eq$31) and(33) yields

Ps(k)<(2s+1+b)%(s+a)g*st22b, (39
&(s,1)=0[s%(q%6)°] (45
Note that because of the two initiating clusters, the power in q
g is doubled as compared @(s). Thus, ass increases, an
P3(k) becomes negligible in magnitude comparedPtk) A2/ (2] S\S
=P,(K)+P,(k). In fact the ratio goes a®(sq?®) which fsm)=0[sYa"/ o). (48
decreases dramatically sfor smallerg. Thus the probabilitie®,(k) of Eq. (36) and P,(k) of Eq.
(37) simplify to

VIl. ASYMPTOTIC FORMS OF PROBABILITIES , .
FOR LARGE s P1(k)=2s"®(s)g° °6* °(Q—c)[1+0(1/5)] (47)

The expressions presented in Sec. VI can be simplified foand
large s, corresponding to smak, as seen by Eq153. In
particular Eq.(28) reduces to 9 b—c ca—b q°p?
P,(k)=2s"®(s)q° 62 N w(c)[1+0(1/s)],

2 48
1+I(j)F%[1+O(1/s)], 48

5+2
,BJ-(s,r)=25(
where we recall that=6s+r. Thus for larges, P(k) of Eq.

) (35) becomes
for j=1,2,3, (39

P(k)=2s?®(s)q ¢ P
where O(x)/x— const asx—0, and Eqs.(29) and (30) re-

q°p
duce to X|Q—c+ < w(C)|[1+0(1/5)]
_ — 92
0)(s0)=5" 11+ a)| 5= p|l1+018), =12 2RO “9
(400  where

An important factor in Eq(40) is O(r)=g°5* " 5+q51_c+ qz_p) L_ﬂ

q 5_q2 52 5_q2 5_q4
(50)

Q=(1+0a)| 5= 2). (4D) | | N

q The key factor in Eq(49) is calledA (k), and it is defined as

In Eq. (34b), we can evaluate the sum to determine A(K)=25*D(s)O(r). (51
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Note thatA (k) reflects the larges behavior of P(k), and no
thus the probability that a failure configuration as con- P{Tn>j}=P[Z Yi>jJ
structed in Sec. V is located at fiber =1

For smallq (i.e., for bundles initially with very few “0"9
and for smallp (i.e., for bundles initially with very few un- _
broken fibers or “1"9, we can simplify®(s) and®(r) in v
Eqg. (51). From Eq.(A3) we get

n

j n
P[E Y;>j—v and 2, Ei=vy,
= i=1 i=1

0
i=0,1,...n. (57)

(52 It can be seen that the probability of occurrence for a negli-
gible failure configuration for fibeir (of type I or type ) is

so substitution into Eqg27) and (50), respectively, gives  less than (B)P(k) for s sufficiently large.[See the steps
leading to Eq(49) wherek=6s+r, and also recall E(.38)

Jg+q/2, 0<g<1,
1-p?,  0<p<l,

1 s where the key is%q*%/(s°q?$6%) —0 ass—» sinceq<é.]
<I>(S)~qzs”(ﬁ)s(—+ = (538 Thus
4\q 8
n
and P{E Ei>0]<(n/s)P(k) (58)
=1
O(r)~q@P?, (53b
so that fors sufficiently large(x sufficiently small
for small g, and N
d(s)~p°e 2" VP(1-sp?) (549 P{Th>j}—P 2,1 Yi>i] <egn=(n/s)P(k). (59
and This is an important fact in showing th@t, and={_,Y; have
1 p approximately the same distribution.
O(r)~—|1+ Z(3—2b)}, (54b) We now focus on the Chen-Stein theorem to establish a
P key step, namely
for smallp. ‘
n ©
: [nP(k)]” exd —nP(k)]
VIIl. CHEN-STEIN BOUNDS ‘Plizl Yiz] _v:%l > | <en:
ON STRENGTH DISTRIBUTION (60)

We now work towards determining the structure of an
asymptotic approximation fo,(x) as the bundle siza  Wheree,<O(ns*q****?)P(6s+r), which becomes negli-
grows large and the load becomes smalli.e., s becomes gible ass increases. To use the Chen-Stein theorsee
large), paying particular attention to the magnitudes of theAppendix B the most difficult task is to show that
errors of approximation. In particular, we desire an approxi-

mation where the error divided by,(x) (i.e., relative error n
goes to zero ag goes to zero provided is large enough to b2=2 Z E[YY;] (61)
avoid boundary effects. This will allow us to accurately es- 1=1]ed;

timate failure probabilities even whe@,(x) itself is very =

small. This has been the main stumbling block in treatin .
such problems in the literature. 9 gIS negligible compared ton,=nP(k) as k grows large,

o s . . where E[Y;Y;]=P{Y;Y;=1}, and whereJ; is a suitable
_ Let Y;=Y;(x) be a 0-1 indicator random variable for neighborhood of fibers around fibesuch thaty; is indepen-
fiber i, indicating whether or not a failure configuration oc-

. dent ofY; for j ¢ J;. The size of this neighborhood is dic-
curs_therg under Ioax;i>0, where Ii<n. Thus the bundle tated by the furthest distance to the right and left that the
survives if and only if

variousdominantfailure configurations can extend. Careful
n inspection of the ranges of the various indices for the various
Tn:Tn(X)EZL ¥.(x)=0. (550  dominant configurations leads to the choice

Our goal is to determine the asymptotic behavior of the dis- Ji={i:[i—i[<6s+3+r}. (62

tribution function for bundle failure,
For j ¢ J; the dominant configurations fgrwill not overlap

Gn(x)=P{T,(x)>0}, x=0. (56)  those fori.
A For Y;Y;j=1 to occur, a dominant configuration corre-
It is useful to breaky; into Y; and E; corresponding to the sponding to fiber and one corresponding to fibemust both
dominant configurationgtype | and type Il and negligible occur such that either they do not overlap at all, or, they
configurations(type I' and type Il), respectively, as de- overlap but have the same valug®” or “1” ) for each
scribed in Sec. V. Thus we may write fiber that is common to both. Thus we consider first cases of
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overlapping dominant configurations, and note that each failping configurations to consider: The first is where dominant

ure configuration has at least one crack arrestor pair whereonfigurations of type | for fibeir (excluding those of typ€ |

the second “1” in the first pair is the index fibéror j. which are accounted for in E¢58)) overlaplater dominant
Consider an interior fiber and fiberj e J; such thatj configurations of type | for fibej. The probability that such

#i. For fixedi andj eJ;, there are four cases of overlap- overlapping occurs is

i Jj
si’j(I,I)=Z,lZ,2P{1O - 0112 zZ10 --- 01tZ" --- Z'}

—t—> — 35+2+a-T—1-1 > —hHh— — 3s42+4a-1, >

for i<j. Here Z--Z is part of a right-end pattern in a type | configuration arid--Z' is a full right-end pattern of such a
configuration. AIsoEtl andEt2 implies summation over all allowable valuestgfandt,. The key observation to make is that

such an extended configuration must have two crack initiating clusters with asmaspositions forj for each configuration
of i. It can be shown that fos larger than some threshold valaé

&i j(L)<Py(6s+r)[(2s+1+Db)(s+a)g?*1*P], (63)

where it is helpful to review the derivation &f;(k).
The second case we consider is where dominant configurations of type Il overlap later dominant configurations of type I,

in which case we consider two distinct possibilities, giving the following probabilities:
i j

gL = £4 Ty P10 --- 011Z -+ Z110 --- 011Z -+ Z}

et 3s+l+a-1, — ey & 35+2+a-1y —

(whentq, i andj are all givent, becomes fixedor
i j
gL = Zp 25 %, P{10O -+ 011Z  --- Z10 ---011Z .- Z7}

1t —Istl+a—T-t-1 >  —t— — 3542+a-1) >

where Z--Z is a piece of a middle pattern in a type Il con- In fact there are fewer than §6-3+r) such casefsee Eq.
figuration and Z---Z' is a possible complete right end pat- (62)]. Thus letting
tern in a type | configuration. For a given choicei @ndj, it
can be seen that one or the other may occur, but not both. In
either case we must have two crack initiating clusters, and it & =E ELY;Y], (683
can be shown that fos sufficiently large 'jjjii
2s+1+b
g1 (Il <Pa(bs+r)i(2s+1+b)(s+a)q 1 (64) and taking account of all possible positions of fipen J;,
and notingP (k) =Py (k) + P5(k), we sums; ;, &, &},
There are two cases that remain, such as type | dominaind 81-*’i (because the positions of fibarandj can be inter-
configurations overlapping later type Il configurations andchanged in the above discussida get
type Il configurations overlapping later type Il configura-
;:ﬁgs}.h';?ese are handled similarly so we omit the details. We e/ <4(65+3+1)[(25+1+b)(s+a)g? 1 *PP(65+1)]
+2(6s5+3+r)P(65+T1)>2. (68b)
e (LN <Py(6s+r)[(2s+1+b)(s+a)g? 7]

(65) It turns out that this bound suffices also for fihemear the

and boundaries, where there are approximately ordys@ch fi-
bers whose dominant configurations are affected. Thus we
e j(ILIN)<Py(6s+r)[(2s+1+b)(s+a)g? 1] can write
(66)
n

Also for i<j sufficiently far apart overlapping will be neg- b,= 2 e/ <4n(6s+3+r)
ligible and in those cases the probability that botand j i=1

: ; ; - o
have a failure configuration occurring;;, satisfies X[(25+1+b)(s+2) g2+ 1+ OP(6s+1)]

& <Pi(6s+r)P;(6s+r), i,j=1.2. (67) +2n(6s+3+1)P(65+1)2 (693
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Note that in doing the above calculations, the reason for the G (x)~1—exd —nP(k)]~1—exd —nA(6s+r)],
leftmost terminal “1” in defining our configurations be- (74)
comes clear; without it the overlapping possibilities explode,

yielding bounds of the same order as the probabitiy(x), ~ Where we recall the relationshims=[1/x|—1, k=[6/x] -6
being estimated, which are clearly of little value. +1, andr =k—6s of Eq. (15).

Lastly, we consideb; andbs in the Chen-Stein theorem To see the effects of bundle sireon the various error
presented in Appendix B. Clearly;=0 because the neigh- estimates E terms o, we fix a probability level of bundle
borhoodJ; was constructed to ensure that afyoutside the  failure 0<P<1 and integer ¥r=<6, and from Eqs(72)
neighborhood would be independent ¥f. For b; we see and(74) seek to invert
that

ns?(q26)SII(r)=—log(1—P) (75)

v

bi<> > E[Y{]E[Y;]<2n(6s+3+r1)P(6s+r)2 to gets,=s,(r,P). Using results in Appendix C we get

1] ‘]i
(69b)

— 1
sy(r,P)=— ——=={logn+2 loglogn
Finally we sumb;, b,, andbs, and calculate the error " |09(q25){ 9 giog

estimate(not counting the possible occurrencer&gligible 2 —
configurations associated wit) —2lod —log(q“6)]~log[ —log(1—P)]
+logII(r)}+o(1). 76
g, =by+ byt by=<10n(6s+3+1) gll(r)}+o(1) (76)
X[(25+1+Db)(s+ a)q2‘°‘”+bP(65+r)] Forn ab(_)ve some small threshold value, the_se values;, of
form an increasing sequence tinbut are not integers. For
=0(ns’q® " 1 TP)P(6s+T), (70 large n, taking the integer pars,=|s,| corresponds to the
load regionk=6s,+r which gives a higher probability of
where we have used the fact th&(6s+r)<2(2s+1  pundle failure tharP, and taking the next highest integer
+b)(s+a)q®*1*P for s sufficiently large, as is checked s +1 gives a load regiok=6(s,+1)+r corresponding to

through study of Eqs(47) and (48). a lower probability of failure. Note that by adjusting we
In summary, in view of Eqs(49), (51), (56), (59), (60)  can adjustk amongst its 12 possible values here to obtain
and(70), we have established a key result, namely two consecutive load regiong’ andk’+1, whose prob-

abilities bracketP, but it is not generally possible to solve
Ca(x)={1=ex —nP(6s+ 1) J}[1+0O(1/s)] for an exact loadx given P because the bundle strength
={l—exgd —nA(6s+r)]}[1+O(1/s)], (71)  distribution is discrete.

Nevertheless, the effect of bundle simes easily seen.
wheres=s(x) andr=r(x) are related to by Eq.(15. A Using the fact that-log(1—P) is approximatelyP we can
main idea in what follows is that as the bundle sizde- interpret Eq.(76) as
comes large, so mustandk to keep the probability of fail-
ure,G,(x) roughly fixed. This will mean that must become
smaller and smaller, approaching zero. A crucial fact will be Sh=
that these error and remainder terms will vanish in magni-

tude compared to the probability of failu,(x) regardless  Also, it can be shown that the size effect in bundle strength,

log(n/P)

" Tog(@®) v

of its magnitude. X,, is such that

IX. THE SIZE EFFECT AND RATE OF CONVERGENCE X logn— —log(q?9) (783

AS n— . .
in probability asn—o, or
Here we use the results of Sec. VII to determine the even- 5

tual size effect for composite strengthras«, paying strict failure load- — log(q~é) (78b)
attention to the decay of error terms. Recall from Ep) logn ’
that P(k)=A(k){1+O(1/s)}, where k=6s+r, and r .
=1,...,6.From Eq.(51) we rewriteA(k) as being asymptotically true no matter what the valuéPofTo

see this note that asgrows large, the loads in the corre-
A(6s+1)=25°D(s)O(r)=5%(q?8)°II(r), (72  sponding load spanss, or s,+1 are all (1%,)[1
+0(1/s,)] and the choice oP has a negligible effect on

where this value, even in relative terms. It turns out that the coef-
2 5 ficient of variation in strengtlistandard deviation divided by
_ 5 ° the meap also goes to zero as— .
M(r)=20(rp o+ Zp) (q) (73 Returning to the Chen-Stein theorem, we are now in a

position to evaluate the magnitudes of the various error terms
From Eq.(71) the probability of failure of a large bundle asn grows large. In Eq(59) we see from Eqd4.72), (75), and
under loadx is (77) that
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_(1 P(k)=nA(6 ! 1+0 !
en=|g (k)=nA(6s,+r1) s + s
P
log(n/P)
Similarly, for by
1 , | P?log(n/P)
b;<2 o (6s,+3+r1)[nP(6s,+r)]*=0 — |
(80)

For b, we note that
b,<4(6s,+3+r)[(2s,+1+b)(s,+a)g?n"1P

XNP(6s,+1)]+2(6S,+3+r)[nP(6s,+r)]%,

(81)
but
[log(n/P)]?
3g2Sn= _—
(50)°0" =01 s ga (82)
and the second term is given already by Ef) so
P[log(n/P)]?
& [ (n/P)~2loaa | ®3

These error terms all go to zero ms-o, but also impor-
tant is the fact that they are proportional to the probability

level P. The error of approximation in Eq60) is &, which
according to Eq(70) is b;+b,+bs. In view of Egs.(80)

and (83) and the fact thab;=0, the errore, decreases not

only in absolute terméit is uniformly bounded inP) but in

terms relative to the probability levél of interest(also uni-
formly). That is, the error divided by the probability of in-

terest,z/P, can be made arbitrarily small far>n,_, inde-
pendent of P no matter how small.
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havior ink ask=6s+r changes withr through 1 to 6 for
each value ofs. To bound this periodicity recall thas
=[1/x]—1. Then careful inspection of the structure /ofk)
given by Eqs(50) and(51) shows that a lower bound is

1 5

A|(x)=2(—

2
x) QLI -1]-1 510~ 1+3 P )2(1)

(6+2p

2(p5
q

1 2
=2(;) q** st )@(1). (85)

o+2p

Except whenx=1/(1+s), s=1,2,3 ..., which occurs at
the beginning of load spas [wherebyr=1, so that®(1)
applieq this approximation asymptoticallyarges) yields an
underestimate of the probability of failure. The maximum
underestimate is by the factq® (1)/0(2). Thus we let

02
Au(X)—MAl[k(X)]
1 2 2 5
:2(;> q?x stk 5+2p (%)@(2). (86)
We can then write
1 2
A[k(X)]I(;) (g28) ™ I1* (q) A(1/x), (87)
where
2 p5
I*(q)=2 5+2p (?)G)(Z), (88)
and
A(1)= (X[ 1/x]— x)2(q25)[1”‘11’x[ ] , (89

where we recall from Eq(150 that r(x)=Kk(x)—6s(x)
=[6/x]—6[1/x|+ 1. Note thatA(1/x) is asymptotically(as
x—0%) periodic in 1k, varying between 1 and

We have neglected boundary effects in this discussiong®(1)/®(2) with period 1, corresponding to integer in-
The number of fibers affected, however, is approximataly 6 creases irs.

out of n, which is O[Iog(n/E)]. So in the above approxima-

tions, the error is about the same as that introduced byA. Approximation for bundle strength distribution for large n

changingn by O[Iog(n/E)], and this makes no substantial
difference in the asymptotidas can be seen also by replac-

and small x, and some numerical results
In view of Eq. (71) and Egs.(87) to (89) our main

ing n by n—s, in the derivations As a practical matter, o asymptotic result is

avoid boundary effects we want

—6log(n/P)

" og(a?s) @4

X. APPROXIMATIONS FOR THE PROBABILITY OF
FAILURE OF LARGE BUNDLES AT LOW LOADS

Since we know how the error terms are structures ine

2
;) (q%8)™I1* (a)A (1) |, (90)

Gn(x)wl—exr{ -n

where we find that theelative error [absolute error divided
by G,(x)] is O(x), which follows directly from Eq(71).

In Fig. 5 we have plotted\[k(x)] versusx for q=0.05
and for the range of defined bys=0,1 (i.e., 0.333x<1)
andr=1,2,...,6. Thedependence ok, r, ands on x is

seek to develop simple but accurate approximations to thgiven by Eq.(15). This figure shows the discrete, “step”
distribution functionG,(x) for bundle strength. This task is behavior ofA[k(x)] where the periodic feature is noticeable.

complicated by the fact that, &sincreasesA (k) of Eq. (51)

A similar result is shown in Fig. 6 for the range »flefined

has a factoi®(r) of Eq. (50) that imparts quasiperiodic be- by s=12 (i.e., 0.0714&x<0.0769 and forq=0.1 and 0.2.
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10 . ample, the most important configurations in TLS involve iso-
oF q=02 — 7 T lated “1”s underK}* =1+i/2, wherei is the number of ad-
0735~ ¢ jacent neighbors, but the configuration “1 *-00” with i
10.22i contiguous “0”s will not necessarily cause failure under
2 K; ox since K; o<K{ . Thus configurations where the first
= 10%E 12 fiber to fail is one of the fibers in a crack arrestor pair require
= wF _’Alm i"=3i/2 breaks, i.e.i/2 extra breaks as compared to an iso-
10™F  _ _Small g approximation lated “1.” Nevertheless, the same asymptotic results as in
1023_ Harlow and Phoenix occur, though with slightly different
Foa=0l =" T error estimates. Thus an approximation can be developed for
10—”5;—6—:? 4 } the distribution function for the bundle load when tfiest
s 0'072 0-074 0-076 fiber fails. This distribution turns out to be

X

2
GM(x wl—ex;{—n<—) 2X(plg)2AM(2/) |, (92
FIG. 6. Plot of A[k(x)] versusx for gq=0.1, 0.2 for the range n (%) X a~(pla) (2k) 2

s=12, andr=1,2,...,6, and Wwerek=6s+r where the depen-
dence ofk, r, ands on x is given by Eq.(15). Also shown is the ~Where
small q approximation(52), (533, (53b), (87), and (88) where §
~\Jq+q/2. The probability of failure of a bundle af fibers is AM(20x) = ([ 2Ix|x/2—x) gl X~ 2x+ 1, 93
Gn(X)~1—exp{—nA[k(X)]}.

Note thatA (V)(2/x) is asymptoticallyasx—0") periodic in
Also shown is the smalt] approximation Eqs(52), (533, 2/x, varying between 1 and with period 1. In this case the
(53b), (87), and(88) where 6~ \/a+ q/2. characteristic load at first fiber failurg,(,,l)* decreases as

We note thass of the order of 12 is necessary to develop

a fairly full set of type | and type Il failure configurations, as (1)*
described in Sec. V. Note that the probability of failure of a Xy~ ~—2logg/logn (94)
bundle ofn fibers isG(x)~1—exp{—nA[k(X)]}, son must , .
be of the order of I[k(x)] to have a significant probability [where we have not calculated the small correction tern: asin
of failure. Forq=0.2 ands=12, Fig. 6 shows that such Eg. (91b]. Also the c.o.v. varies as 1/lag Clearly x{"
configurations would not be observable by Monte Carloscales differently fornx; given by Eqs(91a and(91b).
simulation sincen>10*. One can check from Eq90) that

only whenq is significantly greater than 0.5 will such con- XI. DISCUSSION AND EXTENSIONS
figurations readily occur.
The size effect is also easily obtained from E20). Set- A. Some extensions
ting the quantity inside the exponential of HQO) equal to The above analysis can be extended to a quasi-two-
one and solving fox yields the characteristic strengf . dimensional material structure in the form of a chainnof
We find that independent bundles with fibers each. The analysis is the
same upon replacing by mn except that the boundary con-
. —log(q?9) ditions need to be handled with some care. In the asymptot-

(919 ics we must letm andn grow large simultaneously noting

X5~ )
" log[II*(@)n](1+ axp) that boundary effects will dominate unless

asn—o where _
>—6Iog(mn/ ) @5
ns
_ 2{log log IT* (q)n] —log — log(q?5) 1} log(?5)

log[ TT* (q)n]— 2 (o1

ap
and a sufficient condition isn—o and n— such that

We note that the correction term,, while decaying to zero (logm)/n—0. The physical meaning is that the bundle size
' remains much larger than the longest local failure configura-

asn—o, does so very slowly, and thus cannot be ignored. = ) ) - —
This again points to a difficulty in using Monte Carlo simu- tion in the material for a desired probability level
lation alone to establish the eventual size scaling, since the Other types of boundary conditions are possible. The
bundles would have to be extremely large to fully subdue thébove analysis applies with more accuracy for circular
error termay,. It can be shown that the coefficient of varia- Pundles and chains thereof, and for spiral boundary condi-
tion (c.0.v) also decreases as 1/ing t!ons, but again, the above con_d_ltlon E§5) must b_e satis-
fied. We also could have modified the load-sharing rule at
the boundaries to prevent losing load at the edges by reflect-
ing it back to the interior, but this strongly affects the bound-
ary configurations at the very edges. The probabilities for
The analysis for théirst fiber to failis similar to that for  certain failure configurations occurring for these boundary
complete failure under LLS4=1) as described in Harlow fibers would increase since, at the very edge, initiation and
and Phoenix[41], but with a few modifications. For ex- catastrophic failure configurations need to be about half as

B. Approximation for distribution function for load at first
fiber failure
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long as those for the interior to cause failure. But the initia-has load ¢/2)v/logv on it. In Appendix C we show that this

tion has to be at the boundary for this to occur so the fractioneads to the size effect for the bundle load at first fiber fail-
of configurations involved is of orderdfor largers (small  yre, which is

loadsx, large bundlesn) compared to edge configurations in
the previous case, and the probability for each is of order

(925)%? roughly the square root of that for interior fiber po- 1+ 2 loggloglog(n/P) (@9
sitions. A straightforweid calculatign shows thmashould be o~ - log( n/P) '

large compared ton(/P)/[log(mn/P)J? for such boundary

effects to be negligible. which differs from the form Eq(5) given in the Introduction

Our analysis thus far has applied to bundles with2/3  or Eq.(94) for TLS. In addition, Eq(10) also indicates that

in the tapered load-sharing rule. However, one can in printhis load concentration factor holds approximately for iso-
ciple apply the same procedure to any valu# af the range lated fibers in a neighborhood of width perhaps proportional
2/3<6<1. For example, ford=3/4 we still haveK{=1  tov around the center fiber. This leads to a distribution for
+i/2, butK; =1+ 3i/8 andKy;=1+i/8. But since 3 does the first fiber to fail, namely Eq92) modified perhaps to

not divide 8, we actually need a load spanrefl, ...,12

steps instead of 8 to obtain a repetitive pattern. The basic 1
ideas all carry througHalbeit tediously, and one obtains Gﬁl)(x)wl—exp{—nC*(q,x)Iog(;)
results of similar structure. In particular, fér=3/4, one has

for a given probability of failureP roughly

(99

1) 1+(log q)/x}

X

where C*(g,x) is a positive function bounded from below
and above ax—0. Again this form is more complicated
log(g?5%°) than Eq.(4) or Eq.(92) for TLS. These are issues to pursue

strengths — (96)  in future work.

Iog(n/E)

B. Discussion

< i . . . .
For general 2/ ¢<1 we conjecture Comparing with results quoted in Sec |, we first compare

the distributionngl)(x) in Eqg. (92 to F(V;) in Eq. (4) for

log(g252°~2) first fiber failure. Sinceg?*=exd —2log(1—p)(—1/x)] and
strengths — ————. (97) aq~1, the structure is similar except our result has the pre-
log(n/P) factor (1k) to this exponential. As just mentioned the size

effect results Eqs(94) and (5) are the same, both having
In Sec. I, we discussed the characteristics of load redisl’Verse dependence on the log of the volume, but we also

tribution in a model of Hedgepeth. One aspect was that nexfiscussed the plausibility of a size effect following
to break clusters of size load is redistributed beyond next (109logn)/lognin Eqg.(98) through analysis of a more accu-
nearest neighbors in decreasing amounts in distaricary- ;e;;e ;‘gr‘]jt‘;" This all points to the pitfalls in using simple
ing as 14/z for larget) and also that the load on the fiber u . . .
adjacent to a cluster dfbreaks does not grow linearly in A comparison ofGy(x) of Eq. (90 to E,)((\_/b) n Eq.(4),2 1S
but rather as- \/zrt/2. It should be possible to generalize the carried -out upon noting that q5)"*=exq —log(c’)
tapered load-sharing scheme to such situations where load ﬁ§ 1./X)].’ and because logfé) does not have th? same be-
shifted also to third-nearest neighbors, and so on. In this ca%"’“"Or ing=1-p as —log(1-p), we have an immediate

failure might proceed through the existence of a crack initia- ifference in the dependence of the constantp.ofhis dif-
tion core ofso(x) “0”s possibly interrupted by one “1,” ference stems from the fact that the most critical local break-

then through a sequence ef(x) fibers with no “1 1”s down configurations are not _contiguo_us strings of breaks_ but
adjacent, followed by propagation through a sequence Orfather extended strings with Interrupting survivors espeplally
s,(x) fibers with no “1 1 1”s, and so on. One envisions hear the fringes. Th's led earller to determlmmg an eigen-
solving a sequence of eigenvalue problems 8ors, ... . value 6 from a special recursion discussed in Appendix A.

Since the nearest neighbor overload factor is roughiy/2, Beyond our idealization, the more realistic Hedgepeth model

ultimate breakdown may require a total string length ofin Sec. Il indicates that such a feature will persist in more
so(x)+sl(x)+---+s|(x)(x)~(4/7-r)/x2. Thus strength may complex models. Second, the facteg, in Egs.(4) and(5),

i — is about 1/2, whereas in our analysis the corresponding ex-
decrea;;sze as some functiorC(n/P,q,61,6,,..-819)/  ponentis 1. This difference comes from assumptions on how
(logn)™=. However, the nature o€ is likely to be more tne |pad at the edge of a long strings of “0”'s scales with its
complicated than suggested by formulas given in the Introtength, and as mentioned, our model would suggest the same
duction (as suggested below for the first fiber to fail exponent, 1/2, if we crudely used Hedgepeth load redistribu-
The analysis for thdirst fiber to failis similar to that for  {jon, Eq. (8), showing dependence on tkguareof the ap-

complete failure under local load-sharing=<1). The size plied load. But we caution that use of a more realistic stress
effect result was that strength decreased agnalysis is likely to introduce further complications. As dis-
—2logg/log(n/P)]. On the other hand, our results for cussed in Sec. Il, it is possible for an “extended” failure
Hedgepeth load sharing, Eq10), suggested that a long configuration consisting of a central cluster with a series of
string ofv “0” s interrupted by a single “1” in the middle  broken and unbroken fibers at both its tips to be more detri-



PRE 62 DISTRIBUTIONS AND SIZE SCALINGS F® . .. 1643

mental than a central crack involving the same number ofi. Inspection shows that all such configurations, can be gen-
breaks. Proper treatment of this situation will change theerated by adding a “0” to the right end of those of length
factors log(?s) and (1k)?2 in Eq. (90) and possibly the size u—1, or a “0 1” to the right of those of lengti— 2. Thus
effect Eqgs.(919 and (91b) to more complicated quantities one may write the recursion

(the first involving perhaps an unbounded number of eigen-

values. _ -

If one were to perform Monte Carlo simulation on this H= AN -1 TPt -2, U=2, A
system, it is interesting to ask what bundle sizevould be
needed for the asymptotic results to firmly dominate the be
havior. As was mentioned in Sec. I¥(k) up tok=12 (the
end of spans=1) does not yet reveal the impact of the
eigenvalues which is q*? for small g. Reviewing the deri-
vations in Secs. V, VI, and VII shows that the leadisg 5°—q6+qp=0 (A2)
behavior and the domination of the eigenvalue structure for
all the dominant configurations does not really emerge until;ip, positive and negative roots
s~ 8, which corresponds to loads< 1/6. From Eq(77), for

a probability of failure for a bundle d? we can see that the
g ! 5 0@+ 4pg qa—a?+4pq
2 1

with initial conditionsXy=X;=1. ThusX,=1—p?, and we
add the natural extensioli_;=1/q. A solution of the form
X,=C¢" yields the characteristic equation

size of the bundle involved is oF = — (A3)

~ P/ 2042
n~P/[11*(q)s%(q°6)°]. (100 \where the first is largest in absolute value. Thus

For P=1/2,s=8, g=1/4 (one in four elements is initially a X,=C18"+Cy6Y, (A4)
“0" ), we get from Eq(A3) §=0.593, and from Eq488),

(53a), and(53b) I1*(q) is rpughly 2.5, §m~3.4x 1(.)6‘ Th|§ where the initial conditions giveC;+C,=1, and C,6
is a large bundle from a simulation point of view if one is to +C,5* =1, whose solution is

do many Monte Carlo replications. Thus the large size scale '
behavior is difficult to access through simulation alone. This
situation worsens very quickly ag becomes smaller. In C :1_5* C.= -1 (A5)
some sense this situation is a manifestation of the Petersburg 17 s+ 27 5—5*

paradox 61,67 in that an actual material of huge size—say

10 elements—will show behavior not accessible by currentyanipulating Eq.(A5) using 8+ p=2q from Eq. (A2)

computer technology and algorithms for simulation. 5* =q— & from Eq. (A3), andp+q=1, we obtain alterna-

Finally, in studying microstructure-property relationshipstive relations forC, and C, so that Eqs.(A4) and (A5)
for strength and toughness in heterogeneous ceramics, Curtl%%mbine to give ! 2

[8] used a Monte Carlo model to study the statistical aspec
of crack growth by introducing a large crack and watching it

grow to instability under increasing load. He found that ma- ¥ A st # 8 |[o-1 5. (A6)
terials exhibit lower strength, toughness and reliability, than U g2l o+2p a\ 6+2p/\ s+p '
anticipated from continuum models of crack bridging based
on local average properties. Though our model does not inTherefore we have
troduce a crack artificially but rather allows one to initiate '
naturally and grow, our conclusion is basically the same: 5
Fracture initiation and propagation is difficult to capture ol u
through simplifying arguments because they neglect extreme Pu{X:- X} = qﬁZ 5+2p L +eu}, (A7)
events.
where
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APPENDIX A: PROBABILITIES FOR FIBER SEQUENCES

WITH NO ADJACENT “1”s Pu{é'"é}=un—1{X'“é}=q2Pu—z{X'“X}- (A9)

Recall that X--X is a sequence of “0”s and “1”s such

that no two 1's are adjacent, and l&;=P,{X---X} be the In particular, note the casd®{X:--X}=q and P;{X---X}
initial probability of occurrence of such a sequence of length=q. Finally we note that
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v
P{X - X}=P{X:--X}-P{X---XN the lastv positions are all “0"§=P{X---X}—P,_,{X---X}q"

q v—1
— u — | —
—(5+2p Mil+ey (5) (I+ey_p_1)]. (A10)
|
APPENDIX B: CHEN-STEIN THEOREM can be written as
We give here a form of the Chen-Stein theorem following (—logq)®
Barbour and Eaglesof59]. Let | be an arbitrary index set, [—log(a)]*q"=—C —- (C2
and suppose thdly; ,i e |} are 0 or 1 random variables with
probabilitiesp;=P{Y;=1}=1—P{Y;=0}=E[Y;]>0. Als0  As n— o, this can be inverted to yield
let T,==i.,Y; and\,=E[T,]=2,.,p;, and letW, be a
Poisson random variable with mean, where\,e (0,©). P 1 [logn+ ¢ log logn— ¢ log( —logq) + logc]
Let J; denote an arbitrarily chosen set of “near neighbors” " logq ghreloglogn—elog 9q 9
ofi,and letVi=T,—2;.;Y;=2j.;Y;. We think ofJ; as a
o i i o +0(1) (C3
neighborhood of dependence” far such thaty; is inde-
pendent or nearly independent ¥f for je&J;. Then for  as can be verified by direct substitution.
ACZ,, Now suppose is an integer, and
P{T,eAl—P{W,eA 1 —lo
| { n } { n }| q_r:v' I’]=;, and gq:g. (Ca)
<Af ipi T Af E[Y;Y.
izej j;i PiP; % j;i LYYl Then using Eq(C1) with ¢=1, we have
j#i
v 2l 5
+ EI E{(Yi—pi)}f(Vi+1)|=bi+by+bs, logv X €9
le

which using Eqs(C2) and (C3) is inverted and exponenti-

(B1) )
ated to give

wheref is a particular functiondepending or®) for which 21 1

sugf(x)|<1, and Af=sugf(x+1)—f(x)|<L1. U ;)Iog(;). (CH)

X X
Next suppose

Loosely speakingh, measures the size of the neighborhood o
of i, b, measures the expected number of events occurring in ,_P
the neighborhood of a given event, angl measures the de- v =g (C7)

pendence between the evefjtand those occurring outside
the neighborhood of. wherep is a constant. Then using Eq£1), (C3), and(C6)

and keeping dominant terms we find that

APPENDIX C: ASYMPTOTICS FOR LOAD x AT FIRST

FIBER FAILURE X 2 logq

~— —, (CY
Suppose we have positive integerandn, positive con- logx 7 og(n/P)
stantc, constant 6<q<1, and integetp with possible values |\ vioh inverts to give
¢=—1,1,2. Then the quantity
2 logq log log(n/P)
1
Cr‘qu :ﬁ (Cl) Xn™~ — . (Cg)

™ log( n/E)

[1] S. P. Timoshenkdlistory of Strength of MaterialdMcGraw-
Hill, New York, 1953.

[3] W. Weibull, Proc. Royal Swedish Academy Eng. Sth1, 1
(1939.

[2] Galileo Galilei, Dialogues Concerning Two New Sciences [4] W. Weibull, ASME J. Appl. Mech18, 293 (1951).

(Italian and Latin) English translation by Henry Crew and

Alfonso de Salvio(Macmillan, London, 1914 (reprinted by
Dover, New York, 1952

[5] B. Epstein, J. Appl. Physl9, 140(1948.
[6] E. Castillo,Extreme Value Theory in Engineerifigcademic,
San Diego, 1988



PRE 62

[71 A. M. Freudenthal, inFracture, edited by Liebowitz(Aca-
demic, New York, 1968

[8] W. A. Curtin, J. Am. Ceram. Sod.8, 1313(1995.

[9] H. E. Daniels, Proc. R. Soc. London, Ser.183 405(1945.

[10] D. E. Gicer and J. Gurland, J. Mech. Phys. Solit3; 365
(1962.

[11] R. L. Smith and S. L. Phoenix, ASME J. Appl. MectD3, 75
(1981).

[12] B. D. Coleman, Trans. Soc. Rhedl. 153 (1957.

[13] W. A. Curtin, J. Am. Ceram. So&4, 2837(1991)).

[14] S. L. Phoenix, M. lbnabdeljalil, and C.-Y. Hui, Int. J. Solids
Struct. 34, 545(1997.

[15] D. G. Harlow and S. L. Phoenix, J. Compos. Matg2, 195
(1978.

[16] D. G. Harlow and S. L. Phoenix, J. Compos. MatE?, 314
(1978.

[17] R. L. Smith, Proc. R. Soc. London, Ser.3¥2, 539(1980.

[18] D. G. Harlow and S. L. Phoenix, Int. J. FradZ, 601 (1981).

[19] R. L. Smith, S. L. Phoenix, M. R. Greenfield, R. B. Hensten-
burg and R. E. Pitt, Proc. R. Soc. London, Ser388 353
(1983.

[20] R. L. Smith, Adv. Appl. Probabl5, 304 (1983.

[21] D. G. Harlow, Proc. R. Soc. London, Ser.397, 211 (1985.

[22] C. C. Kuo and S. L. Phoenix, J. Appl. Prob&4, 137 (1987).

[23] S. L. Phoenix and I. J. Beyerlein, @omprehensive Composite
Materials edited by A. Kelly and C. ZwebetiPergamon—
Elsevier Science, New York, 20p0vol. 1, Chap. 1.19.

[24] L. de Arcangelis, S. Redner, and H. J. Herrmann, J. Phys.

(France Lett. 46, L585 (1985.

[25] L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Re@4B
4656 (1986.

[26] B. Kahng, G. G. Batrouni, and S. Redner, J. Phy20AL827
(1987.

[27] P. M. Duxbury, P. L. Leath, and P. D. Beale, Phys. Re®&
367 (1987).

[28] P. M. Duxbury and P. L. Leath, J. Phys. 20, L411 (1987.

[29] Y. S. Li and P. M. Duxbury, Phys. Rev. B6, 5411(1987).

DISTRIBUTIONS AND SIZE SCALINGS F® . ..

1645

[40] A. Hansen, E. L. Hinrichsen, and S. Roux, Phys. Reyu3
665 (1999).

[41] D. G. Harlow and S. L. Phoenix, J. Mech. Phys. SoB8s173
(1991

[42] P. M. Duxbury and P. L. Leath, Phys. Rev. 89, 12676
(1994.

[43] P. L. Leath and P. M. Duxbury, Phys. Rev. 49, 14905
(1994).

[44] P. M. Duxbury and P. L. Leath, Phys. Rev. Let2, 2805
(1994.

[45] S. D. Zhang and E. J. Ding, Phys. Lett.183 425(1994.

[46] S. D. Zhang and E. J. Ding, J. Phys.28, 4323(1994).

[47] S. D. Zhang and E. J. Ding, Phys. Rev5B, 646 (1996.

[48] M. Kloster, A. Hansen, and P. C. Hemmer, Phys. Re\t6E
2615(1997).

[49] W. A. Curtin and H. Scher, Phys. Rev. 35, 12038(1997.

[50] W. A. Curtin and H. Scher, Phys. Rev. 35, 12051(1997.

[51] W. I. Newman, A. M. Gabrielov, T. A. Durand, S. L. Phoenix,
and D. L. Turcotte, Physica 37, 200 (1994).

[52] J. M. Hedgepeth, “Stress Concentrations in Filamentary Struc-
tures,” NASA TN D-882(1961).

[53] W. B. Fichter, “Stress Concentration Around Broken Fila-
ments in a Filament-Stiffened Sheet,” NASA TN D-5453
(1969.

[54] I. J. Beyerlein, S. L. Phoenix, and A. M. Sastry, Int. J. Solids
Struct. 33, 2543(1996.

[55] I. J. Beyerlein and S. L. Phoenix, Eng. Fract. Mebf, 241

(1997.

[56] I. J. Beyerlein and S. L. Phoenix, Eng. Fract. MeBli, 267
(1997.

[57] F. Hikami and T. W. Chou, AIAA J28, 499 (1990.

[58] R. Arratia, L. Goldstein, and L. Gordon, Stat. S&i. 403
(1990.

[59] A. D. Barbour and G. K. Eagleson, J. R. Stat. Soc4@3 397
(1984.

[60] L. Gordon, M. F. Schilling, and M. S. Waterman, Prob. Theor.
Relat. Fields72, 279(1986.

[30] S. Roux, A. Hansen, H. Herrmann, and E. Guyon, J. Stat[61] P. Palffy-Muhoray, R. Barrie, B. Bergersen, |. Carvalho, and

Phys.52, 237(1988.

[31] Y. S. Li and P. M. Duxbury, Phys. Rev. 80, 4889(1989.

[32] P. D. Beale and P. M. Duxbury, Phys. Rev3R 2785(1988.

[33] S. G. Kim and P. M. Duxbury, J. Appl. Phyg0, 3164(1991.

[34] P. L. Leath and W. Xia, Phys. Rev. 84, 9619(199J.

[35] M. Sahimi and J. D. Goddard, Phys. Rev3B, 7848(1986.

[36] P. D. Beale and D. J. Srolovitz, Phys. Rev3B 5500(1988.

[37] A. Hansen, S. Roux, and H. J. Herrmann, J. Pkiysance 50,
733(1989.

[38] Statistical Models for the Fracture of Disordered Meded-
ited by H. J. Herrmann and S. RouXorth-Holland, Amster-
dam, 1990.

[39] A. Hansen, inStatistical Models for the Fracture of Disor-
dered Media edited by H. J. Herrmann and S. Ro(Morth-
Holland, Amsterdam, 1990

M. Freeman, J. Stat. PhyS5, 119(1984).

[62] P. Palffy-Muhoray, inLectures on Thermodynamics, and Sta-
tistical Mechanicsedited by M. Lope de Haro and C. Varea
(World Scientific, London, 1991

[63] C. Hsieh and R. Thompson, J. Appl. Phyid, 2051 (1973.

[64] S. J. Zhou and W. A. Curtin, Acta Metall. Mate43, 3093
(1995.

[65] M. Ibnabdeljalil and W. A. Curtin, Int. J. Solids Struc34,
2649(1997).

[66] S. B. Batdorf, ASME J. Appl. Mecht0, 190(1983.

[67] H. M. Taylor and D. E. Sweitzer, Adv. Appl. ProbaB0, 342
(1998.

[68] H. M. Taylor, J. Appl. Probab36, 1 (1999.

[69] H. M. Taylor (private communication

[70] H. Kesten, lll. J. Math5, 267 (1961).



