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Scale-dependent dimension in the forest fire model
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and Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark
~Received 23 December 1999!

The forest fire model is a reaction-diffusion model where energy, in the form of trees, is injected uniformly,
and burned~dissipated! locally. We show that the spatial distribution of fires forms a geometric structure where
the fractal dimension varies continuously with the length scale. In the three-dimensional model, the dimensions
vary from zero to three, proportional with ln(l ), as the length scale increases froml;1 to a correlation length
l 5j. Beyond the correlation length, which diverges with the growth ratep as j}p22/3, the distribution
becomes homogeneous. We suggest that this picture applies to the ‘‘intermediate range’’ of turbulence where
it provides a natural interpretation of the extended scaling that has been observed at small length scales.
Unexpectedly, it might also be applicable to the spatial distribution of luminous matter in the universe. In the
two-dimensional version, the dimension increases toD51 at a length scalel;1/p, where there is a crossover
to homogeneity, i.e., a jump fromD51 to D52.

PACS number~s!: 05.65.1b, 05.45.Df
us

lo
el
en
m
in
in
el
at

s
ie
by
-
h
e
ng
n
e-

he

tri
. I
on
s
an
re
c
tu

ca

io

is
o

f a
nal
ion

e

nal
is

re
the
tial
to
ap-

v-
The
ed
ve
aps
en-

ro-
he
any
elf-
-
ous

cal-
rse
ns.
be
ling
for
I. INTRODUCTION

Systems undergoing continuous phase transitions are
ally described in terms of a correlation lengthj that diverges
as the critical point is approached. For length scales be
the correlation length, the geometrical structure is s
similar, with a unique fractal dimension that is independ
of l for l !j. For larger length scales the structure is unifor
Self-similarity can be conveniently described as a fixed po
of a renormalization-group transformation. This behavior
cludes self-organized critical phenomena, where the corr
tion length diverges as a powerlaw when the driving r
vanishes.

We propose a geometric form for nonequilibrium sy
tems, where the dimension of the dissipative field var
gradually from D50 at the smallest scale, dominated
point-like objects, toD53, or bulklike, at some finite corre
lation length j. The density remains uniform for lengt
scales exceedingj. Thus, as one steps further and furth
backwards, and consider things at a larger and larger le
scalel, different classes of fractal objects are observed, ra
ing from points to lines to walls, and finally to a homog
neous set.

The new form of scaling appears in our study of t
simple forest fire model~FFM! @1#, which was proposed in
an attempt to throw light on the nature of the spatial dis
bution of energy dissipation in fully developed turbulence
is a discrete model defined on a lattice in the best traditi
of Ising-like models used to study equilibrium phase tran
tions. In turbulence, energy is injected at a large scale,
dissipated at the smallest scale. In our vision, the forest fi
would represent the intermittency observed in turbulen
and power-law spatial and temporal correlations would na
rally occur if the model operates at the self-organized criti
state.

It turns out that, while the model indeed has a correlat
length that diverges as the growth ratep goes to zero, there is
no fractal self-similarity below the correlation length, as
usually the case for critical systems, self-organized or n
PRE 621063-651X/2000/62~2!/1613~4!/$15.00
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The criticality can therefore not be described in terms o
fixed point in the Wilson sense. For the three-dimensio
version, we find that the length-scale-dependent dimens
D( l ) ~for l ,j) is given by a remarkably simple equation,

D~ l !;3 ln~ l / l 0!/ ln~j/ l 0!. ~1!

where l 0 is a length of order unity. In two-dimensions, th
exponent increases gradually toD51 at the correlation
length, where there is a normal crossover to two-dimensio
homogeneity. Whether or not one would actually call th
‘‘critical’’ behavior is a matter of taste.

While this geometric structure was not what we we
looking for, it may nevertheless turn out to represent
actual scaling in turbulence. In the scaling regime, or iner
range, the energy dissipation field in turbulence is known
be homogeneous with great accuracy. However, there
pears to be an ‘‘intermediate range’’@2#, rather than a single
lower cutoff length, where the interesting intermittent beha
ior that we usually associate with turbulence takes place.
correlations do not follow power laws, but are characteriz
by smoothly varying effective exponents. Only the relati
moments follow scale-independent ratios. This can perh
be interpreted as a scale-dependent exponent for the dim
sion of the dissipative field, as observed in our model.

On a quite different front, there has been much cont
versy about the spatial distribution of luminous matter in t
universe. The apparent hierarchical structure has led m
researchers to believe that the distribution could be s
similar, or fractal@3#. However, the uniformity of the back
ground radiation requires that the universe is homogene
at the largest scale, contradicting the simple self-similar s
ing picture. Perhaps the luminous matter in the unive
obeys this type of geometry, which unifies both observatio
While we hesitate to claim that the universe should
viewed as one giant forest fire, we do suggest that the sca
picture may represent a quite general geometrical form
nonequilibrium dissipative systems.
1613 ©2000 The American Physical Society
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II. NUMERICAL RESULTS

The forest fire model is defined as follows. On
d-dimensional lattice, trees are grown randomly at a ratep.
During a time unit, trees burn down~leaving room for new
trees!, and ignite their neighbors. After a transient period, t
system enters a statistically stationary state with a comp
distribution of fires~and forests!. This state is the object o
our investigation.

Despite the glaring simplicity of the FFM, reaching a
understanding of its properties has turned out to be an
sive goal. Grassberger and Kantz@4# argued that there could
be no criticality since the dynamics is simply that of doma
walls moving with a finite mean velocity, burning everythin
in their wake. The motion of the walls gives rise to loc
oscillations in the fire intensity. This view was more or le
accepted by the community, and interest in the mo
dropped. In the mean time, Drossel and Schwabl@5# invented
a different version of the FFM where fires are injected a
small but finite rate, which exhibits noncontroversial conve
tional self-organized criticality@6#. It can be exactly solved
in one dimension@7,8# in terms of a cascade process.

However, a few years ago, Johansen@9# found that the
time between two fronts is not limited by the growth ra
since the fire walls can propagate without burning much
the forest. In fact, the fraction of trees that burn vanishes
p→0. The process should be seen as a percolationlike
cess rather than as solid fire fronts. Soon after, Broker
Grassberger@10# confirmed that the periodicity of local os
cillations in the fire density diverges with a nontrivial exp
nent, asp→0.

Our picture of theD53 FFM does not involve the con
cept of walls or spirals: they only exist as well-defined qua
tities in the mind of the observer when the system is view
at a particular scale. In two dimensions, walls are still me
ingful, representing the largest coherent structures.

We simulated both two- and three-dimensional syste
with sizes up to 20482 and 10243, respectively. 0.53106

time steps were used to collect the statistics for each si
lation. Special care is needed for the simulation of a s
tained forest fire due to the fact that for a given system s
L, the fire dies out if the rate is not sufficiently high. Th
feature turns out to be important for applications to t
spread of diseases, and to the existence of luminous matt
the universe. If artificially restarted~say, by just adding a
single fire!, the system often goes into a state with glob
oscillations. Typically we can only study system sizes t
are much larger than the correlation length. This contra
with conventional critical phenomena, where information
length scales up to the size of the system can be obta
even for systems that are smaller than the correlation len
Finite-size scaling allows one to derive critical expone
from studying such systems. Here, in contrast, the entire
namics collapses as soon as the correlation length reache
system size. Thus, the range of scalesl that we can study is
squeezed by the inequalities 1, l ,j!L, making the calcu-
lation numerically demanding despite the simplicity of t
model. Our simulations involved more than 109 sites.

The average amount of firesn( l ) within boxes of sizel
that contain fires was measured. Figure 1~a! shows ln(n) vs
ln(l) for a wide range ofp and L5128,256,516,1024 ford
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FIG. 1. ~a! log2@n(l)# vs log2(l) for various system sizes and tre
growth ratesp for the 3D forest fire model: filled circle (10243,p
51.2531024), filled square (10243,p52.531024), open circle
(10243,p5531024), open square (5123,p50.001), filled triangle
(5123,p50.002), inverted filled triangle (2563,p50.005), open tri-
angle (1283,p50.0075), inverted open triangle (1283,p50.01).~b!
ln@n(l)#/ln(l) vs ln(l)/ln(j) with the same set of data. The correlatio
lengths are given byj5(0.77p)22/3. ~c! ln@n(l)/n0#/ln(l/l0) vs
ln(l/l0)/ln(j/l0), with the lower cutoffl 0}p0.03.
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53. There is no linear regime, indicating that there is
well-defined fractal dimension, in contrast to our origin
claim. The slopes of curves generally increase withl, and
saturate at a value of 3 at largerl values, indicating that the
distribution becomes uniform beyond a length scale that
identify as the correlation length. Also,n increases withp
since the number of fires in average must be equal to
growth rate in the stationary state.

A unified description can be obtained by plottin
ln(n)/ln(l) vs ln(l)/ln(j) for the same data@Fig. 1~b!#, where
good data collapse, involving length scales extending o
three orders of magnitude, is obtained when choosinj
5(0.77p)22/3 (n52/3). Actually, a slightly better fit is ob-
tained if the lower cutoff is allowed to depend onp, so that
in principle there are two adjustable exponents. Fig. 1~c!
shows ln(n/n0)/ln(l/l0) vs ln(l/l0)/ln(j/l0) with l 0}p0.03.

The data collapse implies that ln(n/n0)/ln(l/l0) can be writ-
ten in the form

ln~n!/ ln~ l / l 0!5 f @ ln~ l / l 0!/ ln~j/ l 0!#, ~2!

where the collapsed curve represents the functionf. It turns
out to be instructive to define the derivative

D~ l !5dln~n!/dln~ l !5a@ ln~ l / l 0!/ ln~j/ l 0!#, ~3!

which can be thought of as a length-scale-dependent fra
dimension. This quantity is shown in Fig. 2. The functiona
is given bya(x)5 f (x)1x f8(x). The curve has an interes
ing and unusual shape: the function is linear for length sc
up to the correlation length where there is a sharp kink.
yond the correlation length, the value ofd is 3: the system is
homogeneous for length scales beyond the correla
length. The data collapse shown in Figs. 1~b,c! and 2 indi-
cates bona fide scaling, in the sense that there is only

FIG. 2. The length-dependent fractal dimensionD( l )
5dln@n(l)#/dln(l) ~calculated from differences between the da
points in Fig. 1! vs ln(l)/ln(j) for the data sets used in Fig. 1, wit
j5(0.77p)22/3.
l
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relevant lengthj/ l 0 in the system, although of a quite nov
and unique nature, without self-similarity under a change
scale.

Thus, we arrive at the extremely simple Eq.~1!, which is
our main result. This shows how the apparent dimens
increases as the forest is viewed at larger and larger
tances. At the smallest scales, the fires are zero dimens
and appear point like and isolated. As the scale increases
dimension increases logarithmically until at the correlati
length it becomes equal to three. It would be interesting
have a computer-generated graphical visualization of
change of dimension.

The amount of fires within a box of sizel becomes

ln~n!;S 3

2

ln~ l / l 0!

ln~j/ l 0! D ln~ l / l 0!. ~4!

The exponentn can be derived analytically by an argu
ment of energy conservation. The number of firesn(j) in a
box of sizej times the number of boxes of that size, (L/j)d,
scales aspLd. Since the fractal dimensionD( l ) is linearly
dependent on ln(l), we haven(j)5jd/2 ~ignoring the smallp
dependence ofl 0); this leads ton52/d.

It is interesting that the correlation function througho
the scaling regionl !j is influenced by both the correlatio
length and the smallest length scale of dissipation. For
ample, one can estimate the correlation length by measu
the increase of dimensionality from one small length scale
another. In contrast, for conventional critical phenomena,
properties up to the correlation length are those of the crit
state, and forl !j there is no way to detectj. In addition, the
scaling form is invariant with respect to the transformati
l→ l g, j→jg, and n( l )→n( l )g, which leaves the smalles
dissipation scale~at l;1) unchanged.

Similar data ford52 are shown in Fig. 3. The dimensio
grows from a small value close to zero at low length sca
and then jumps fromD;1 to D52 at the correlation length
The variation is nonlinear, but nevertheless there are g
data collapses forn51. For a range of length scales less th
the correlation length, the dimension is close to 1, indicat
that walls form the largest coherent structures in the tw
dimensional forest fire model. Again, at length scales gre
than the correlation length, the density becomes uniform,
D52. There is no range of length scales where the dim
sion is between 1 and 2. We have also studied the hig
moments of the fire distribution, and similar scaling form
were found. The picture of propagating fronts remain val
the features seen at lower length scales represent the int
structure of the walls, which also scales with the correlat
length.

The forest fire model was originally thought of as a t
model of turbulence. Recently, deviations from fractal
multifractal scaling have been interpreted as ‘‘extended s
similarity’’ in an intermediate dissipative range@2,11# be-
tween the Kolmogorov length and the inertial range. Perh
one might understand this phenomenon geometrically
terms of the concept of scale-dependent dimension in
duced here. In particular, data presented by Benziet al. @12#
seem to indicate a logarithmic dependence of scaling ex
nents versus length scale. For homogeneous turbulence
energy dissipation scales with the third moment of the vel
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1616 PRE 62KAN CHEN AND PER BAK
ity differences. It would be interesting to plot the deviatio
in the intermediate range in order to check whether it co
be accounted for by a scale-dependent dimension as give
Eq. ~1!. Other experiments showing a dimension depend
on the Reynolds number@13,14# might alternatively be inter-

FIG. 3. The length-dependent fractal dimensionD( l )
5dln@n(l)#/dln(l) vs ln(l)/ln(j) for the two-dimensional forest fire
model: filled circle (20482,p50.00075), filled square (10242,p
50.001), open circle (10242,p50.0025), open square (10243,p
50.005), filled triangle (5162,p50.01). The correlation length
used are given byj5(0.60p)21.
i-

,
lity
d
by
g

preted as a scale-dependent dimension. In any case, the
of turbulence as a forest fire could constitute a power
metaphorical picture.

It is important to distinguish our geometric structure fro
that of a random distribution of fires with the same dens
Such a structure would produce aD( l ) vs ln(l) curve that
would be zero until a length equal to the cube root of t
density, i.e., the average length. Then there would be a cr
over jump toD53. Similarly, a fractal structure would show
up as a constantD( l ) up to the correlation length; then ther
would be a jump to the Euclidean dimension.

The structure of the universe:Could it indeed be that the
universe operates at a similar self-organized state with
spatial distribution of bright matter characterized by t
logarithmic scaling? We have analyzed galaxy maps in or
to test this proposal, with very good agreement@15#. The fit
yields a correlation length of approximately 300 Mpc, whi
is outside the range of present galaxy catalogs, but will
reached within a decade. It would be exciting to check if t
structure indeed is represented by the kinkcurve, Fig. 2.

So far, we have not reached an analytical understand
of this simple type of scaling. Traditional renormalizatio
group analysis based on rescaling of length scale will
apply here, and it is our belief that a quite different fram
work might be needed.
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