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Scale-dependent dimension in the forest fire model
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The forest fire model is a reaction-diffusion model where energy, in the form of trees, is injected uniformly,
and burneddissipategllocally. We show that the spatial distribution of fires forms a geometric structure where
the fractal dimension varies continuously with the length scale. In the three-dimensional model, the dimensions
vary from zero to three, proportional with IN( as the length scale increases frboml to a correlation length
|=¢. Beyond the correlation length, which diverges with the growth mtas £xp~23, the distribution
becomes homogeneous. We suggest that this picture applies to the “intermediate range” of turbulence where
it provides a natural interpretation of the extended scaling that has been observed at small length scales.
Unexpectedly, it might also be applicable to the spatial distribution of luminous matter in the universe. In the
two-dimensional version, the dimension increaseb tol at a length scale~ 1/p, where there is a crossover
to homogeneity, i.e., a jump fro@=1 toD=2.

PACS numbsgs): 05.65:+b, 05.45.Df

I. INTRODUCTION The criticality can therefore not be described in terms of a
fixed point in the Wilson sense. For the three-dimensional

Systems undergoing continuous phase transitions are usversion, we find that the length-scale-dependent dimension
ally described in terms of a correlation lengtlthat diverges  D(l) (for I <§) is given by a remarkably simple equation,
as the critical point is approached. For length scales below
the correlation length, the geometrical structure is self- _
similar, with a unique fractal dimension that is independent D)~3 Inl7lo)/In(&/lo)- @
of | for | <¢. For larger length scales the structure is uniform.

Self-similarity can be conveniently described as a fixed poinwvherel, is a length of order unity. In two-dimensions, the
of a renormalization-group transformation. This behavior in-exponent increases gradually =1 at the correlation
cludes self-organized critical phenomena, where the correldength, where there is a normal crossover to two-dimensional
tion length diverges as a powerlaw when the driving rathomogeneity. Whether or not one would actually call this
vanishes. “critical” behavior is a matter of taste.

We propose a geometric form for nonequilibrium sys- While this geometric structure was not what we were
tems, where the dimension of the dissipative field variedooking for, it may nevertheless turn out to represent the
gradually fromD=0 at the smallest scale, dominated by actual scaling in turbulence. In the scaling regime, or inertial
point-like objects, td = 3, or bulklike, at some finite corre- range, the energy dissipation field in turbulence is known to
lation length £&. The density remains uniform for length be homogeneous with great accuracy. However, there ap-
scales exceeding. Thus, as one steps further and furtherpears to be an “intermediate rang€2], rather than a single
backwards, and consider things at a larger and larger lengflower cutoff length, where the interesting intermittent behav-
scalel, different classes of fractal objects are observed, rangior that we usually associate with turbulence takes place. The
ing from points to lines to walls, and finally to a homoge- correlations do not follow power laws, but are characterized
neous set. by smoothly varying effective exponents. Only the relative

The new form of scaling appears in our study of themoments follow scale-independent ratios. This can perhaps
simple forest fire modelFFM) [1], which was proposed in be interpreted as a scale-dependent exponent for the dimen-
an attempt to throw light on the nature of the spatial distri-sion of the dissipative field, as observed in our model.
bution of energy dissipation in fully developed turbulence. It On a quite different front, there has been much contro-
is a discrete model defined on a lattice in the best traditiongersy about the spatial distribution of luminous matter in the
of Ising-like models used to study equilibrium phase transi-universe. The apparent hierarchical structure has led many
tions. In turbulence, energy is injected at a large scale, antesearchers to believe that the distribution could be self-
dissipated at the smallest scale. In our vision, the forest firesimilar, or fractal[3]. However, the uniformity of the back-
would represent the intermittency observed in turbulenceground radiation requires that the universe is homogeneous
and power-law spatial and temporal correlations would natuat the largest scale, contradicting the simple self-similar scal-
rally occur if the model operates at the self-organized criticaing picture. Perhaps the luminous matter in the universe
state. obeys this type of geometry, which unifies both observations.

It turns out that, while the model indeed has a correlationVhile we hesitate to claim that the universe should be
length that diverges as the growth ratgoes to zero, there is viewed as one giant forest fire, we do suggest that the scaling
no fractal self-similarity below the correlation length, as ispicture may represent a quite general geometrical form for
usually the case for critical systems, self-organized or notnonequilibrium dissipative systems.
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IIl. NUMERICAL RESULTS

The forest fire model is defined as follows. On a
d-dimensional lattice, trees are grown randomly at a pate
During a time unit, trees burn dowifeaving room for new
treeg, and ignite their neighbors. After a transient period, the
system enters a statistically stationary state with a complex
distribution of fires(and forests This state is the object of
our investigation.

Despite the glaring simplicity of the FFM, reaching an
understanding of its properties has turned out to be an elu-
sive goal. Grassberger and Kap#4 argued that there could
be no criticality since the dynamics is simply that of domain
walls moving with a finite mean velocity, burning everything
in their wake. The motion of the walls gives rise to local
oscillations in the fire intensity. This view was more or less
accepted by the community, and interest in the model
dropped. In the mean time, Drossel and SchwWabinvented
a different version of the FFM where fires are injected at a
small but finite rate, which exhibits noncontroversial conven-
tional self-organized criticality6]. It can be exactly solved
in one dimensior}7,8] in terms of a cascade process.

However, a few years ago, Johand®n found that the
time between two fronts is not limited by the growth rate,
since the fire walls can propagate without burning much of
the forest. In fact, the fraction of trees that burn vanishes as
p—0. The process should be seen as a percolationlike pro-
cess rather than as solid fire fronts. Soon after, Broker and
Grassbergef10] confirmed that the periodicity of local os-
cillations in the fire density diverges with a nontrivial expo-
nent, asp—0.

Our picture of theD=3 FFM does not involve the con-
cept of walls or spirals: they only exist as well-defined quan-
tities in the mind of the observer when the system is viewed
at a particular scale. In two dimensions, walls are still mean-
ingful, representing the largest coherent structures.

We simulated both two- and three-dimensional systems
with sizes up to 2048and 1024, respectively. 0.5 10°
time steps were used to collect the statistics for each simu-
lation. Special care is needed for the simulation of a sus-
tained forest fire due to the fact that for a given system size
L, the fire dies out if the rate is not sufficiently high. This
feature turns out to be important for applications to the
spread of diseases, and to the existence of luminous matter in
the universe. If artificially restarte(say, by just adding a
single fire, the system often goes into a state with global
oscillations. Typically we can only study system sizes that
are much larger than the correlation length. This contrasts
with conventional critical phenomena, where information for
length scales up to the size of the system can be obtained
even for systems that are smaller than the correlation length.
Finite-size scaling allows one to derive critical exponents
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from_ studying such systems. Here, in cqntrast, the entire dy- FIG. 1. (8 log,[n(1)] vs logy(l) for various system sizes and tree
namics collapses as soon as the correlation length reaches t&%wth ratesp for the 3D forest fire model: filled circle (1034
system size. Thus, the range of scdléisat we can study is =1 o5« 10°%), filled square (102%4p=2.5x10"%), open circle
squeezed by the inequalities<l<¢<L, making the calcu-  (1024,p=5x10"4), open square (5820=0.001), filled triangle
lation numerically demanding despite the simplicity of the (512 p=0.002), inverted filled triangle (28fp=0.005), open tri-

model. Our simulations involved more than®1€ites.

angle (128,p=0.0075), inverted open triangle (128=0.01).(b)

The average amount of firegl) within boxes of sizd  In[n()}/In(l) vs In)/In(¢) with the same set of data. The correlation
that contain fires was measured. Figufe) shows Inf) vs  lengths are given byé=(0.77) %% (c) In[n{()/nolIn(I/ly) vs
In(l) for a wide range ofp and L =128,256,516,1024 fod In(I/1g)/In(&/y), with the lower cutoffl goc p®©%
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4 relevant length¢/1, in the system, although of a quite novel
and unique nature, without self-similarity under a change of
scale.

Thus, we arrive at the extremely simple Edj), which is
our main result. This shows how the apparent dimension
increases as the forest is viewed at larger and larger dis-
tances. At the smallest scales, the fires are zero dimensional
and appear point like and isolated. As the scale increases, the
dimension increases logarithmically until at the correlation
length it becomes equal to three. It would be interesting to
have a computer-generated graphical visualization of this
change of dimension.

The amount of fires within a box of sidebecomes

D())

| $Indlo)) i 4
n Eln(gllo) n( 0)' ( )
0
0 1' 2 The exponentr can be derived analytically by an argu-

(M ment of energy conservation. The number of fidg) in a
00,(1/10g,®) box of size¢ times the number of boxes of that siz&/£)¢,

FIG. 2. The length-dependent fractal dimension(l)  Scales apLY. Since the fractal dimensioB(l) is linearly
—dIn[n()}/din(l) (calculated from differences between the datadependent on I}, we haven(¢)=¢%? (ignoring the smalp
points in Fig. 2 vs InQ)/In(¢) for the data sets used in Fig. 1, with dependence dfy); this leads tov=2/d.
£=(0.77p) %2 It is interesting that the correlation function throughout

the scaling region<<¢ is influenced by both the correlation
=3. There is no linear regime, indicating that there is nolength and the smallest length scale of dissipation. For ex-
well-defined fractal dimension, in contrast to our original @Mple, one can estimate the correlation length by measuring
claim. The slopes of curves generally increase Wjtand the increase of dimensionality from one small length scale to
saturate at a value of 3 at largevalues, indicating that the another. In contrast, for conventional critical phenomena, the
distribution becomes uniform beyond a length scale that wéroperties up to the correlation length are those of the critical
identify as the correlation length. Alsm, increases wittp ~ State, and fot<£ there is no way to detegt In addition, the
since the number of fires in average must be equal to th&caling form is invariant with respect to the transformation
growth rate in the stationary state. =17, £€—=§&7, andn(l)—n(l)”, which leaves the smallest

A unified description can be obtained by plotting dissipation scaléat|~1) unchanged.

In(n)/In(1) vs InQ)/In(é) for the same datéFig. 1(b)], where Similar data ford=2 are shown in Fig. 3. The dimension
good data collapse, involving length scales extending ove@rows from a small value close to zero at low length scales,
three orders of magnitude, is obtained when choosjng and then jumps frond~1 toD =2 at the correlation length.
=(0.77) ~2® (v=2/3). Actually, a slightly better fit is ob- The variation is nonlinear, but nevertheless there are good
tained if the lower cutoff is allowed to depend pnso that ~ data collapses for=1. For a range of length scales less than
in principle there are two adjustable exponents. Fige) 1 the correlation length, the dimension is close to 1, indicating

shows In/ny)/In(I/lg) vs In(/lg)/In(&llg) with | o< p®03 that walls form the largest coherent structures in the two-
The data collapse implies that hi,)/In(I/l;) can be writ-  dimensional forest fire model. Again, at length scales greater
ten in the form than the correlation length, the density becomes uniform, and
D=2. There is no range of length scales where the dimen-

In(n)/In(1/1) = f[In(1/1)/In( /1)1, ) sion is between 1 and 2. We have also studied the higher

moments of the fire distribution, and similar scaling forms
were found. The picture of propagating fronts remain valid,;
the features seen at lower length scales represent the internal
structure of the walls, which also scales with the correlation
length.

D(l)=dIn(n)/dIn(l)=alIn(l/1x)/In(&/1g)],  (3) The forest fire model was originally thought of as a toy

model of turbulence. Recently, deviations from fractal or

which can be thought of as a length-scale-dependent fractahultifractal scaling have been interpreted as “extended self-
dimension. This quantity is shown in Fig. 2. The functien similarity” in an intermediate dissipative rand@,11] be-
is given bya(x)=f(x)+xf’(x). The curve has an interest- tween the Kolmogorov length and the inertial range. Perhaps
ing and unusual shape: the function is linear for length scalesne might understand this phenomenon geometrically in
up to the correlation length where there is a sharp kink. Beterms of the concept of scale-dependent dimension intro-
yond the correlation length, the valueafs 3: the system is duced here. In particular, data presented by Behail.[12]
homogeneous for length scales beyond the correlationeem to indicate a logarithmic dependence of scaling expo-
length. The data collapse shown in Figgéb,t) and 2 indi- nents versus length scale. For homogeneous turbulence, the
cates bona fide scaling, in the sense that there is only orenergy dissipation scales with the third moment of the veloc-

where the collapsed curve represents the fundtiahturns
out to be instructive to define the derivative
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preted as a scale-dependent dimension. In any case, the view
of turbulence as a forest fire could constitute a powerful
metaphorical picture.

It is important to distinguish our geometric structure from
7 that of a random distribution of fires with the same density.
Such a structure would producelX(l) vs In() curve that
would be zero until a length equal to the cube root of the

// density, i.e., the average length. Then there would be a cross-
= i over jump toD = 3. Similarly, a fractal structure would show
e //;{‘ up as a constarid(l) up to the correlation length; then there
;;?"“ would be a jump to the Euclidean dimension.

The structure of the univers€ould it indeed be that the
universe operates at a similar self-organized state with the
spatial distribution of bright matter characterized by the
logarithmic scaling? We have analyzed galaxy maps in order
to test this proposal, with very good agreemft8]. The fit
yields a correlation length of approximately 300 Mpc, which

0 T is outside the range of present galaxy catalogs, but will be

0 1 reached within a decade. It would be exciting to check if the
log,(/10g,(E) structure indeed is represented by the kinkcurve, Fig. 2.

So far, we have not reached an analytical understanding

FIG. 3. The length-dependent fractal dimensidn(l) of this simple type of scaling. Traditional renormalization-
=dIn[n(l)}/dIn(l) vs InQ)/In(& for the two-dimensional forest fire group analysis based on rescaling of length scale will not
model: filled circle (2048 p=0.00075), filled square (1024  apply here, and it is our belief that a quite different frame-
=0.001), open circle (1024p=0.0025), open square (1028  work might be needed.
=0.005), filled triangle (51%p=0.01). The correlation lengths
used are given bg=(0.60p) ™. ACKNOWLEDGMENTS
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