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Ordering dynamics of Heisenberg spins with torque: Crossover, spin waves, and defects
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We study the effect of a torque induced by the local molecular field on the phase ordering dynamics of the
Heisenberg model when the total magnetization is conserved. The torque drives the zero-temperature ordering
dynamics to a new fixed point, characterized by exponeat® and\~5. This “torque-driven” fixed point
is approached at times such thatg?, whereg is the strength of the torque. All physical quantities, like the
domain sizd_(t) and the equal and unequal time correlation functions, obey a crossover scaling form over the
entire range ofy. An attempt to understand this crossover behavior from the approximate Gaussian closure
scheme fails completely, implying that the dynamics at late times cannot be understood from the dynamics of
defects alone. We provide convincing arguments that the spin configurations can be decomposed in terms of
defects and spin waves which interact with each other even at late times. In the absence of the torque term, the
spin waves decay faster, but even so we find that the Gaussian closure scheme is inconsistent. In the latter case
the inconsistency may be remedied by including corrections to a simple Gaussian distribution. For complete-
ness we include a discussion of the ordering dynamidg atwhere the torque is shown to be relevant, with
exponentz=4-—¢/2 and\ =d (Wheree=6—d). We show to all orders in perturbation theory thatd as a
consequence of the conservation law.

PACS numbg(s): 64.60.My, 64.60.Cn, 68.35.Fx

[. INTRODUCTION characterized bgy=2 andA~5.05, is accessed after a cross-
over timet,~1/g? (whereg is the strength of the torque
When a many-body system like a magnet or a binary fluidCrossover scaling forms describe physical quantities at late
is quenched from its disordered high temperature phase to itimes|like the domain sizé (t,g) and correlation functions
ordered configuration at low temperatures, the slow anneat—;(r,t,g) andA(t,g)] for all values ofg. In the absence of
ing of “defects” [interfaces in binary fluids, vorticdbedge-  the torque, the spin waves decay faster, but even so we find
hogs in XY (Heisenbery magnet$ separating competing that the Gaussian closure scheme is internally inconsistent.
domains makes the dynamics very slow. The system orgarhs inconsistency may, however, be rectified by including
nizes itself into a self-similar spatial distribution of domains |g4ding corrections to the Gaussian distribufias suggested
characterized by a single diverging length scale which typiby Mazenko[3] for the dynamics of the conserved scalar
cally grows algebraically in time, (t) ~t2. This spatial dis- (Ising) order parametdr
tribution of_domains is.reflected_ in the scaling behavior of For completeness we also study the effects of including
the equal-time correlation functiog(r,t)~(r/L(t)). The the torque in the dynamics following a quench to the critical
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y 9 ) P relevant with exponentg=4—¢/2 and\=d (wheree=6

and the scaling functiofi(x) characterize the dynamical uni- —d). We show to all ord . turbation th that
versality classes at the zero-temperature fixed pGifP) ). We show to all orders in perturbation theory

[1]. =d, which follows as a consequence of the conservation of
The above phenomenology suggests that the asymptotietal magnetizatiof5—7].

dynamics of the order parameter is dominated by the dynam-

ics of its defects, and that bulk fluctuatiofsoncentration

waves in a binary fluid, spin waves in a magnetlax fast Il. HEISENBERG MAGNET AND PRECESSIONAL

and decouple from the dynamics of defects at late times. This DYNAMICS

picture is at the heart of recent approximate theories such as R )
the Gaussian closure schefizel]. The order paramete$ (whose components arg, with

But is this picture accurate? In this paper we shall studyx=1,2,3) describing a coarse-grained spin density in a
the very realistic example of the conservative dynamics of dleisenberg ferromagnet in three dimensions experiences a
Heisenberg magnet driven by a torque induced by the locabrque from the joint action of the external fieldl preseny
molecular field, and show that the longer-lived spin wavesand the local molecular field. In response the spins precess
couple to the defects even at late times, driving the system twith a Larmor frequencyf), about the total magnetic field.

a new fixed point. The new “torque-driven” fixed point, Coupling to various faster degrees of freedom like lattice
vibrations or electrons causes a dissipation in energy and an
eventual relaxation toward equilibrium.

*Email address: jayajit@rri.ernet.in This dynamics follows from the generalized Langevin
TEmail address: madan@rri.ernet.in equation and the Poisson algelp&,
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The noisey arising from the heat bath has mean zero and is L
conservative, r®
(D) (X 1)) = — 2 KgTT 8,5V 28(x— X ) (t—t"). L rrs ’
@ w3
The free-energy functiondt is taken to be of the Landau- : 04~ Ago 7]
Ginzburg form, L £
T %
- N L N 0.2 - bo .
FL¢l= | d| 5(V)*~5(d- )+ z(d-$)?|. (3 S
L I %
The second term in Eql) is clearly the torqueM X H, °r <
where H=— 6F/5¢ is the local molecular field. Both the i 1
inertial term (by virtue of F being rotationally invariant in ol b b e e b
spin spackand the dissipation conserve the total spin, and so 0 1 2 3 4 5
the full equations of motiofil) also conserves the total spin. x=r/L{%)

Since the noise correlator is proportional to temperature,
we may drop it in our discussion of zero-temperature FIG. 1. Scaling plot ofc(r,t) for N=50% The scaling function
guenches. We then scale spagdimet, and the order pa- f(x) changes asg is varied from g=0 (O) to g#0 [g
rameterd as =0.1 (*), 0.3 (1), 0.5 @)I.

r I'r2t - u. of C(r,t) or from the scaling of the energy density,
x=\[ox to—— oo d ; o

o o r =(1N) fdr([Vé(r,t)]1®)~L(t) "2, and grows with time as
L(t)~t%. We compute the scaling functiof(x), the dy-
namical exponent, and the autocorrelation exponentby
9 simulating the Langevin equatidd).
at

to obtain the equation of motion in dimensionless form,

=VA(=V2¢— ¢+ (- d) P +a($xV?P). (4
A. Langevin simulation

- - —12;
The dimensionless parame®gs( o/I')(ru) ““isthera- e | angevin simulation is performed by discretizing Eq.
tio of the precession frequency to the relaxation rate. Settin

k X %) on a simple cubic latticéwith sizeN ranging from 58 to
QL~_1307 Hz andl'~10°-10" Hz givesg in the range of 60°) and adopting a Euler scheme for the derivati{@k
~10"" to 10. The space and time intervals have been chosen td\ ke
=2.5 andAt=0.2. With this choice of parameters, we have
checked that the resulting coupled map does not lead to any
Let us now prepare the system initially in the paramag_instability. We_have allso. checked that the results remain un-
netic phase and quench to zero temperature. We study tf&@nged on slight variations @x and At. Throughout our
time evolution of the spin configurations as they evolve acSimulation we have used periodic boundary conditions.

Ill. PHASE ORDERING DYNAMICS AT T=0

cording to Eq.(4). We calculate the equal time correlator, The correlation functions Eq¢5) and (6) are calculated
for values ofg ranging from 0 to 1. Measured quantities are
C(r)=(p(x.t)- d(x+r1,1)), (5)  averaged over 5-10 initial configurations. The initial con-
figurations are taken from two ensembles, both in the disor-
and the autocorrelator, dered phase. In ensemble &(t=0) is uniformly distrib-

- - uted within the volume of a unit sphere centered at the
C0t=0t==A(1)=(&(r,0)- 4(r.1)), ©6) origin. ¢ at different spatial points are uncorrelated. In en-
where the angular brackets are averages over the randoggmble B,¢(t=0) is uniformly distributed on the surface of
initial conditions and space. At late times these correlatora unit sphere centered at the origin. at different spatial
should attain their scaling forms points are again uncorrelated. We consider these two initial
conditions to check if the late-time dynamics is insensitive to

C(r,)~F(r/L(1)) (7) " the choice of initial ensembléas long as they do not intro-
and duce any long-range correlations
We first report simulation results for ensemble A.
A(t)~L(t) ™M (8) Figure 1 is a scaling plot o(r,t) versusr/L(t) for

various values of the parametgr whereL(t) is extracted
The length scalé_(t), which is a measure of the distance from the first zero ofC(r,t). Note that the scaling function
between defects, may be evaluated either from the first zerfor g=0 is very different from those fog>0; further, the
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FIG. 2. log-log plot ofL(t). At g=0 (O) we find thatz=4

(line of slope 0.25 drawn at the bottom for comparisoAt g t
#0 [g=0.1 (*), 0.3 @), 0.5 (A)], zcrosses over from 4 to

2 (line of slope 0.5 drawn at the tap FIG. 3. log-log plot of A(t) vs t for g=0 (¢), 0.2

(+), 0.3 @). Solid line on top has the forna/t\'? where \
=2.19 andz=4 (corresponding to thg=0 fixed poin} while the
g>0 scaling functions do not seem to depend on the value dfne below has\=5.05 andz=2 (corresponding to the torque-
g. This suggests that the dynamics crosses over to a newiven fixed point.
“torque-driven” ZFP. This is also revealed in the values of
the dynamical exponertt In Fig. 2, a plot ofL(t) versust related. This is borne out by computing the spin-wave cor-
gives the expected value a4 wheng=0. Forg>0, we  rection to an approximate form &(r,t;g=0) [given in Eq.
see a distinct crossover from=4 whent<t,(g) to z=2  (29); more on this latdrto quadratic order in the spin-wave
whent>t.(g). The crossover timé,(g) decreases with in- amplitude[8].
creasingg. The same exponent and crossover are obtained The autocorrelation functiorA(t) is calculated forg
from the scaling behavior of the energy density =0, 0.2, and 0.3Fig. 3. The simulations have been done
To make sure that our results are not affected by finiteon a lattice of size 60and averaged over 10 initial configu-
size, we compute three relevant time scdlwwn in Table rations(we have to average over a large number of initial
—(1) t.(g), the crossover time from & to at> growth,  configurations for smoother datahe X exponent extracted
(2) ts(g), the time at which asymptotic scaling begins, andfrom the asymptotic decay &(t) clearly suggests a cross-
(3) ts, the time at which finite size effects become promi-over from\ =2.2 toA~5.05. The numerical determination
nent. It is clear from Table | that<t.<t;., as it should be of \ is subject to large errofd0,8] and is very sensitive to
if our data are to be free of finite size artifacts. A general ruldfinite size effects, and so we have to go to very late times and
of thumb is that finite size effects start becoming prominenthence large system sizes to obtain accurate results.
when the domain size gets to be of order 1/3 the system size, To make sure that we collect asymptotic data untainted by
and we see from Table | that, /N is comfortably less finite size, we compute two time scalg§able I)—(i)
than 1/3. tsit(g), the time beyond whichA(t) can be fitted with a
The last column in Table | showf,;,, the value of the power lawa(t+to) "M%, and(ii) ts, the time at which finite
scaling function evaluated at the first minimum as a functiorsize effects orA(t) become prominent. The crossover time
of g. It is easy to see Why,in(9)<fmin(g=0), since the t. was displayed in Table I.
precession of the spins about the local molecular field would To determinet;s we plot an effective exponent,=
cause spins from neighboring “domains” to be less anticor-—t(d/dt)[log;oA(t)] as a function of 1/ The derivative is

TABLE I. Time scales showing the absence of finite size effectsfort).

g tc(g) ts(g) tfs Lmax/N fmin
0 900 >7650 1/10 at=7650 —-0.14
0.1 3150 =7650 >7650 1/6 at=7650 —0.08
0.3 900 1350 >7650 1/4 at=7650 —0.06

0.5 450 900 4950 1/3.7 aE=4950 —0.06




1604 JAYAJIT DAS AND MADAN RAO PRE 62
TABLE Il. Absence of finite size effects fok(t). x ' ' ' T '
%
g tfit(g) tfs A 0.8 %
0.0 900 >9000 2.1997.5x10 3 Lé%
0.2 1500 5376 5.1006.1x10 3 o6-
0.3 900 5181 5.0182.3x10° 3

f(x)

0.4

calculated numerically witl$t= 15 (in units of the time dis-
cretization At). We see from Fig. 4 that, at late timés
>ts, Neff Crosses over to being a decreasing function of
time, clearly a finite size effect. This estimate tf is not ol
very sensitive to the choice aft, changing by 1%for g
=0.2) and 3.5%for g=0.3) asét changes by 5 units. Note
that finite size effects i\(t) appear earlier than i€(r,t).

It is seen from Table Il that;;<t:s, as it should if we are
to have an accurate determinationXaf The last column of
Table Il lists the value ofA as a function ofg. The data A
presented and the plot in Fig. 3 clearly support a crossover

from A=2.2 atg=0 to A=5.05 atg#0. The values ol ) ) )
satisfy the bound derived ifL0]. A simple scaling argument encourages us to think of such

We now present results of the Langevin simulation for@ crossover scenario. On restoring appropriate dimensions,
initial conditions taken from ensemble B. We find that thethe dynamical equation E¢4) can be rewritten as a conti-
value ofz the form of the scaling function§(x) (Fig. 5,  Nuity equation,
and the decay of the autocorrelation functiaft) (Fig. 6) -

0.2

L 1 L
15 2 25 3

X = r/L(t)

FIG. 5. Scaling functiorf(x) vs x for g=0.3 using ensembles
(O) and B (A).

are insensitive to the choice of initial conditions. dp(r.t)/ot=—V-j, 9
Since the initial condition B sets the magnitude of the
spins to itsT=0 equilibrium value, the crossover tintigis  \\here the “spin current” is
smaller than for ensemble A. For the same reason the domain
sizes computed using ensemble B are larger than that of A.
. _OF[4] O B
B. Crossover phenomenon Jo=—T VT% +F6a,8'y¢ﬁv b, (10

It is clear from the last section that although the
asymptotic dynamics is governed by the torque-driven fixe
point, the dynamics at earlier times:t. follows theg=0
behavior. This suggests that the dynamics for arbitgamay
be analyzed as a crossover from the 0 fixed point char-

cizrom a dimensional analysis where we replageby the
“velocity” dL/dt, we find

acterized by =4, A~2) to the torque-driven fixed point ! ' ' ' ' ' ' ' '
where =2, A=5). f.
.
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FIG. 6. log-log plot ofA(t) for g=0.3 using ensembles A )
and B (+). A power law a/t"? with A=5.05 is displayed for
comparison.

FIG. 4. Ags¢ vs 1t for g=0.0 (O), 0.2 (*), 0.3 (+). Finite
size effects set in wheNg¢; Starts becoming a decreasing function
of time. Forg=0 we do not see any finite size effectsNrwithin
our simulation times.
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dL o oMg
dt—FL3+Q o (11
whereM,, o, andI'"! are the equilibrium magnetization,
surface tension, and spin mobility, respectively. Beyond a
crossover time given bi(g) ~ (I'/MoQ)?~ 1/g?, simple di-
mension counting shows that the dynamics crosses over from
z=4 to z=2 in conformity with our numerical simulations.
The crossover physics is best highlighted by numerically
demonstrating crossover scaling of the domain &i¢eg)
and the correlation function€(r,t,g) and A(t,g). For in-
stance, Eq(11) suggests that the domain size obeys the scal-
ing form L(t,g)=t4s,(tg?) where the crossover function
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sm(X) is determined from the transcendental equation,

xY%s,(x) — In(1+x%s2) — 2x=0. (12
We shall now argué€and then confirm numericalijthat the
above scaling form holds in general. Scaling->r/b, t
—t/b* andg— g/bYs scales the domain size by

L(t,9)=b s(t/b* g/b9), (13
whereyy is the scaling dimension af. We chooseb such
thatt/b?*=1, which implies

L(t,g)=ts(g/t¥s'?). (14)
Setting g=0 gives L(t,g=0)=t?s(0), telling us thatz
=4. Thus the scaling form Eq14) is governed by they
=0 fixed point. We therefore need to evalugtgat thisg
=0 fixed point. We determing, by noting theg contribu-
tion to Eq.(4),

dé - I, ,
gr "9} FLPlI6p=gdx p~g/L" (19

FIG. 7. Scaling plot ofy=L(t,g)/t** vs x=tg? for g
=0.03 (O), 0.05 @), 0.07 (A), 0.09 (¢), and 0.10(*).
The solid line of slope 0.25 is the theoretical estimate of the
asymptotic form of the scaling function as-~ (see text

porated by constructing a nonlinear, analytic functigy)
of the physical fieldg, such that it reduces t@ in the limit
g—0. The simplest choice of such a function is

- g+cg?
= , 1
00)=" o (17
leading to a nonlinear scaling variable
x=[9(9)]*(t—to). (18)

The data plotted with respect to this nonlinear scaling vari-
able show a much better collap@&g. 8) whenc is chosen to
be around— 1.5 (in Figs. 8—10, the finite time shif, was

where the last relation is obtained by demanding local equi-

librium (Gibbs-Thomsohon the chemical potentigk. Thus
equating dimensions,[g]=[t !][L?]=[L ?"?]=[L"?],
leading toyy= —2. The crossover scaling form for the do-
main size can now be read out from E@4),
L(t,g)=t""s(g). (16)
The x— o asymptote o6(x) can be obtained by demanding y
that we recover the torque-driven fixed point behavior, which
forcess(x— )~ x4,

We will now check whether this crossover scaling form is
seen in our Langevin simulation. If the above proposal is
true, then the data should collapse onto the scaling curve
s(x) when plotted a4.(t,g)/t** versustg?. Figure 7 shows
the results of the numerical simulation—the data collapse is
not good away from the asymptotic regimes. To see a better
data collapse away from either fixed point, it is necessary to
include corrections to scaling.

Corrections to scaling come from two source@)-finite
time effects andii) nonlinear corrections to the scaling fields
[11]. Finite time corrections can be incorporated by introduc-

FIG. 8. Plot ofy=L(t,g)/(t—to)Y* vs X whenc~—1.5. Sym-

ing finite time shift factord—t—tg, which can be neglected bols as in Fig. 7. The poird on they axis represents the value of
in thet— <o limit. Nonlinear corrections to scaling are incor- y asx—0. Continuous line is the mean field estimatgx).



1606

JAYAJIT DAS AND MADAN RAO

p=0.50
*
08 ¢AA_M.AA+++*
[ 0=082
06F *
;
— “A.AA"’ +
2 B4
o Ll
+ 0.4M
o 150
O Pt
0.2F *
+ ¥
E&AMNA’AAJr
or n,ﬂmﬂ
02 1 1 1 1 1 1
0 20 40 60 80 100 120
~ ~2
x=tg

FIG. 9. C(r,t,g) vs X at p=0.50, 0.82, and 1.50 fog
=0.03 (©), 0.05 (¢), 0.07 @), 0.09 ), 0.1(+),

0.3 (*) showing data collapse far~—1.2.

taken to be 0). The simple mean-field estimstéx) plotted
for comparisorfEq. (12)] is exact only at the asymptotes.
We have seen in the last section that the equal-time cor-
relation functionC(r,t,g) is unaltered when scaled with the <t
domain sizel, and so we expect it to have the following P°!

scaling behavior:

C(r,t,g)="f(r/L,t/L%g/LY9),

(19

25 T
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FIG. 10. log-log plot of y=A(t,g)/t ™ vs X for g
=0.1 (¢), 0.2 (+), and 0.3 () showing data collapse far
~—1.1. The scaling function aysmptotes to a line of slape

=\o/4— /2= —1.95 asx—co.

and
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wherez is the dynamical exponent at tlig=0 fixed point
andyy is the scaling dimension of. L is the size of the
domain, given by Eq(16). This readily leads to a two vari-
able scaling fornj12],

C(r,t,g)—f(tim,tgz), (20)

with scaling variablep=r/t'* andx=tg?. Whenx=0 and
x—oo thenf(p,x)="fy(p) andf(p,x)="f1(p), respectively,
where fo(p),f1(p) are the asymptotic scaling functions at
g=0 andg#0. Again in terms of the nonlinear scaling vari-

ablesx andp=r/(t—tg)* we find a very good collapse of
the data forc~—1.2 (Fig. 9).

Similar arguments suggest that the autocorrelation func-
tion satisfies the scaling form

A(t,g) =t a(tg?), (21)

wherea(x=0)=a, is a constant, aniy~2.2 is the value of
the autocorrelation exponent g=0. As x—, the scaling
function a(x) should asymptote ta(x)~x*~*"2 where
N1~5.05 is the exponent at the torque-driven fixed point.
This expectation is borne out by the numerical simulation
(Fig. 10, where we have again used the nonlinear scaling

variablex for better collapse.

The above discussion clearly indicates that for tinhes
(9)~1/g?, the dynamics is affected by thg=0 fixed

nt, while fort>t.(g)~ 1/g?, it follows the torque-driven
fixed point. Our scaling analysis suggests the following
renormalization group flow diagram:

*

=0

Ml
I *
8

C. Failure of Mazenko closure scheme: Interaction
of defects with spin waves

We would like to know if the crossover phenomenon de-
scribed in the last section can be understood from certain
approximate theories of phase ordering of conserved vector
order parameters. In particular, could we use such theories to
calculate the crossover scaling functions and the correlation
functions at the torque-driven fixed point. The Gaussian clo-
sure scheme introduced by Mazer& has been considered
a very successful theory to compute scaling functions of con-
served vector order parameters, and it is to this we turn our
attention.

The method consists of trading the order parameter

<Z(r,t), which is singular at defect sites, for an everywhere
smooth fieldrﬁ(r,t), defined by a nonlinear transformation,

d(r,t)=a(m(r,t)). (22)

The choice for the nonlinear functiom is dictated by the
expectation that at late times the magnitudeiafaturates to

its equilibrium value almost everywhere except near the de-
fect cores. This suggests that the appropriate choice fisr

an equilibrium defect profile,



PRE 62 ORDERING DYNAMICS OF HEISENBERG SPINS WITH . .. 1607

1_,- - R the torque is irrelevant at late times. This result of the Gauss-
EVmo(m(r,t))=V’(a(m(r,t))), (23 ian closure scheme, is in direct contradiction to the results of
the last two sections.

- e e - ? '
whereV' (%)= — %+ (X- \)%. The auxiliary field now has a What has gone wrong? There are two possible sources of

natural interpretation as the position vector from the neareset\rrc_)r'(l) -[h_e Qaus_&an assumption for the pr_obabﬂny distri-
defect core. Implicit in this choice is that smooth configura-Pution ofmis invalid. We show below that while the Gauss-

tions such as spin waves relax fast and so decouple frod@n @ssumption leads to an internal inconsistency, it may be
defects at late times. The simplest nontrivial solution of Eq.fémedied by considering corrections to the Gaussian distri-

(23) is the hedgehog configuration, bution. This, however, does not solve the above contradic-
tion. (2) The order paramete} cannot be written in terms of
.. m(r,t) . the defect fieldn alone.
o(m(r,t))= (0| g(Im), (24 We will first question the Gaussian assumption, on the
' lines suggested by Yeunet al. [13] in the case of a con-
whereg(0)=0 andg(x)=1. served scalafising) order parameter. We will do this for the

Equation (4) can be used to derive an equation for thecaﬁ_ehwhergT?; theg#(l) ?nahf/sis I,OIIOWS Sig‘”z”y: df
correlation functiorC(12)=((r,t;)- ¢(r,,t,)). Substitut- © qua-ime correraton IUnCon may be derived from

_ - \ ) _ Egs.(28) and(26) and takes the form2]

ing for ¢ [EQgs.(22) and(24)] in the right hand side of the

resulting equation, we get 3y 1
B 2,5

C(r ,t) = E
. . e = where B(x,y) and F(a,b,c;z) are the Beta and hypergeo-
+9(a(Mm(2))-c(M(1))xVioc(m(1))). (25  metric functions, respectively, andis given in Eq.(27). We
may expand the hypergeometric function as a power series in

The Gaussian closure scheme assumes that each componerti4] and then take its Fourier transform,
of rﬁ(r,t) is an independent Gaussian field with zero mean at
all times. This implies that the joint probability distribution
P(12)= P(ﬁ(l),ﬁ(Z)) is a product of separate distributions
for each component and is given [/

2F 115 ,
Eyi!ia’y

(29
3C(12)=—VI[ViC(12) —(a(m(2))- V' (a(m(1))))]

S(k,t)zz,o dky- - dkgpy s

X[8p Y, (D Vi (D) - -+ Vi, (D

X S(k+kyt -+ - +Kapi )], (30)

1;[ Nexp{—

2ym(1)m,(2)
where 4 g 732 T(p+5/2)p!

1 (mi1) mi2)

_|._
2(1-9%) | So(1)  S(2)
where the spectral density, is the Fourier transform of
v(r,t) and the expansion coefficients

8 20
2

1 are strictly positive fopp=0. If Eq. (30) has to satisfy the
= > conservation laws(k=0,t)=0, it is clear thaty,(t) should
2m(1-7)S(1)S(2) be negativeat some values d€. This is inconsistent with the
definition Eq.(27), which implies y,(t)=0 for all k. This
definition is a consequence of the Gaussian approximation.
To determine the range of values kffor which vy, is
Co(12) . : X
y=y(12)= ————. (27)  hegative, we numerically evaluate the Fourier transform of
VSo(1)Sy(2) v(r,t) after inverting Eq.(29). This procedure is prone to
numerical errors because of statistical errors in our computed
The joint distribution has been written in terms of the secondC(r,t). For instance, a numerical integration pdr C(r,t)

: (26)

2

(31)

and

momentsSy(1)={(m,(1)?) andCy(12)=(m,(1)m,(2)). gives a nonzero value, whereas it should be identically zero
With this assumption, the right hand side of E25) sim-  because of the conservation law. This is reflected in large
plifies to errors iny(k,t) at smallk. We therefore adopt the following
procedure. We fit a functio€¢(x) to the equal-time corre-
dC(12) _v?|veci1+ Y 9C(12 lation functionC(r,t) and use this to extragt(k,t) from Eq.
gty (12) 25y(1) dy (29). The fitting function has been taken to be
- - g, > . 2
FotomE) emToman. 29 cit0="ors | 1+al o] [et-booL). (@

where the Laplacian is taken with respectrto With the
joint probability distribution given by Eq26), itis clear that  which is similar to the analytic form given in RdfL5]. Note
the last term in the above equation vanishes, implying thathat only b and L are independent fitting parametees;s
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0 ! R 8 4 FIG. 12. Scaling plot of the unnormalizeRi(x=my /L(t)) for
k/km g=0 at different times=900 (O), 3600 (1), and 6300 {\).

Solid line is a fit to Eq.(34).
FIG. 11. The spectral density(k,t) att=3600 becomes nega-
tive for O<k/k,,<0.5 and for 1.5k/k,<3.0 (inse}.

2
determined from the conditio8;(k=0)=0. This function P(X):go PHA(x)e"",
with L=1.5106-1.01x10" % and b=0.0202-2.14x 10 *
gives a very good fit taC(r,t) up to the fourth zero of the \wherex=m,(r,t)/ySy(r,t) andHy(x)=1, H;(X)=2x, and
function. We observgFig. 11) that the spectral density, H, . 1(X)=2xH,(X) — 2nH,_,(x). The dark line in Fig. 12
which should be a strictly positive function of its arguments,js an accurate fit to thg=0 data, withp,=1, p;=1.33
becomes negative fdk/ky<0.5[y(k,t) is peaked akn]  x1073+6.0x10°5, p,=0.2352-3.8x10° 5, ps=1.55
and in the range 15k/k,,<3.0. X10 4+1.5x10°° and p,=5.542<10 3+7.0x10 5.

Our demonstration suggests that a purely Gaussian theo®imilarly in Fig. 13, the dark line is an accurate fit to te
for the distribution ofm is internally inconsistent. This may =0.3 data with Po=1, p1=3.95x10 3+55%x10°°, p,
be remedied, however, by considering corrections to the=0.2899+1.3x10 °, p3=5.35x10 4+1.3x10°°, and
purely Gaussian distribution, as suggested by MazdBko p,=1.1913<10 ?+7.0x10 °. Indeed, the odd coefficients
for the scalar(Ising) order parameter. are zero to within numerical accuracy, indicating that the
In order to help us understand the nature of the correcdistribution is even. It is conceivable that such corrections
tions, let us first numerically evaluate the probability distri- would be able to salvage the inconsistency issue, since an
bution of m. We determinem by choosingg(|m|) in such a  additive term to the right hand side of EO) would not

way as to make Eq24) invertible. A convenient choice is allow us to assert thag, should be negative for some values
of k.

(34)

-

m
Vi1+|m|?
We now compute the asymptotic single point probability
densityP(m,(r,t)) on a 56 lattice averaged over 18 initial
configurations forg=0, 0.3, 0.4, and 0.5. The probability
density obeys a scaling form at late tim@sgs. 12 and 18
P(m,;,t)=P(m,/L(t)), where the length scaleL(t)

= J(m?)~t'2 Moreover, Fig. 14 shows that the scaled dis-

tribution of m is identical forg=0 andg#+ 0 (the joint prob-
ability distributions are, however, very differentt is clear
from Figs. 12—-14 that the asymptotic distributions show
marked deviations from a simple Gaussian. To highlight
these deviations, we plot the scaled g log;d P(my)1}
versus logy(né) (Fig. 19; a Gaussian distribution would

(33

d=o(m)=

Plm,/Lt)]

have given a straight line with slopel. m./ L(t)
Figures 12—14 suggest that the deviations from Gaussian !
can be computed by expandifi(m) in a Hermite polyno- FIG. 13. Scaling plot of the unnormalizeRi(x=m, /L(t)) for

mial basisH,, [a strategy advocated in R¢8] for the scalar g=0.3 at different times t=1350 (¢), 3600 (+), and
(Ising) dynamicsg, 5400 (@). Solid line is a fit to Eq(34).
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FIG. 16. Normalized joint probability distributioR(x,y) where
x=my(1), y=my(2) for g=0.3 att=2250 and|r,—r,|=43
(averaged over 18 initial configurations

direct demonstration of this is to compare€s;
=($(1)-[H(2)XV34(2)]) with the defect-only contribu-

Though the remedy suggested cures the inconsistendi®n Can=(m(1)-[M(2)xV5m(2)]) [wherem is computed
problem, it will still give a zero value to the torque contri- by inverting Eq.(33)].
bution in Eq.(28), as long as the probability distribution of ~ We find that forg=0 bothC3; andCsy, are zero within
each component of is even and independent. We have €T0r bars(Fig. 18. This is true even at very early times,
already demonstrated that the single point distribution igvhich implies that in the absence of the torque the spin
even: now we shall show that each Cartesian component J¥2ves decay very fast compared to the relaxation time scale

m is independently distributed.

We numerically calculat®(m;(1),m,(2)) [which we la-
bel P(x,y)] at equal times,;=t,=t and arbitrary separation,
say |r;—r,|=43 for g=0.3 (Fig. 16. To show that the

joint distribution is independent in each component, we plo

the differenceA (x,y) = P(x,y) — P(x)P(y) for g=0.3 (Fig.

of the defects. On the other hand, whg# 0, we find that
the two correlators behave very differently. Figure 19 clearly
shows that, even at late time€s,; is nonzero while the
defect-only contributiorCyy;, is zero within error bars. This
suggests the following decomposition in terms of defect

tfields (singular part and spin waves(smooth pait ¢

>

17) and find it to be zero within the accuracy of our numeri- =o(m) +u, wheng#0. Such a decomposition gives rise to

cal computation.

contributions toC3, reflecting the interaction between de-

We are thus forced to admit the second possibility,fects and spin waves.

namely, that the order parameté:r cannot be written in
terms of m alone. For in transforming the spir& exclu-
sively to m we have implicitly ignored spin waves. A most

25T

~10g, j-log,JP(m, /L))

L L
0.2 04

L
]

log,f(m, / L(1)?]

FIG. 15. Deviation ofP(x=m,/L) from Gaussian(straight
line) for g=0. Data have been collected at times
=900 (¢), 3600 (+), and 6300 (J).

We conclude this long meandering section by recounting
its salient results. Wheg+ 0, typical spin configurations at
late times consist of slowly moving defects and long-lived
spin waves which interact with each other. The asymptotic
spin distribution cannot be written in terms of the distribu-
tion of defects alone. Wheg=0, the spin waves decay

10° A(x ,Y)

FIG. 17. Plot of A(x,y) where x=my(1), y=m,(2) att

=2250 andr;—r,| =43 for g=0.3. The maximum magnitude of
A is of the order of errors iA(X,y).



1610

0.0008

0.0006 -

0.0004 -

0.0002 |-

-0.0002 -
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=|r,—r,| for g=0 are zero within the error bafaveraged over
five initial configurationg

JAYAJIT DAS AND MADAN RAO

PRE 62

We first demonstrate that the precession term is relevant
for the quench dynamics t6.. We will then calculate the
and\ exponents at this new fixed point. We will show,all
orders in perturbationthat\ is exactly equal to the spatial
dimensiond. This latter fact, a consequence of the conserva-
tion law (and indeed true for Model B dynamics jpanay
also be arrived at by the general arguments presented in Ref.
[5].

In the absence of the torque term, the nontrivial fixed
point is given by the Wilson-Fishe(WF) value, u*
=(8/11)m?e, where e=4—d. Power counting shows that
the scaling dimension of is d/2+1—z+ 5/2, where the
exponents take their WF values-4— 5 and = (5/242)¢>.

This implies that the torque is relevant at the WF fixed
point whend<6 [4].

We now have to determine this new torque-driven fixed
point and calculate the dynamical exponenind \. Both
these exponents can be obtained readily using general argu-
ments, which we briefly discuss. At the new fixed point it is
clear thatg does not get renormalized, which implies tlzat
=(d+2+ 5)/2. Thus a calculation of within perturbation

faster, leading to a decoupling of the spin waves and defect§ieory reduces to a calculation @f at this fixed point4].

at late times.

IV. ORDERING DYNAMICS AT T=T,

Likewise,\ can be obtained from the general arguments out-
lined in Ref.[5]. A crucial ingredient in this argumeitalid
only for quenches tdr.) is the demonstration tha$(k,t)
obeys a scaling form at=0, a feature that was proved in

We end this study with a brief discussion of the orderingRef.[7] to all orders in perturbation for model B dynamics.

dynamics Eq(1) of Heisenberg spins quenched to the criti- Here wedirectly calculate botrz and\ using diagrammatic
cal point. The critical dynamics of this modedalled model  perturbation theory, and show that=d to all orders in per-

J in this contextwas investigated some time ago by Ma andturbation.

Mazenko[4]. On the other hand, the dynamical renormaliza-  This is done within the Martin-Siggia-Rog®ISR) for-
tion group formalism for quench dynamics set up by Janssemalism[6]. For our problem, the MSR generating functional
et al, has been used to study models Af&7]. In this s
section we use the dynamical renormalization technique to
study the quench dynamics of mode|given by Eqg.(1) at

the critical poini. Although this section does not contain
anything new of a fundamental nature, it does compute ex-
ponents to all orders in perturbation.

2[h,h]= f D(Z)D(J»exp[—J[&Z]—Ho[&o]

+f:dtf dk(ﬁk'gk"'ﬁk'&k)} (39

0.0008

0.0006 with the MSR action written as

=S % ~ N SF b
J[¢,¢]:fo dtf dk|¢k-[at¢k+l“k2 5(?]

0.0004

-k

0.0002

r - N
+ f dkl(g?[ki—(k—knzmklxmkl)]

~

~TK2y- m} . (36)

-0.0002

In the expression for the generating functional, the initial
r distribution of the order parametéGaussian with the width

FIG. 19. y=Ca3(r)(00) andy=Cai(r) (*) at1=3600 angr 7o) enters the form ofHo=Jdk(70/2)[ $(0): b-(0)]

=|r,—r,| for g=0.3 are distinctly differen{averaged over five
initial configuration$. Cs4(r)(+), which has contributions from
defects alone, is zer@vithin error barg, whereasC;;(r), which in
addition involves spin-wave excitations, is nonzero.

[6].
Power counting reveals the presence of two different up-
per critical dimensions coming from the quartic term (

=4) and the cubic torque ternd{=6) in the action. This
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FIG. 20. Unperturbeda) response functioﬁ;ﬁ and(b) correla-
tion function CE, and(c) the two bare verticea andg. Wavy and
straight lines represent th?a((t) and J)k(t) fields, respectively(d)
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Primitively divergent dlagramEM, FM(I), andl’MM.

implies that we have to evaluate the fixed points and expo-

nents in a double power series expansior#4—d ande
=6-d [4].
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from the first term inJ on integrating by parts. The response
function is renormalized by

GR(1,00=2,Y%GE(1,0). (37)

The divergent contributions tGg could come from two
sources. Each term in the double perturbation series could
contain the primitively divergent subdiagrafi§?), T'®, or
I'®, which we have already accounted for by replacing
these by their renormalized counterparts. The other divergent
contribution could arise from the primitive divergences of
the one particle reducible vertex functidif?(k,t,0), de-
fined by G(t,0)=/G(t—t")T@(k,t’,0)dt’. The superfi-
cial divergence of the diagrams contributing &(t,0) is
D=V, (d—4)+(V4/2)(d—6)—2 [where V (V,) is the
number ofu(g) verticed. This is negative for altl, because
(@) whend>6, the only stable fixed point is the Gaussian
fixed point and sdD=—2, (b) when 4<d<6, u is irrel-
evant and soD=(Vy/2)(d—6)—2<0, and (c) when d
=<4, D is clearly negative. This implies thzﬁE(t,O) does
not get renormalized and,=1. Consequently) stays at its
mean-field value ofl for this conserved Heisenberg dynam-
ics both with and without the torque.

V. CONCLUSIONS

Traditional analysis of the asymptotic ordering dynamics

The unperturbed correlatiorC0(t;,t,) and response Of vector order parameters focuses on the dynamics of de-

GE(tl,tZ) functions and the bane andg vertices are shown

in Fig. 20. Again power counting shows that d&3

our perturbation expansion does not generate additionacj
terms other than those already contained,ine., the theory
is renormalizable. However, the perturbation theory givesa
rise to ultraviolet divergences which can be removed by
adding counterterms to the action. To remove thes

divergences, we introduce renormalization factésaper-

fects, and ignores the bulk excitations like spin waves, which
most often decay faster. In this work we have looked at a
very realistic model of Heisenberg spins with precessional
ynamics and have shown that the longer-lived spin waves
couple to the defects even at late times, driving the system to
new fixed point. This torque-driven fixed point, character-

Ized byz=2 andA~5.05, is accessed after a crossover time

‘?C~ 1/g® (whereg is the strength of the torqueCrossover

scaling forms describe physical quantities like domain size

scriptsR and B denote renormalized and bare quantities, re-ang equal/unequal-time correlation functions for all values of

spectively, $(0)=(ZZ,) Y%42(0), dR(t)=2"Y2¥(1),
(bE(t):’z_l/Z(zE(t)v UR:ZJlUB, ngzg—lgB’ FR:ZF1FB’
andrh=2_

70

‘75 . Since the dynamics obeys detailed balance,

g. In the absence of the torque, the spin waves decay faster
and so do not contribute to the asymptotic dynamics.

We also studied the effects of the torque on the dynamics
lowing a quench to the critical point;. The torque is

the renormalization factord andZ, are the same as in stat- relevant with exponentg=4—¢/2 and\=d (wheres=6
ics. Further, the conservation of the order parameter forces d). We found to all orders in perturbation theory that

ZZ=1 to all orders.
The new fixed point is given by the zeros of tBefunc-
tions of the theory. The8 functions, calculated from th&

factors, get contributions from all diagrams containing thet

Pt ; ; (2) (3)_ 4) _
primitively divergent dlagramsl“qw, Fdww’ and F¢>¢¢¢

(Fig. 20. The new fixed point, to one loop, is given gy

=+ /19273 + O(¢%?), u*=(8/11)m?e+ O(€?) (note that
u* does not change from its WF value to all loppsd the

dynamical exponert=4—z¢g/2+O(€?) [4].

The\ exponent can be computed from the response func-.
tion Gk(t,O)E@k(O)- é_ (1)) since this is equal to the au-

=d, which follows as a consequence of the conservation of
total magnetization.

We hope we have provided strong evidence that in order
0 go beyond the present approximate theories of the
asymptotic dynamics of conserved order parameters, we
need to systematically evaluate contributions coming from
the interaction of defects with spin waves.
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