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Ordering dynamics of Heisenberg spins with torque: Crossover, spin waves, and defects
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We study the effect of a torque induced by the local molecular field on the phase ordering dynamics of the
Heisenberg model when the total magnetization is conserved. The torque drives the zero-temperature ordering
dynamics to a new fixed point, characterized by exponentsz52 andl'5. This ‘‘torque-driven’’ fixed point
is approached at times such thatt@g2, whereg is the strength of the torque. All physical quantities, like the
domain sizeL(t) and the equal and unequal time correlation functions, obey a crossover scaling form over the
entire range ofg. An attempt to understand this crossover behavior from the approximate Gaussian closure
scheme fails completely, implying that the dynamics at late times cannot be understood from the dynamics of
defects alone. We provide convincing arguments that the spin configurations can be decomposed in terms of
defects and spin waves which interact with each other even at late times. In the absence of the torque term, the
spin waves decay faster, but even so we find that the Gaussian closure scheme is inconsistent. In the latter case
the inconsistency may be remedied by including corrections to a simple Gaussian distribution. For complete-
ness we include a discussion of the ordering dynamics atTc , where the torque is shown to be relevant, with
exponentsz542«/2 andl5d ~where«562d). We show to all orders in perturbation theory thatl5d as a
consequence of the conservation law.

PACS number~s!: 64.60.My, 64.60.Cn, 68.35.Fx
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I. INTRODUCTION

When a many-body system like a magnet or a binary fl
is quenched from its disordered high temperature phase t
ordered configuration at low temperatures, the slow ann
ing of ‘‘defects’’ @interfaces in binary fluids, vortices~hedge-
hogs! in XY ~Heisenberg! magnets# separating competing
domains makes the dynamics very slow. The system o
nizes itself into a self-similar spatial distribution of domai
characterized by a single diverging length scale which ty
cally grows algebraically in time,L(t);t1/z. This spatial dis-
tribution of domains is reflected in the scaling behavior
the equal-time correlation functionC(r ,t); f „r /L(t)…. The
autocorrelation functionA(t);L(t)2l is a measure of the
memory of the initial configurations. The exponentsz andl
and the scaling functionf (x) characterize the dynamical un
versality classes at the zero-temperature fixed point~ZFP!
@1#.

The above phenomenology suggests that the asymp
dynamics of the order parameter is dominated by the dyn
ics of its defects, and that bulk fluctuations~concentration
waves in a binary fluid, spin waves in a magnet! relax fast
and decouple from the dynamics of defects at late times. T
picture is at the heart of recent approximate theories suc
the Gaussian closure scheme@2,1#.

But is this picture accurate? In this paper we shall stu
the very realistic example of the conservative dynamics o
Heisenberg magnet driven by a torque induced by the lo
molecular field, and show that the longer-lived spin wav
couple to the defects even at late times, driving the system
a new fixed point. The new ‘‘torque-driven’’ fixed poin
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characterized byz52 andl'5.05, is accessed after a cros
over time tc;1/g2 ~whereg is the strength of the torque!.
Crossover scaling forms describe physical quantities at
times @like the domain sizeL(t,g) and correlation functions
C(r ,t,g) andA(t,g)] for all values ofg. In the absence of
the torque, the spin waves decay faster, but even so we
that the Gaussian closure scheme is internally inconsist
This inconsistency may, however, be rectified by includi
leading corrections to the Gaussian distribution@as suggested
by Mazenko@3# for the dynamics of the conserved scal
~Ising! order parameter#.

For completeness we also study the effects of includ
the torque in the dynamics following a quench to the critic
point Tc . As reported in earlier studies@4#, the torque is
relevant with exponentsz542«/2 andl5d ~where«56
2d). We show to all orders in perturbation theory thatl
5d, which follows as a consequence of the conservation
total magnetization@5–7#.

II. HEISENBERG MAGNET AND PRECESSIONAL
DYNAMICS

The order parameterfW ~whose components arefa with
a51,2,3) describing a coarse-grained spin density in
Heisenberg ferromagnet in three dimensions experienc
torque from the joint action of the external field~if present!
and the local molecular field. In response the spins prec
with a Larmor frequencyVL about the total magnetic field
Coupling to various faster degrees of freedom like latt
vibrations or electrons causes a dissipation in energy an
eventual relaxation toward equilibrium.

This dynamics follows from the generalized Langev
equation and the Poisson algebra@8#,
1601 ©2000 The American Physical Society
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]fa

]t
5G¹2

dF

dfa
1VLeabgfb

dF

dfg
1ha . ~1!

The noisehW arising from the heat bath has mean zero and
conservative,

^ha~x,t !hb~x8,t8!&522 kBTGdab¹2d~x2x8!d~ t2t8!.
~2!

The free-energy functionalF is taken to be of the Landau
Ginzburg form,

F@fW #5E d3xS s

2
~¹fW !22

r

2
~fW •fW !1

u

4
~fW •fW !2D . ~3!

The second term in Eq.~1! is clearly the torqueMW 3HW ,
where HW [2dF/dfW is the local molecular field. Both the
inertial term ~by virtue of F being rotationally invariant in
spin space! and the dissipation conserve the total spin, and
the full equations of motion~1! also conserves the total spin

Since the noise correlator is proportional to temperatu
we may drop it in our discussion of zero-temperatu
quenches. We then scale spacex, time t, and the order pa-
rameterfW as

x→A r

s
x, t→ Gr 2t

s
, fW →Au

r
fW

to obtain the equation of motion in dimensionless form,

]fW

]t
5¹2

„2¹2fW 2fW 1~fW •fW !fW …1g~fW 3¹2fW !. ~4!

The dimensionless parameterg5(VLs/G)(ru)21/2 is the ra-
tio of the precession frequency to the relaxation rate. Set
VL;107 Hz andG;106– 1010 Hz givesg in the range of
;1023 to 10.

III. PHASE ORDERING DYNAMICS AT TÄ0

Let us now prepare the system initially in the parama
netic phase and quench to zero temperature. We study
time evolution of the spin configurations as they evolve
cording to Eq.~4!. We calculate the equal time correlator,

C~r ,t ![^fW ~x,t !•fW ~x1r ,t !&, ~5!

and the autocorrelator,

C~0,t150,t25t ![A~ t !5^fW ~r ,0!•fW ~r ,t !&, ~6!

where the angular brackets are averages over the ran
initial conditions and space. At late times these correlat
should attain their scaling forms

C~r ,t !; f „r /L~ t !… ~7!

and

A~ t !;L~ t !2l. ~8!

The length scaleL(t), which is a measure of the distanc
between defects, may be evaluated either from the first z
is
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of C(r ,t) or from the scaling of the energy density,«

5(1/V)*dr ^@¹fW (r ,t)#2&;L(t)22, and grows with time as
L(t);t1/z. We compute the scaling functionf (x), the dy-
namical exponentz, and the autocorrelation exponentl by
simulating the Langevin equation~4!.

A. Langevin simulation

The Langevin simulation is performed by discretizing E
~4! on a simple cubic lattice~with sizeN ranging from 503 to
603) and adopting a Euler scheme for the derivatives@9#.
The space and time intervals have been chosen to benx
52.5 andnt50.2. With this choice of parameters, we ha
checked that the resulting coupled map does not lead to
instability. We have also checked that the results remain
changed on slight variations ofnx andnt. Throughout our
simulation we have used periodic boundary conditions.

The correlation functions Eqs.~5! and ~6! are calculated
for values ofg ranging from 0 to 1. Measured quantities a
averaged over 5–10 initial configurations. The initial co
figurations are taken from two ensembles, both in the dis
dered phase. In ensemble A,fW (t50) is uniformly distrib-
uted within the volume of a unit sphere centered at
origin. fW at different spatial points are uncorrelated. In e
semble B,fW (t50) is uniformly distributed on the surface o
a unit sphere centered at the origin.fW at different spatial
points are again uncorrelated. We consider these two in
conditions to check if the late-time dynamics is insensitive
the choice of initial ensemble~as long as they do not intro
duce any long-range correlations!.

We first report simulation results for ensemble A.
Figure 1 is a scaling plot ofC(r ,t) versusr /L(t) for

various values of the parameterg, whereL(t) is extracted
from the first zero ofC(r ,t). Note that the scaling function
for g50 is very different from those forg.0; further, the

FIG. 1. Scaling plot ofC(r ,t) for N5503. The scaling function
f (x) changes asg is varied from g50 (s) to gÞ0 @g
50.1 (*), 0.3 (n), 0.5 (h)#.
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g.0 scaling functions do not seem to depend on the valu
g. This suggests that the dynamics crosses over to a
‘‘torque-driven’’ ZFP. This is also revealed in the values
the dynamical exponentz. In Fig. 2, a plot ofL(t) versust
gives the expected value ofz54 wheng50. For g.0, we
see a distinct crossover fromz54 when t,tc(g) to z52
when t.tc(g). The crossover timetc(g) decreases with in-
creasingg. The samez exponent and crossover are obtain
from the scaling behavior of the energy density«.

To make sure that our results are not affected by fin
size, we compute three relevant time scales~shown in Table
I!—~1! tc(g), the crossover time from at1/4 to a t1/2 growth,
~2! ts(g), the time at which asymptotic scaling begins, a
~3! t f s , the time at which finite size effects become prom
nent. It is clear from Table I thattc,ts,t f s , as it should be
if our data are to be free of finite size artifacts. A general r
of thumb is that finite size effects start becoming promin
when the domain size gets to be of order 1/3 the system s
and we see from Table I thatLmax/N is comfortably less
than 1/3.

The last column in Table I showsf min , the value of the
scaling function evaluated at the first minimum as a funct
of g. It is easy to see whyf min(g), f min(g50), since the
precession of the spins about the local molecular field wo
cause spins from neighboring ‘‘domains’’ to be less antic

FIG. 2. log-log plot ofL(t). At g50 (s) we find thatz54
~line of slope 0.25 drawn at the bottom for comparison!. At g
Þ0 @g50.1 (*), 0.3 (h), 0.5 (n)#, z crosses over from 4 to
2 ~line of slope 0.5 drawn at the top!.
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related. This is borne out by computing the spin-wave c
rection to an approximate form ofC(r ,t;g50) @given in Eq.
~29!; more on this later# to quadratic order in the spin-wav
amplitude@8#.

The autocorrelation functionA(t) is calculated forg
50, 0.2, and 0.3~Fig. 3!. The simulations have been don
on a lattice of size 603 and averaged over 10 initial configu
rations ~we have to average over a large number of init
configurations for smoother data!. Thel exponent extracted
from the asymptotic decay ofA(t) clearly suggests a cross
over from l52.2 to l'5.05. The numerical determinatio
of l is subject to large errors@10,8# and is very sensitive to
finite size effects, and so we have to go to very late times
hence large system sizes to obtain accurate results.

To make sure that we collect asymptotic data untainted
finite size, we compute two time scales~Table II!—~i!
t f it(g), the time beyond whichA(t) can be fitted with a
power lawa(t1t0)2l/z, and~ii ! t f s , the time at which finite
size effects onA(t) become prominent. The crossover tim
tc was displayed in Table I.

To determinet f s we plot an effective exponentle f f5
2t(d/dt)@ log10A(t)# as a function of 1/t. The derivative is

FIG. 3. log-log plot of A(t) vs t for g50 (L), 0.2
(1), 0.3 (h). Solid line on top has the forma/tl/z where l
52.19 andz54 ~corresponding to theg50 fixed point! while the
one below hasl55.05 andz52 ~corresponding to the torque
driven fixed point!.
TABLE I. Time scales showing the absence of finite size effects forc(r ,t).

g tc(g) ts(g) t f s Lmax/N fmin

0 900 .7650 1/10 att57650 20.14
0.1 3150 >7650 .7650 1/6 att57650 20.08
0.3 900 1350 .7650 1/4 att57650 20.06
0.5 450 900 4950 1/3.7 att54950 20.06
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1604 PRE 62JAYAJIT DAS AND MADAN RAO
calculated numerically withdt515 ~in units of the time dis-
cretization Dt). We see from Fig. 4 that, at late timest
.tfs, le f f crosses over to being a decreasing function
time, clearly a finite size effect. This estimate oft f s is not
very sensitive to the choice ofdt, changing by 1%~for g
50.2) and 3.5%~for g50.3) asdt changes by 5 units. Note
that finite size effects inA(t) appear earlier than inC(r ,t).

It is seen from Table II thatt f it,t f s , as it should if we are
to have an accurate determination ofl. The last column of
Table II lists the value ofl as a function ofg. The data
presented and the plot in Fig. 3 clearly support a crosso
from l52.2 at g50 to l55.05 atgÞ0. The values ofl
satisfy the bound derived in@10#.

We now present results of the Langevin simulation
initial conditions taken from ensemble B. We find that t
value of z, the form of the scaling functionsf (x) ~Fig. 5!,
and the decay of the autocorrelation functionA(t) ~Fig. 6!
are insensitive to the choice of initial conditions.

Since the initial condition B sets the magnitude of t
spins to itsT50 equilibrium value, the crossover timetc is
smaller than for ensemble A. For the same reason the dom
sizes computed using ensemble B are larger than that o

B. Crossover phenomenon

It is clear from the last section that although t
asymptotic dynamics is governed by the torque-driven fix
point, the dynamics at earlier timest,tc follows the g50
behavior. This suggests that the dynamics for arbitraryg may
be analyzed as a crossover from theg50 fixed point char-
acterized by (z54, l'2) to the torque-driven fixed poin
where (z52, l'5).

TABLE II. Absence of finite size effects forA(t).

g tf it(g) t f s l

0.0 900 .9000 2.19967.531023

0.2 1500 5376 5.10066.131023

0.3 900 5181 5.01062.331023

FIG. 4. le f f vs 1/t for g50.0 (s), 0.2 (*), 0.3 (1). Finite
size effects set in whenle f f starts becoming a decreasing functio
of time. Forg50 we do not see any finite size effects inl within
our simulation times.
f

er

r

in
.

d

A simple scaling argument encourages us to think of s
a crossover scenario. On restoring appropriate dimensi
the dynamical equation Eq.~4! can be rewritten as a conti
nuity equation,

]fW „r ,t)/]t52¹W • jW, ~9!

where the ‘‘spin current’’ is

jWa52GS ¹W
dF@fW #

dfa
1

V

G
eabgfb¹W fgD . ~10!

From a dimensional analysis where we replacej a by the
‘‘velocity’’ dL/dt, we find

FIG. 5. Scaling functionf (x) vs x for g50.3 using ensembles
A ( s) and B (n).

FIG. 6. log-log plot ofA(t) for g50.3 using ensembles A (L)
and B (1). A power law a/tl/z with l55.05 is displayed for
comparison.
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dL

dt
5G

s

L3
1V

sM0

L
, ~11!

whereM0 , s, andG21 are the equilibrium magnetization
surface tension, and spin mobility, respectively. Beyond
crossover time given bytc(g);(G/M0V)2;1/g2, simple di-
mension counting shows that the dynamics crosses over
z54 to z52 in conformity with our numerical simulations

The crossover physics is best highlighted by numerica
demonstrating crossover scaling of the domain sizeL(t,g)
and the correlation functionsC(r ,t,g) and A(t,g). For in-
stance, Eq.~11! suggests that the domain size obeys the s
ing form L(t,g)5t1/4sm(tg2) where the crossover functio
sm(x) is determined from the transcendental equation,

x1/2sm~x!2 ln~11x1/2sm
2 !22x50. ~12!

We shall now argue~and then confirm numerically! that the
above scaling form holds in general. Scalingr→r /b, t
→t/bz andg→g/byg scales the domain size by

L~ t,g!5b s~ t/bz,g/byg!, ~13!

whereyg is the scaling dimension ofg. We chooseb such
that t/bz51, which implies

L~ t,g!5t1/zs~g/tyg /z!. ~14!

Setting g50 gives L(t,g50)5t1/zs(0), telling us thatz
54. Thus the scaling form Eq.~14! is governed by theg
50 fixed point. We therefore need to evaluateyg at this g
50 fixed point. We determineyg by noting theg contribu-
tion to Eq.~4!,

dfW

dt
;gfW 3dF@fW #/dfW 5gfW 3mW ;g/L2, ~15!

where the last relation is obtained by demanding local eq
librium ~Gibbs-Thomson! on the chemical potentialmW . Thus
equating dimensions,@g#5@ t21#@L2#5@L2z12#5@L22#,
leading toyg522. The crossover scaling form for the do
main size can now be read out from Eq.~14!,

L~ t,g!5t1/4s~g2t !. ~16!

Thex→` asymptote ofs(x) can be obtained by demandin
that we recover the torque-driven fixed point behavior, wh
forcess(x→`);x1/4.

We will now check whether this crossover scaling form
seen in our Langevin simulation. If the above proposa
true, then the data should collapse onto the scaling cu
s(x) when plotted asL(t,g)/t1/4 versustg2. Figure 7 shows
the results of the numerical simulation—the data collaps
not good away from the asymptotic regimes. To see a be
data collapse away from either fixed point, it is necessar
include corrections to scaling.

Corrections to scaling come from two sources—~i! finite
time effects and~ii ! nonlinear corrections to the scaling field
@11#. Finite time corrections can be incorporated by introdu
ing finite time shift factorst→t2t0, which can be neglected
in the t→` limit. Nonlinear corrections to scaling are inco
a
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porated by constructing a nonlinear, analytic functiong̃(g)
of the physical fieldsg, such that it reduces tog in the limit
g→0. The simplest choice of such a function is

g̃~g!5
g1cg2

11cg2
, ~17!

leading to a nonlinear scaling variable

x̃5@ g̃~g!#2~ t2t0!. ~18!

The data plotted with respect to this nonlinear scaling va
able show a much better collapse~Fig. 8! whenc is chosen to
be around21.5 ~in Figs. 8–10, the finite time shiftt0 was

FIG. 7. Scaling plot of y5L(t,g)/t1/4 vs x5tg2 for g
50.03 (s), 0.05 (h), 0.07 (n), 0.09 (L), and 0.10 (*).
The solid line of slope 0.25 is the theoretical estimate of
asymptotic form of the scaling function asx→` ~see text!.

FIG. 8. Plot ofy5L(t,g)/(t2t0)1/4 vs x̃ whenc'21.5. Sym-
bols as in Fig. 7. The points on they axis represents the value o

y as x̃→0. Continuous line is the mean field estimatesm(x).
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1606 PRE 62JAYAJIT DAS AND MADAN RAO
taken to be 0). The simple mean-field estimatesm( x̃) plotted
for comparison@Eq. ~12!# is exact only at the asymptotes.

We have seen in the last section that the equal-time
relation functionC(r ,t,g) is unaltered when scaled with th
domain sizeL, and so we expect it to have the followin
scaling behavior:

C~r ,t,g!5 f ~r /L,t/Lz,g/Lyg!, ~19!

FIG. 9. C(r ,t,g) vs x̃ at r̃50.50, 0.82, and 1.50 forg
50.03 (s), 0.05 (L), 0.07 (h), 0.09 (n), 0.1(1), and
0.3 (*) showing data collapse forc'21.2.

FIG. 10. log-log plot of y5A(t,g̃)/t2l0/4 vs x̃ for g
50.1 (L), 0.2 (1), and 0.3 (h) showing data collapse forc
'21.1. The scaling function aysmptotes to a line of slopea

[l0/42lT/2521.95 asx̃→`.
r-

wherez is the dynamical exponent at theg50 fixed point
and yg is the scaling dimension ofg. L is the size of the
domain, given by Eq.~16!. This readily leads to a two vari
able scaling form@12#,

C~r ,t,g!5 f S r

t1/4
,tg2D , ~20!

with scaling variablesr5r /t1/4 andx5tg2. Whenx50 and
x→` then f (r,x)5 f 0(r) and f (r,x)5 f T(r), respectively,
where f 0(r), f T(r) are the asymptotic scaling functions
g50 andgÞ0. Again in terms of the nonlinear scaling var
ablesx̃ and r̃5r /(t2t0)1/4, we find a very good collapse o
the data forc'21.2 ~Fig. 9!.

Similar arguments suggest that the autocorrelation fu
tion satisfies the scaling form

A~ t,g!5t2l0/4a~ tg2!, ~21!

wherea(x50)5a0 is a constant, andl0'2.2 is the value of
the autocorrelation exponent atg50. As x→`, the scaling
function a(x) should asymptote toa(x);xl0/42lT/2, where
lT'5.05 is the exponent at the torque-driven fixed poi
This expectation is borne out by the numerical simulat
~Fig. 10!, where we have again used the nonlinear scal
variablex̃ for better collapse.

The above discussion clearly indicates that for timet
!tc(g);1/g2, the dynamics is affected by theg50 fixed
point, while for t@tc(g);1/g2, it follows the torque-driven
fixed point. Our scaling analysis suggests the followi
renormalization group flow diagram:

C. Failure of Mazenko closure scheme: Interaction
of defects with spin waves

We would like to know if the crossover phenomenon d
scribed in the last section can be understood from cer
approximate theories of phase ordering of conserved ve
order parameters. In particular, could we use such theorie
calculate the crossover scaling functions and the correla
functions at the torque-driven fixed point. The Gaussian c
sure scheme introduced by Mazenko@2# has been considere
a very successful theory to compute scaling functions of c
served vector order parameters, and it is to this we turn
attention.

The method consists of trading the order parame
fW (r ,t), which is singular at defect sites, for an everywhe
smooth fieldmW (r ,t), defined by a nonlinear transformation

fW ~r ,t !5sW „mW ~r ,t !…. ~22!

The choice for the nonlinear functionsW is dictated by the
expectation that at late times the magnitude offW saturates to
its equilibrium value almost everywhere except near the
fect cores. This suggests that the appropriate choice forsW is
an equilibrium defect profile,
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1

2
¹m

2 sW „mW ~r ,t !…5V8~sW „mW ~r ,t !…!, ~23!

whereV8(xW )[2xW1(xW•xW )xW . The auxiliary fieldmW now has a
natural interpretation as the position vector from the nea
defect core. Implicit in this choice is that smooth configu
tions such as spin waves relax fast and so decouple f
defects at late times. The simplest nontrivial solution of E
~23! is the hedgehog configuration,

sW „mW ~r ,t !…5
mW ~r ,t !

umW ~r ,t !u
g~ umW u!, ~24!

whereg(0)50 andg(`)51.
Equation ~4! can be used to derive an equation for t

correlation functionC(12)[^fW (r1 ,t1)•fW (r2 ,t2)&. Substitut-
ing for fW @Eqs. ~22! and ~24!# in the right hand side of the
resulting equation, we get

] tC~12!52¹1
2@¹1

2C~12!2^sW ~mW ~2!!•V8~sW „mW ~1!…!&#

1g^sW „mW ~2!…•sW „mW ~1!…3¹1
2sW „mW ~1!…&. ~25!

The Gaussian closure scheme assumes that each comp
of mW (r ,t) is an independent Gaussian field with zero mean
all times. This implies that the joint probability distributio
P(12)[P„mW (1),mW (2)… is a product of separate distribution
for each component and is given by@1#

)
a

N expF2
1

2~12g2!
S ma

2~1!

S0~1!
1

ma
2~2!

S0~2!

2
2gma~1!ma~2!

AS0~1!S0~2!
D G , ~26!

where

N5
1

2pA~12g2!S0~1!S0~2!

and

g[g~12!5
C0~12!

AS0~1!S0~2!
. ~27!

The joint distribution has been written in terms of the seco
momentsS0(1)5^ma(1)2& andC0(12)5^ma(1)ma(2)&.

With this assumption, the right hand side of Eq.~25! sim-
plifies to

]C~12!

]t1
52¹2S ¹2C~12!1

g

2S0~1!

]C~12!

]g D
1g^sW „mW ~2!…•sW „mW ~1!…3¹2sW „mW ~1!…&, ~28!

where the Laplacian is taken with respect tor1. With the
joint probability distribution given by Eq.~26!, it is clear that
the last term in the above equation vanishes, implying t
st
-
m
.

ent
t

d

at

the torque is irrelevant at late times. This result of the Gau
ian closure scheme, is in direct contradiction to the results
the last two sections.

What has gone wrong? There are two possible source
error.~1! The Gaussian assumption for the probability dist
bution ofmW is invalid. We show below that while the Gaus
ian assumption leads to an internal inconsistency, it may
remedied by considering corrections to the Gaussian di
bution. This, however, does not solve the above contra
tion. ~2! The order parameterfW cannot be written in terms o
the defect fieldmW alone.

We will first question the Gaussian assumption, on
lines suggested by Yeunget al. @13# in the case of a con-
served scalar~Ising! order parameter. We will do this for th
case wheng50; thegÞ0 analysis follows similarly.

The equal-time correlation function may be derived fro
Eqs.~28! and ~26! and takes the form@2#

C~r ,t !5
3g

2p FBS 2,
1

2D G2

FS 1

2
,
1

2
,
5

2
;g2D ~29!

whereB(x,y) and F(a,b,c;z) are the Beta and hypergeo
metric functions, respectively, andg is given in Eq.~27!. We
may expand the hypergeometric function as a power serie
g @14# and then take its Fourier transform,

S~k,t !5 (
p50

` E dk1•••dk2p11

3@apgk1
~ t !gk2

~ t !•••gk2p11
~ t !

3d~k1k11•••1k2p11!#, ~30!

where the spectral densitygk is the Fourier transform of
g(r ,t) and the expansion coefficients

ap5
9

8p3/2

@G~p11/2!#2

G~p15/2!p! FBS 2,
1

2D G2

~31!

are strictly positive forp>0. If Eq. ~30! has to satisfy the
conservation lawS(k50,t)50, it is clear thatgk(t) should
benegativeat some values ofk. This is inconsistent with the
definition Eq.~27!, which impliesgk(t)>0 for all k. This
definition is a consequence of the Gaussian approximati

To determine the range of values ofk for which gk is
negative, we numerically evaluate the Fourier transform
g(r ,t) after inverting Eq.~29!. This procedure is prone to
numerical errors because of statistical errors in our compu
C(r ,t). For instance, a numerical integration of*drC(r ,t)
gives a nonzero value, whereas it should be identically z
because of the conservation law. This is reflected in la
errors ing(k,t) at smallk. We therefore adopt the following
procedure. We fit a functionCf(x) to the equal-time corre-
lation functionC(r ,t) and use this to extractg(k,t) from Eq.
~29!. The fitting function has been taken to be

Cf~x!5
sin~x/L !

~x/L ! F11aS x

L D 2Gexp@2b~x/L !2#, ~32!

which is similar to the analytic form given in Ref.@15#. Note
that only b and L are independent fitting parameters,a is
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determined from the conditionSf(k50)50. This function
with L51.510661.0131024 and b50.020262.1431024

gives a very good fit toC(r ,t) up to the fourth zero of the
function. We observe~Fig. 11! that the spectral density
which should be a strictly positive function of its argumen
becomes negative fork/km,0.5 @g(k,t) is peaked atkm]
and in the range 1.5,k/km,3.0.

Our demonstration suggests that a purely Gaussian th
for the distribution ofmW is internally inconsistent. This ma
be remedied, however, by considering corrections to
purely Gaussian distribution, as suggested by Mazenko@3#
for the scalar~Ising! order parameter.

In order to help us understand the nature of the corr
tions, let us first numerically evaluate the probability dist
bution of mW . We determinemW by choosingg(umW u) in such a
way as to make Eq.~24! invertible. A convenient choice is

fW 5sW ~mW !5
mW

A11umW u2
. ~33!

We now compute the asymptotic single point probabil
densityP„m1(r ,t)… on a 503 lattice averaged over 18 initia
configurations forg50, 0.3, 0.4, and 0.5. The probabilit
density obeys a scaling form at late times~Figs. 12 and 13!,
P(m1 ,t)5P„m1 /L(t)…, where the length scaleL(t)
5A^m1

2&;t1/z. Moreover, Fig. 14 shows that the scaled d

tribution of mW is identical forg50 andgÞ0 ~the joint prob-
ability distributions are, however, very different!. It is clear
from Figs. 12–14 that the asymptotic distributions sh
marked deviations from a simple Gaussian. To highlig
these deviations, we plot the scaled log10$2log10@P(m1)#%
versus log10(m1

2) ~Fig. 15!; a Gaussian distribution would
have given a straight line with slope21.

Figures 12–14 suggest that the deviations from Gaus
can be computed by expandingP(m) in a Hermite polyno-
mial basisHn @a strategy advocated in Ref.@3# for the scalar
~Ising! dynamics#,

FIG. 11. The spectral densityg(k,t) at t53600 becomes nega
tive for 0<k/km,0.5 and for 1.5,k/km,3.0 ~inset!.
,
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P~x!5 (
n50

`

pnHn~x!e2x2
, ~34!

wherex5m1(r ,t)/AS0(r ,t) andH0(x)51, H1(x)52x, and
Hn11(x)52xHn(x)22nHn21(x). The dark line in Fig. 12
is an accurate fit to theg50 data, withp051, p151.33
3102366.031025, p250.235263.831025, p351.55
3102461.531025, and p455.5423102367.031026.
Similarly in Fig. 13, the dark line is an accurate fit to theg
50.3 data with p051, p153.953102365.531025, p2
50.289961.331025, p355.353102461.331025, and
p451.19133102267.031026. Indeed, the odd coefficient
are zero to within numerical accuracy, indicating that t
distribution is even. It is conceivable that such correctio
would be able to salvage the inconsistency issue, since
additive term to the right hand side of Eq.~30! would not
allow us to assert thatgk should be negative for some value
of k.

FIG. 12. Scaling plot of the unnormalizedP„x5m1 /L(t)… for
g50 at different timest5900 (s), 3600 (h), and 6300 (n).
Solid line is a fit to Eq.~34!.

FIG. 13. Scaling plot of the unnormalizedP„x5m1 /L(t)… for
g50.3 at different times t51350 (L), 3600 (1), and
5400 (h). Solid line is a fit to Eq.~34!.
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Though the remedy suggested cures the inconsiste
problem, it will still give a zero value to the torque contr
bution in Eq.~28!, as long as the probability distribution o
each component ofmW is even and independent. We ha
already demonstrated that the single point distribution
even; now we shall show that each Cartesian componen
mW is independently distributed.

We numerically calculateP„m1(1),m2(2)… @which we la-
bel P(x,y)] at equal timest15t25t and arbitrary separation
say ur12r2u54A3 for g50.3 ~Fig. 16!. To show that the
joint distribution is independent in each component, we p
the differenceD(x,y)5P(x,y)2P(x)P(y) for g50.3 ~Fig.
17! and find it to be zero within the accuracy of our nume
cal computation.

We are thus forced to admit the second possibil
namely, that the order parameterfW cannot be written in
terms of mW alone. For in transforming the spinsfW exclu-
sively to mW we have implicitly ignored spin waves. A mos

FIG. 14. Scaling plot of the unnormalizedP„x5m1 /L(t,g)… for
g50 (L) andg50.3 (1) at t54500 showing that the distribu
tions are identical within error bars.

FIG. 15. Deviation ofP(x5m1 /L) from Gaussian~straight
line! for g50. Data have been collected at timest
5900 (L), 3600 (1), and 6300 (h).
cy

s
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t
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direct demonstration of this is to compareC3fW

5^fW (1)•@fW (2)3¹2
2fW (2)#& with the defect-only contribu-

tion C3m̂5^m̂(1)•@m̂(2)3¹2
2m̂(2)#& @wheremW is computed

by inverting Eq.~33!#.
We find that forg50 bothC3fW andC3m̂ are zero within

error bars~Fig. 18!. This is true even at very early times
which implies that in the absence of the torque the s
waves decay very fast compared to the relaxation time s
of the defects. On the other hand, whengÞ0, we find that
the two correlators behave very differently. Figure 19 clea
shows that, even at late times,C3fW is nonzero while the
defect-only contributionC3m̂ is zero within error bars. This
suggests the following decomposition in terms of def
fields ~singular part! and spin waves~smooth part!: fW

5sW (mW )1uW , whengÞ0. Such a decomposition gives rise
contributions toC3fW reflecting the interaction between de
fects and spin waves.

We conclude this long meandering section by recount
its salient results. WhengÞ0, typical spin configurations a
late times consist of slowly moving defects and long-liv
spin waves which interact with each other. The asympto
spin distribution cannot be written in terms of the distrib
tion of defects alone. Wheng50, the spin waves deca

FIG. 16. Normalized joint probability distributionP(x,y) where
x5m1(1), y5m2(2) for g50.3 at t52250 andur12r2u54A3
~averaged over 18 initial configurations!.

FIG. 17. Plot of D(x,y) where x5m1(1), y5m2(2) at t
52250 andur12r2u54A3 for g50.3. The maximum magnitude o
D is of the order of errors inD(x,y).
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faster, leading to a decoupling of the spin waves and def
at late times.

IV. ORDERING DYNAMICS AT TÄTc

We end this study with a brief discussion of the orderi
dynamics Eq.~1! of Heisenberg spins quenched to the cr
cal point. The critical dynamics of this model~called model
J in this context! was investigated some time ago by Ma a
Mazenko@4#. On the other hand, the dynamical renormaliz
tion group formalism for quench dynamics set up by Jans
et al., has been used to study models A–C@6,7#. In this
section we use the dynamical renormalization technique
study the quench dynamics of model J@given by Eq.~1! at
the critical point#. Although this section does not conta
anything new of a fundamental nature, it does compute
ponents to all orders in perturbation.

FIG. 18. y5C3fW (r )(h) and y5C3m̂(r )(*) at t53600 andr
5ur12r2u for g50 are zero within the error bars~averaged over
five initial configurations!.

FIG. 19. y5C3fW (r )(h) andy5C3m̂(r ) (*) at t53600 andr
5ur12r2u for g50.3 are distinctly different~averaged over five
initial configurations!. C3m̂(r )(1), which has contributions from
defects alone, is zero~within error bars!, whereasC3fW (r ), which in
addition involves spin-wave excitations, is nonzero.
ts
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to
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We first demonstrate that the precession term is relev
for the quench dynamics toTc . We will then calculate thez
andl exponents at this new fixed point. We will show,to all
orders in perturbation, that l is exactly equal to the spatia
dimensiond. This latter fact, a consequence of the conser
tion law ~and indeed true for Model B dynamics too!, may
also be arrived at by the general arguments presented in
@5#.

In the absence of the torque term, the nontrivial fix
point is given by the Wilson-Fisher~WF! value, u*
5(8/11)p2e, where e542d. Power counting shows tha
the scaling dimension ofg is d/2112z1h/2, where the
exponents take their WF valuesz542h andh5(5/242)e2.
This implies that the torqueg is relevant at the WF fixed
point whend,6 @4#.

We now have to determine this new torque-driven fix
point and calculate the dynamical exponentsz and l. Both
these exponents can be obtained readily using general a
ments, which we briefly discuss. At the new fixed point it
clear thatg does not get renormalized, which implies thatz
5(d121h)/2. Thus a calculation ofz within perturbation
theory reduces to a calculation ofh at this fixed point@4#.
Likewise,l can be obtained from the general arguments o
lined in Ref.@5#. A crucial ingredient in this argument~valid
only for quenches toTc) is the demonstration thatS(k,t)
obeys a scaling form atk50, a feature that was proved i
Ref. @7# to all orders in perturbation for model B dynamic
Here wedirectly calculate bothz andl using diagrammatic
perturbation theory, and show thatl5d to all orders in per-
turbation.

This is done within the Martin-Siggia-Rose~MSR! for-
malism@6#. For our problem, the MSR generating function
is

Z@hW ,h̃W #5E D~f̃W !D~fW !expF2J@fW ,f̃W #2H0@fW 0#

1E
0

`

dtE dk~ h̃W k•f̃W 2k1hW k•fW 2k!G ~35!

with the MSR action written as

J@fW ,f̃W #5E
0

`

dtE dkH f̃W k•F ] tfW k1Gk2
dF@fW #

dfW 2k

1E dk1S gG

2
@k1

22~k2k1!2#fW k1
3fW k2k1D G

2Gk2f̃W k•f̃W 2kJ . ~36!

In the expression for the generating functional, the init
distribution of the order parameter~Gaussian with the width
t0

21) enters the form ofH05*dk(t0/2)@fW k(0)•fW 2k(0)#
@6#.

Power counting reveals the presence of two different
per critical dimensions coming from the quartic term (dc

u

54) and the cubic torque term (dc
g56) in the actionJ. This
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implies that we have to evaluate the fixed points and ex
nents in a double power series expansion ine542d and«
562d @4#.

The unperturbed correlationCk
0(t1 ,t2) and response

Gk
0(t1 ,t2) functions and the bareu andg vertices are shown

in Fig. 20. Again power counting shows that atd53
our perturbation expansion does not generate additio
terms other than those already contained inJ, i.e., the theory
is renormalizable. However, the perturbation theory giv
rise to ultraviolet divergences which can be removed
adding counterterms to the action. To remove th
divergences, we introduce renormalization factors~super-
scriptsR andB denote renormalized and bare quantities,

spectively!, f̃W k
R(0)5(Z̃Z0)21/2f̃W k

B(0), fW k
R(t)5Z21/2fW k

B(t),

f̃W k
R(t)5Z̃21/2f̃W k

B(t), uR5Zu
21uB, gR5Zg

21gB, GR5ZG
21GB,

andt0
R5Zt0

21t0
B . Since the dynamics obeys detailed balan

the renormalization factorsZ andZu are the same as in sta
ics. Further, the conservation of the order parameter fo

ZZ̃51 to all orders.
The new fixed point is given by the zeros of theb func-

tions of the theory. Theb functions, calculated from theZ
factors, get contributions from all diagrams containing t
primitively divergent diagramsGff̃

(2) , Gfff̃
(3) , and Gffff̃

(4)

~Fig. 20!. The new fixed point, to one loop, is given byg*
56A192p3«1O(«3/2), u* 5(8/11)p2e1O(e2) ~note that
u* does not change from its WF value to all loops! and the
dynamical exponentz542«/21O(e2) @4#.

Thel exponent can be computed from the response fu

tion Gk(t,0)[^f̃W k(0)•fW 2k(t)& since this is equal to the au
tocorrelation functiont0

21^fW k(t)•fW 2k(0)&, as can be seen

FIG. 20. Unperturbed~a! response functionGk
0 and~b! correla-

tion functionCk
0 , and~c! the two bare verticesu andg. Wavy and

straight lines represent thef̃W k(t) andfW k(t) fields, respectively.~d!

Primitively divergent diagramsGff̃
(2) , Gfff̃

(3) , andGffff̃
(4) .
-

al

s
y
e
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,

es
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c-

from the first term inJ on integrating by parts. The respons
function is renormalized by

Gk
R~ t,0!5Z0

21/2Gk
B~ t,0!. ~37!

The divergent contributions toGB could come from two
sources. Each term in the double perturbation series co
contain the primitively divergent subdiagramsG (2), G (3), or
G (4), which we have already accounted for by replaci
these by their renormalized counterparts. The other diverg
contribution could arise from the primitive divergences
the one particle reducible vertex functionG (2)(k,t,0), de-
fined by Gk(t,0)[*Gk(t2t8)G (2)(k,t8,0)dt8. The superfi-
cial divergence of the diagrams contributing toGk(t,0) is
D5Vu(d24)1(Vg/2)(d26)22 @where Vu(Vg) is the
number ofu(g) vertices#. This is negative for alld, because
~a! when d.6, the only stable fixed point is the Gaussia
fixed point and soD522, ~b! when 4,d<6, u is irrel-
evant and soD5(Vg/2)(d26)22,0, and ~c! when d
<4, D is clearly negative. This implies thatGk

B(t,0) does
not get renormalized andZ051. Consequently,l stays at its
mean-field value ofd for this conserved Heisenberg dynam
ics both with and without the torque.

V. CONCLUSIONS

Traditional analysis of the asymptotic ordering dynam
of vector order parameters focuses on the dynamics of
fects, and ignores the bulk excitations like spin waves, wh
most often decay faster. In this work we have looked a
very realistic model of Heisenberg spins with precessio
dynamics and have shown that the longer-lived spin wa
couple to the defects even at late times, driving the system
a new fixed point. This torque-driven fixed point, charact
ized byz52 andl'5.05, is accessed after a crossover tim
tc;1/g2 ~whereg is the strength of the torque!. Crossover
scaling forms describe physical quantities like domain s
and equal/unequal-time correlation functions for all values
g. In the absence of the torque, the spin waves decay fa
and so do not contribute to the asymptotic dynamics.

We also studied the effects of the torque on the dynam
following a quench to the critical pointTc . The torque is
relevant with exponentsz542«/2 andl5d ~where«56
2d). We found to all orders in perturbation theory thatl
5d, which follows as a consequence of the conservation
total magnetization.

We hope we have provided strong evidence that in or
to go beyond the present approximate theories of
asymptotic dynamics of conserved order parameters,
need to systematically evaluate contributions coming fr
the interaction of defects with spin waves.
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