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We study the equilibrium and dynamical properties of the axial next-nearest-neighbor Ising chain at the
multiphase point. An interesting property of the system is the macroscopic degeneracy of the ground state
leading to finite zero-temperature entropy. In our equilibrium study we consider the effect of softening the
spins. We show that the degeneracy of the ground state is lifted and there is a qualitative change in the
low-temperature behavior of the system with a well-defined low-temperature peak of the specific heat that
carries the thermodynamic “weight” of the ground state entropy. In our study of the dynamical properties, the
stochastic Kawasaki dynamics is considered. The Fokker-Planck operator for the process corresponds to a
guantum spin Hamiltonian similar to the Heisenberg ferromagnet but with constraints on allowed states. This
leads to a number of differences in its properties, which are obtained through exact numerical diagonalization,
simulations, and by obtaining various analytic bounds.

PACS numbegps): 05.50+q, 02.50.Ey, 05.40:a

I. INTRODUCTION For models with multiple ground states, arising out of
frustration, softness may, however, change the degeneracy
The axial next-nearest-neighbor Isit@NNNI) chain is  completely, as may be seen in a three-spin example, or as in
one of the simplest systems with competing interactions. It ishe present case as we shall show here. The effect of spin
defined by the following Ising spin Hamiltonian: softening in systems with competing interactions has been
studied earlier by several authors. Seno and Yeonhdhs
L have looked at the effect of softening spins at the multiphase
H= (J1SSi+1+35SSi+2), Si==1. (1)  point of a clock model. They find, using a perturbative
=1 method, that as a softness parameter is varied the system
goes through a series of different ground states. In this work
For J,>0, the interactions are competing and one can haveve use a similar perturbative method to prove that the mac-
different ground states depending on the relative strengths ebscopic degeneracy of the ground state in the ANNNI
the interactions. An especially interesting case is the poininodel is lifted by the smallest amount of softness. We then
J;=2J,, the so-called multiphase point, where the groundshow explicitly how the release of the zero-temperature en-
state is no longer unique. It can be shown that any spinropy results in qualitative differences in the low-temperature
configuration that does not have three consecutive spins gfroperties of the system. This is similar to the recently ob-
the same sign is a ground state. For a chain of lehgthe  served phenomena of entropy release in spin-ice syq@ms
number of ground states u', whereu=(\/5+1)/2 is the ~We also construct an effective hard-spin Hamiltonian to de-
golden mean[18]. Thus there are an exponentially large scribe the low-temperature properties of the soft-spin model.
number of degenerate ground states and the system has finidde have also performed Monte Carlo simulations on the
zero-temperature entropy per spin. The model has been egeft-spin model and verified the low-temperature predictions
tensively studied in both one and higher dimensions and isf the effective Hamiltonian.
known to have a rich and interesting phase diagfaimnIn In the second part of the paper we look at the dynamical
this paper we consider some aspects of the equilibrium angroperties of the system. As noted before, the ANNNI model
dynamical behavior of the ANNNI chain at the multiphaseat the multiphase point has a large number of degenerate
point. ground states. It is, therefore, of interest to look at dynamical
In our equilibrium study we consider the effect of soften- properties of the system at low temperatures. Here we use
ing the spins, that is, allowing them to take continuous in-Kawasaki dynamics to evolve the system and consider zero-
stead of discrete values. It is usual in the study of spin modtemperature properties only. Thus two nearest-neighbor spins
els to consider soft-spin versions of discrete spin models. Alip with a rate y, provided both magnetization and energy
well-known example is the Ginzberg-Landau Hamiltonian,are conserved. This dynamics was studied earlier by Das and
which is a continuum version of the discrete Ising model.Barma[6]. In this paper we extend their studies by using the
Other examples occur in the study of spin glass models. Farorrespondence betwe®¥ matrices for stochastic processes
instance, the soft-spin version of the Sherrington-Kirkpatrickand quantum spin chains.
(SK) [2] model was studiefl3] in the context of dynamics. The correspondence between the stochastic Fokker-
The reason for going to soft-spin versions is that they ard®lanck operator and quantum chains has often been exploited
often more amenable to theoretical approaches. It is usuallp derive dynamical properties. For instance, the scaling with
expected that qualitatively the soft and hard spin versionsystem size of the first excited state of the quantum Hamil-
should show similar behavior. tonian gives the dynamical exponent of the stochastic pro-
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cess. A we[I-Known ex_ample where this_correspondencg has  2J(si ,+s_1)+J(si42tS_p)+a(si—s)=0. (3)
been used is in exclusion proces§ék which are stochastic
models of hard-core diffusing particles. For such processes;olving this set of coupled nonlinear equations in general is
it has been possible to calculate the dynamic exponent exery difficult. However, for small values of the parameter
actly by solving the corresponding quantum model, namelyl/a we can obtain the solutions perturbatively. feer o all
the Heisenberg mod¢8]. The dynamics considered by us is configurations{s;} with 5;=0,+1 are solutions. Those with
very similar to the symmetric exclusion procg&EP but  {s;= =1} correspond to the minima. For finite but largeve
with added restrictions on allowed moves. To see this wdry to obtain the solutions perturbatively withalhcting as
first note that with the present dynamics nearest-neighbathe perturbation parameter. We denote the unperturbed
spins with opposite signs flip, provided that the resultingminima by the seft;=+1}. Let us try the following pertur-
configuration satisfies the ground state constraint of no threbative expansion:
successive spins having the same sign. Identifying up spins "
with particles and down spins with holes, we see that the 5= 1™
dynamics is equivalent to hard-core particles diffusing on a T
lattice with the constraint that there cannot be three succes-
sive particles or holes. An interesting question is whethewhere the coefficients™ are independent ad andt(¥'=t;
these rather strong constraints make the system different =1 correspond to the unperturbed solutions in the limit
from the SEP. Earlier numerical woflé] seems to suggest a—c. Substituting this into Eq(3), we get
that the dynamics still behaves like a SEP. We note that there
have been some other recent studies on exclusion processes
with constraints on allowed configuration8]. These cases J
are solvable by the Bethe ansatz and show the same behavior +=[20t0 ) + (10, +t,) ]+ 2t
as the unconstrained model. a

Here we address this question of the effect of the con- 1 1
straints by studying the quantum Hamiltonian. By means of + =[3t;(tM)2+ 2ti(2)]+0(—) =0.
exact numerical diagonalization for finite chains and through a a?
analytic bounds, we have tried to understand the difference . .
and similarities between the present Hamiltonian and th quating different powers of a/to zero we then get
Heisenberg Hamiltonian for the SEP. We also discuss the -J 1
different symmetry properties of the two quantum models. t§1)=7[2(ti+1+ti,1)+(ti+2+ti,2)]+0 —),
The Heisenberg model has full rotational symmetry and this a
has several important implications, some of which are of -] 3
direct relevance in understanding the original stochastic pro- t(2)=7[2(ti(1)1+ti(1)1)+(ti(i)2+ti(92)]— Eti(ti(l))z,
cess. For example, it implies that two-point time correlations
in the SEP do not depend on the npmber qf pa(ticles. Thénd so on. Thus we get Derturbed minima given by the
present model, on the other hand is only invariant undegpoye perturbation series. The energies corresponding to
rotations in theX-Y plane. these minima can now be found by putting these solutions

The rest of the paper is divided into two sections. In SecCinig the expression for energy in E@). We thus get
II, we consider equilibrium properties of the soft-spin model

while in Sec. Il we consider the dynamics of the hard-spin E=Ey+E;+E,+0(1/a?),
model. Sec. IV contains a summary of our main results and a

n

: 4

1
a

J2(ti 1+t )+ (L o+t o)]

few concluding remarks. where
—La
Il. SOFT-SPIN ANNNI MODEL Eo= 4
We consider the following soft-spin version of the
ANNNI model: E1=Zi J(2titi 1 +titi4 o),
Ho= >, J(25;Si41+SiSi+0) +ag(s /4—s?/2), 1
T S =2 2 [P+ 20tDi+tat) )
2 '

S —00,00),

< (=) FIED A
where a is a dimensionless parameter that controls the 32
amount of softness. In the limé— o we get the hard-spin = 2a 2 (5+4tt H4tt 4Gt 43
model. We will setg=1 since there is no loss of generality :
in doing so. "

Titiva).

Let us first look at the ground states of the soft-spin
Hamiltonian given by Eq(2). To do so we look at the ex- In the above expansiol;, corresponds to the unperturbed
trema ofHg which are obtained by settingH/ds;=0 for all  energy, whileE; and E, represent the corrections resulting
i. This gives from the perturbation. In tha—oe limit the termE; causes
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the energy levels of the:2minima to split, with separation We note that the hard-spin model is easily solvable by
between them-0O(J). We recognizeE; as the Hamiltonian transfer-matrix methods and one can exactly compute vari-
for the hard-spin ANNNI model. Thus the lowest energyous thermodynamic properties. In the soft-spin case the
level is still x"-fold degenerate. The teri, then causes a transfer-matrix eigenvalue equation becomes an integral
further splitting of the ground states into levels with separaequation which we have not been able to solve. Hence we
tion ~0O(J%a). have studied the model by Monte Carlo simulations. We
To see whether or not the macroscopic degeneracy of theave used a dynamics that allows three kinds of processes:
ground state survives, we need to consider the interactiofi) single spin-flip moves(ii) moves in which two nearest-
Hamiltonian corresponding to the energy teij Since we  neighbor spins are simultaneously flipped, diidh moves
are interested in the splitting of the lowest energy level ofthat change the length of a spin.
E,, we consider only the restricted subspace of spin configu- All three kinds of processes occur with the usual Me-
rations that are ground states Bf. In this subspace the tropolis rates. The reason for allowing both single and

Hamiltonian corresponding t&, can be rewritten as double spin flips is the following. We find that in the hard-
spin case equilibration times, with a single-spin-flip dynam-
—3LJ%2 J? ics, become very large at low temperatures. On the other

Ho=—2—" 73 > (24t + Attt s+ titizg). (6)  hand, allowing for two spin flips results in very fast equili-
! bration. This is related to the fact that while the single-spin-

flip dynamics atT=0 is nonergodic, including double flips

Thus all the interactions are ferr'omagne.tic. However, t.h‘?nakes it ergodic. We expect a similar situation even in the
ground state oM is not the state with all spins up, since this . ca of soft spins and so have included béithand (ii)

;j_oeshnot belong to the subspace of ground statés; 0f0  ginajly, (i) is necessary since the spins are now continuous
ind the ground state, we write the second terilin which —\5iapjes and we need to be able to change their lengths.
we denote byh,, in the following form(the constant factor In order to compare the properties of the soft-spin model

2 .
J?/(2a) is suppressed with those of the hard-spin one, it is necessary to subtract
from the soft-spin free energy a part corresponding to the
ho= — Dt oAbt Attt continuum degrees of freedom. We thus look at the follow-
2 ZI ( iti+2 iti+3 i |+4) ing free energy:

F=(—1B)[InTre s+ LIn(2)—InTre A], (8)

= iz(%—%—l) €(ti i tivo tivaltivativs tivetive)
whereHg is as in Eq.(2), Hg=2ia(si4/4— s?/2), and Tr in-

dicates integration over all spin variables. We note that the
above expression for the free energy is equivalent to writing

the partition function in the form

where

€(ty,to,t5,t/ts te 17, tg) = tyta + toty+ 2tts + 2ty + sty

+tgtgt 2t t,+ Atote+ Atsts Z=Tre AHp(s)
+4t4t7+2t5t8+t1t5+t2t6 W|th
Tty Tt (7 o 2~ Bals!1a=s{12)
. P(s)=]1 , 9
and the indexn runs from 0 to [/4—1) (we takeL to be an ' j dSefﬁa(sf‘Mfs?/Z)
integral multiple of 4). By enumerating the matrix elements

e(ty,to,t3,14]ts,t6,t7,tg) for all allowed spin configurations _

we find that the lowest energy configuration is obtained forH being the original hard-spin Hamiltonian aRgs) a prob-

the periodic sequencg (| 17/ ...) and the fiveother con-  ability distribution over the spin variables. In the limat

figurations obtained by translating and flipping this. Thus we— 2 this exactly reduces to the hard-spin partition function

find that the infinite degeneracy of the ground state is rewhile atT—o one get<Z=2". From our simulations we get

moved and instead we get a sixfold degenerate ground statgroperties corresponding to the first part of the free energy in

We note that the procedure just outlined provides a straighteq. (8). The second part simply corresponds to a noninter-

forward method of finding the ground state of any spinacting system and its properties can easily be computed nu-

Hamiltonian. By numerically solving Eq3) for small lattice ~ merically.

sizes (=12) and finding the minimum energy configura- In Fig. 1 we plot the specific heat da@{T) for both the

tions for a large enough §=50), we have verified that the soft-spin and hard-spin models. The hard-spin result is exact

perturbative solutions are quite accurate. and corresponds to infinite system size while the soft-spin
The fact that softening of the spins results in removal ofdata are from simulations on a chain of lengtk24. The

the exponential degeneracy of the ground state means thaalues of various parameters used in the simulation \aere

the finite zero-temperature entropy is released and we expeet50 andJ=1. The high-temperatureT¢1) data were ob-

it to show up in the behavior of the low-temperature specifictained by averaging over $Monte Carlo steps while the

heat. This leads to the soft-spin model having low-low-temperature data are over’l€ieps. As expected we find

temperature properties very different from those of the harda second peak in the specific heat at low temperatures. For

spin version as we shall now see. the hard-spin case the total area under the curv€{an/T
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04 ‘ C(T) curve obtained from the Hamiltoniat,. It is interest-
ing to note that the peak value of the specific heat first in-

soft spins creases with system size and then starts decreasing beyond a

— hard spin

certain size.
03
I1l. KAWASAKI DYNAMICS OF THE HARD-SPIN ANNNI
MODEL AT THE MULTIPHASE POINT
E o2 i As for the usual exclusion process, the quantum Hamil-
13}

tonian corresponding to our process can be easily written and
is given by

L
H:P( 21 _[(Ulro'l:+1+0'k_0'|:r+1)

+3(okok 1~ DIPK| P, (10

where oy are the usual Pauli matriceB, are local projec-

FIG. 1. Simulation dat&(T) for the soft-spin model on a lattice tion operators given by

of sizeN=24. A low-temperature peak can be seen. For compari-
sion we have also plotted the hard-spin results. Most of the entropy
released {-85%) is contained within the low-temperature peak
while the rest occurs in the high-temperature regisihaded por-
tion).

Pk:(1_0&720&71)(1_U'§+20'§+3)/4v (11

andP=Hk:1Pk is a global projection operator that projects
onto the space of allowed states, i.e., those that satisfy the
ground state constraint. The spin-flip ratehas been set to
unity. Alternatively, we can write the Fokker-Planck opera-
is equal to In(24). The ground state entropy ja), which is  tor in the following form:
released when the spins are softened, is mostly accounted for
by the area under the low-temperature peak. L )

The low-temperature properties are quite well reproduced H= —;1 (Ot 6},
by the effective Hamiltoniai,, which describes the energy -
levels in the lowest band. The thermodynamic properties ofynere
H, can be exactly calculated by transfer-matrix methods,
both for finite system sizes and in the infinite size limit. In O =P(0y Tps1+ Tk Tis 1) P. (12
Fig. 2 we plot the soft-spin low-temperature simulation data
C(T) for two system sizes and compare them with resultsThe termEkﬁﬁ is the diagonal term since it corresponds to
obtained from the effective Hamiltonian. We see good agreeflipping an unequal pair twice. It is important to write the
ment between the two. We also show the infinite system sizdiagonal part carefully. For instance, if in E4.0) the local
projection operator$®, were not present, the off-diagonal

0.4 : elements ofH would still be correct but the diagonal ones
would be wrong.

o——o Monte Carlo: N=12 We now study the properties of this quantum Hamil-

&~ Monte Carlo: N=24 tonian. Our interests ar@) to compare the symmetry prop-

—— Perturbative: N=12, 24

»— Perturbative: N=oo erties and conservation laws of the present Hamiltonian with

those of the Heisenberg model affg) to obtain results on
the energy gap and hence the dynamical exponent.

A. Symmetry properties and conservation laws
of the quantum model

We first observe that thecomponent of the total spi&*
commutes with{. This simply implies conservation of spin
or number of particles in the stochastic model. Thus we can
classify energy states into sectors labeled by the number of
i particlesn. The constraints on allowed configurations mean
0 0.1 02 that for a lattice of lengti. the number of particles can vary
T over the ranggL/3]=n<L—[L/3], where[L/3] denotes
FIG. 2. The plot ofC(T) at low temperatures as obtained from the smallest integer greater than or equali8. It can be
simulations and from the effective Hamiltonian for different systemshown that, except in the lowest and highest sectors, in every
sizes. We also show the effective Hamiltonian result for infinite Other case the dynamics is ergodic. It then follows from de-
system size. tailed balance that the steady state is one in which all al-

0.1
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3 r w Heisenberg modet,(r) is & correlated whilec.(r) satu-
rates to the value 1/@vhich is much larger than its value in
the present modgl The presence of off-diagonal long-range
order means that () symmetry is broken in the ground
state. This is analogous to the breaking of(Usymmetry

A 2t ] in the ground state of the Heisenberg model. On the other
= hand, consider the XXZ chaifiL0] defined by the Hamil-
] .
-1 tonian
C, L
\? + - - _+ z 7
1+ g H:gl _(‘TkUk+1+0'k0'k+1)_§0'k0'k+1- (13

Away from the two isotropic pointsX= *1), this has the
same symmetry as the present model. It has no long-range
order in the gapless phase {<A<1) and all correlations
0 ; : ; (c*(0)o“(r)) have power law decays. In the ferromagnetic
q phase A>1), the model has a gap and full ferrromagnetic
long-range order in the ground state, with ultralocal longitu-
FIG. 3. The diagonal structure factor plotted as a function of thedinal correlations, namelyc,(r) =1/4. Thus we see that as
total wave numbed. far as ground state correlations are concerned the present
model is different from the anisotropiXXZ chain even
lowed configurations in a given sector occur with equal probthough they have the same symmetry properties. Our model
ability. For the quantum model this means that the grounds more similar in properties to the ferromagnat=¢1) but
state in any sector is an equally weighted sum over all statésas a nontrivial depletion of the condensate, as well as a
(for the special case wheteis a multiple of 3, the lowest nontrivial (a5o?) correlation.
and highest sectors have threefold degenerate ground)states Finally, we note that rotational invariance of the Heisen-
The other components of the total angular moment8m, perg model means that two-point time correlations are com-
and$’, however, do not commute with. Thus the present pletely determined by single magnon excitations and so have
Hamiltonian has (1) symmetry instead of the SB) sym-  the same behavior in an§, sector[8,11]. This result does
metry of the Heisenberg model. Also, even though thenot hold in the case of the present model.
ground states are degenerate, with one state in esesgc- A second conserved quantity in the model is the total
tor, there is no analog of the raising/lowering oper&or If ~ linear momentum. This follows from the translation invari-
there were such an operator then the entire eigenvalue spegnce of. The momentum operator commutes with béth
trum in the n-particle sector would be a subset of the ( andS? so that in eact$? sector energy states can be labeled

—1)-particle sectoffor n<<L/2). By looking at the spectrum by their momentum. Clearly the ground state has zero mo-
for finite sized lattices we have verified that this is not so. mentum.

To study the presence of long-range order in the ground
state, we have calculated the two-point static correlation
functionsc,(r)=(o§o?) andc.(r)=(og o, ) in the ground _ _ _ _
state for the half-filled sector. The simple characterization of AS is well known the first excited state éf determines
the ground states in terms of disallowed subsequences elhe decay of correlations fpr the sto.chastlc process. Thus the
ables calculation of the ground state expectation of any opENergy gapd~1/L* and this determines the dynamic expo-
erator by means of transfer matrices. The transfer-matrif€ntz For the SEP, which corresponds to the Heisenberg
method sums over all the different particle sectors, but in thdéfromagnet, it is known that=2. This simply reflects the
thermodynamic limit the half-filled sector dominates, and sodiffusive modes in the dynamics. The dynamics studied here
we get correct resultéo compute expectation values in other IS Very similar to the _SEP but_ with constraints on th_e aIIowe_zd
sectors one would need to introduce a chemical potential"umber of successive particles and holes. An interesting
Thus we find thatc,(r)=A cos@—2mr/3)e "¢, where ¢ questlo_n is whether thesg rather strpng constraints change the
= 1/In{[3+(5)]/2}=1.039G+... andA and ¢ are con- dynamical exponent. Unlike the Heisenberg model where the

stants that have different values on odd and even site§€the ansatz is applicable and yields information on the ei-
Fourier transforming c(r) gives the structure factor 9envalue spectrum, the Hamiltonian in EQO) is much
(0%(—q)a®(q)), which has the form shown in Fig. 3. We more complicated and we have not been able to use the

note that it is nonvanishing at al The off-diagonal corre- Bethe _ansat;. We havg looked at the eigenvalue _spectrum by
lation can similarly be obtained using transfer matrices buffimerical diagonalization of{ for small system sizes and
the calculation becomes extremely cumbersome. Instead, iSO through Monte Carlo simulations. We also obtain vari-
have computed this correlation numerically for finite latticesCUS @nalytic bounds on the energy levels.
and find that it saturates, for large to a constant value,
which is given by(o_)?=0.029 T . . . (which was obtained
by using the transfer-matrix methpd

Thus we find that ground state correlation functions show We have carried out exact diagonalization of the Hamil-
the same behavior as in the Heisenberg chain. For thtonian in Eq.(10) for chains of length up td.=22 at half

B. Results on the energy gap

1. Results of numerical diagonalization dH
and Monte Carlo simulations
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FIG. 4. In this figure the exact energy gafisat the two mo- FIG. 5. The energy gap, as obtained from the decay of the
mentaw and 27/L are plotted against inverse system size. Alsocorrelation functionQ(0)Q(t)), is plotted as a function of inverse
plotted are exact bounds on the two momenta. system size. Also plotted are the results from exact numerical di-

agonalization and the upper bound. The diagonalization was per-

filling. The diagonalization has been done in the momentunformed up to system size =22 while the(Q(0)Q(t)) data are

basis. This makes the Hamiltonian block diagonal and enffom Monte Carlo simulations for system size uplie-36.

ables us to go to quite large chain sizes. We find that for

small L the first excited state occurs at total linear momen- . . z

tum gq= and the gap seems to decreases-dsl.. How- QT —exp{(w/L)}k: Kariea

ever, fromL =22 onward, the first excited state shiftsdo

=27/L and the gap at this momentum decreases 44 °>.  whered=n/L is the filling fraction of particles. If0,) is the

In Fig. 4 we show the numerically obtained gaps at the twaground state in then-particle sector, then the states

momenta as a function of system size. We also plot corree?(q)|0,) and Q|0,) have momentay and 27d, respec-

sponding upper bounds on the gdfisbe derived in the next tively, and for g#0 are orthogonal to the ground state,

section. which has zero momentum. Hence the following expectation
We note here that, although it is usually the first excitedvalues give us two different upper bounds on the gap:

state that determines the decay of correlations in the stochas-

tic process, it is possible to construct correlation functions _(oH(—q)Ho*(q))

whose decay is governed by some other eigenvalue. As an €= (o(—q)o¥(q)) '

example, consider the operaQr=exg (iw/L)Zkot]. This is

the so—cglled twist operator, first studied by Lieb, SchL_JItz, (b) eQ=<QTHQ>, (15)

and Mattis[12]. In this case, the decay of the correlation

(Q(0)Q(t)) is determined by the lowest eigenvalue at mo-where (---) denotes ground state expectations. We now

mentumsr since the operator carries momentamin Fig. 5  evaluate@) and(b). We shall henceforth restrict ourselves to

we show the decay constant as determined from the correlahe half-filled sector only, though extensions to other sectors

tion decay for different system sizes and compare them witltan be made.

those obtained from exact diagonalization. The correlation (a) To evaluatee, we first note that the numerator and

function is obtained from Monte Carlo simulations and candenominator in Eq(14) can be written in the following

also be used for larger system sizes at which numerical diequivalent form:

agonalization becomes too difficult.

— eiZ‘n'dQ,

(a) (14

1 )
2 Exact bounds (o= Ho*(@))=5 El eN[of.[H,af,,1]),

We now find upper bounds on the first excited state. Con-
sider the sector with states that haveverturned spins. The z z _ iql, z 2z
. . . . - = e . 16
bounds are obtained by constructing trial wave functions or- (e(=a)o@) 2| (010t ) (16)
thogonal to the ground state in each sector. Thus, consider
the operatorsr?(q) = (1/yL) 2 oe'% and the twist operator The commutator occurring in the above equation can be
Q defined in the previous section. Under translation thes€@valuated and gives

operators transform as , , P
[o1.[H,0f1]]1=—4P(01 05 T 01 05)Pp(— 6L+ 6 1)
+4(ol oy +o o)pL(d 1— 8 )]PT

17

1 ) )
ToA(q) T =— § o 1€49=e"15%(q),

JL
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+ Exact diagonalization: L=18
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FIG. 6. The gap upper bourg, plotted as a function of total
momentumq. The exact eigenvalues for a system of dize18 are
also shown.

Inserting this in Eq(16) and using translational invariance
of the ground state, we finally obtain

(o (—q)Ho*(q))
=4[1—-cogq)(PPy(0f 05 + a1 03)PT)

=2[1-cogq)(PP1(1~070%)P), (18)
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(01Q"MQI0) =~ 2% (OIQ"P(o o1 + 0 1) PiPQI0)

1
— 2 5(01Q" (o1~ DPPQI0)

—cos(zw/L)Ek (0| P(0y sy
+oy O'I:rJr 1) PkP|O>

l zZ 7
_; §<O|P(Uk0k+1_1)PkP|0>

- %[1—005{277/L)]<0|P

X (1= oqop, 1) PP|O), (21
where in the last step we have again u$€d#|0)=0 and
translational invariance of the ground state. The expectation
value above has already been obtained so that we get, for
large L, the following bound for the gap at momentumn
=1

2

As0.8457[—. 22)

In Fig. 4 we have plotted both the bounds and the exact finite
size results atj=2=/L andq= = as functions of the system
size.

IV. SUMMARY

where the last step has been obtained using the fact that

(0|H|0)=0. As noted before, ground state expectations of

In summary, we have studied a one-dimensional spin

any operator can be computed using transfer matrices. TH8odel with competing interactions, in particular, its low-

expectation value on the right-hand side of Etf) is thus
found to have the limiting value (ak—«) (PP,(1
—o%0%)P)=8—16/\/5. The Fourier transform of,(r),
which gives the structure factdo*(—q)a*(q)), has already

temperature equilibrium and dynamical properties. In the
equilibrium case we have shown that low-temperature prop-
erties of the soft-spin and hard-spin versions of the model
can be very different. The hard-spin version of the model has

been obtained and was plotted in Fig. 3. We note that it i&" infinitely degenerate ground state. Through a perturbative

nonvanishing at aldj. Finally, from Eqs(14) and(16) we get

calculation we have shown that, as soon as we introduce the

e,, which is plotted in Fig. 6 along with the exact results slightest amount of softness, the degeneracy is lifted. The

from finite size diagonalization. Putting=2=/L and put-
ting in all numerical factors, we get the following result:

2

T
A<19.78—.

£ (19

(b) We now obtain the other bound using the twist operator

Q. We first note the following properties &J:

Qlo 014:1QHo}) =™ oy o4 {o}),
(20

Q'oy 04 1Qet)y=e 2" oy o i|{a}).

Using these relations we obtain

ground state energy levels split to form a band that is sepa-
rated from higher levels bAE=0(J). The energy levels
within this lowest band are described by an effective hard-
spin Hamiltonian, containing ferromagnetic interactions up
to fourth-neighbor terms. This can be used to approximately
derive the low-temperature properties of the model. We find
reasonably good agreement with results from Monte Carlo
simulations of the soft-spin model.

Our results indicate that the fixed-length ) limit is a
singular one in our model at low temperatures. Since the
ground state of the soft-spin model for large but firatés

only sixfold degenerate, it would order into one of these six
states asT—0. This implies the occurrence of a zero-
temperature phase transition and the existence of an appro-
priately defined correlation length that divergesTagoes to
zero. In the fixed-lengthg—<°) limit, on the other hand,
averaging over all the degenerate ground states leads to a
finite correlation length even dt=0. These results suggest
that it would be interesting to study the effects of softening
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the spins on the thermodynamic behavior of two- and higherehange as the spins are made soft have not been addressed in
dimensional hard-spin models with extensive ground statéetail. Further investigation of these issues would be most
entropy. A well-known model of this kind is the nearest- interesting.
neighbor Ising antiferromagnet on a triangular lattjd&]. Finally, it is interesting to note that a similar way of low-
This model does not exhibit any phase transition at a nonzerering frustration is to make the coupling constants soft while
temperature. The degeneracy-lifting effect of introducingkeeping the spins hard. For example, in the case of the
magnitude fluctuations found in our study suggests that softedwards-Anderson Ising spin glass model, two versions
spin versions of this and other similar models may exhibithave been studiefll7]. One is thex+J model where the
finite temperature phase transitions. Further investigation ofiearest-neighbor coupling constants randomly take the dis-
this question would be very interesting. crete valuest J with equal probability. In the other case, the
We believe that the removal of the exponential groundJ’s are chosen from a Gaussian distribution.d#& 2, both
state degeneracy by the introduction of spin softness in ththese cases are believed to have zero-temperature phase tran-
model studied here is a special case of a more general phsitions, but the nature of the transition is different in the two
nomenon in which the presence of additional degrees of freezases. This difference again arises because of the different
dom allows the system to relieve frustration and thus reducground state degeneracies in the two cases. In-thenodel,
the number of degenerate ground states. Coupling the hattle ground state is exponentially degenerate, while it is
spins to other degrees of freedom, such as elastic variablesique (modulo a global inversion of all the sping the
describing possible deformations of the underlying lattice Gaussian case. However, in higher dimensions where the
would probably have similar effects on the degeneracy of theransition temperature is finite, critical properties near the
ground state. It is interesting to note in this context that aransition appear to be the same in both cases.
“deformable” Ising antiferromagnet on a triangular lattice in ~ In our nonequilibrium studies we considered Kawasaki
which the Ising spins are coupled to elastic degrees of freedynamics and studied the quantum Hamiltonian correspond-
dom exhibitd 14] a Peierls-type phase transition at a nonzerang to the Fokker-Planck operator for a stochastic process.
temperature. The ordering of the spins at this transition iSThe spectrum of the Hamiltonian is obtained by numerical
accompanied by a distortion of the lattice. In general, it isdiagonalization of finite chains. An interesting crossover of
expected that in real, physical systems, such couplings tthe first excited state from momentum to 2x/L is ob-
other degrees of freedom, however weak, would induce somserved with increase in system size. We have found analytic
kind of ordering of the spins as the temperature is reducedpper bounds on the gaps at these two momenta. These,
toward zero, thereby avoiding the unstable situation of havalong with our numerical diagonalization results, suggest
ing a nonvanishing entropy per spin Bt 0. that the gap vanishes as1/L? and so the dynamics is dif-
Many disordered spin systems, such as spin glgdf§s  fusive as in SEP. We have also compared the symmetry
exhibit a large number of nearly degenerate metastable statggoperties of our Hamiltonian with those of the Heisenberg
arising out of frustration. To take an example, the SK modeimodel. We find that, while the model has the symmetry of
[2] of infinite range Ising spin glass is knoWh6] to have an  the X XZ model, its ground state properties are closer to those
exponentially large number of local minima of the free en-of the ferromagnetic isotropic point. In summary, we have
ergy (locally stable solutions of the Thouless-Anderson-shown that our model is a very nontrivial cousin of the
Palmer equationg15]) at sufficiently low temperatures. Heisenberg ferromagnet. The exclusion of three adjacent like
These local minima of the free energy become local minimaspins essentially changes the model dynamics, and results in
of the energy aff=0. The presence of a large number of a nontrivially depleted condensate(iaso)) and a nontrivial
nearly degenerate metastable stdtibgergent in the thermo- gapped (050?) correlation function. The existence of a
dynamic limip is crucial in the development of the present ground state in even®? sector is quite obvious from the
understanding16] of the equilibrium and dynamic proper- stochastic point of view, but nontrivials within the frame-
ties of this system at low temperatures. Our results about thgork of the quantum systere.g., the absence of @ op-

liting of degeneracy by the introduction of spin softnesserato), and requires a deeper understanding.
raise the following interesting question: would the low-

temperature properties of a soft-spin version of the SK model
differ in any significant way from those of the original
model? While soft-spin versions of the SK model have been We thank Mustansir Barma, Dibyendu Das, and Deepak
used in studieg3] of the dynamics, questions about how the Dhar for useful discussions. A.D. is grateful to the Poor-
number and properties of the metastable states of this modehprajna Institute for financial support.
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