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Statistical physics of regular low-density parity-check error-correcting codes
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A variation of Gallager error-correcting codes is investigated using statistical mechanics. In codes of this
type, a given message is encoded into a codeword that comprises Boolean sums of message bits selected by
two randomly constructed sparse matrices. The similarity of these codes to Ising spin systems with random
interaction makes it possible to assess their typical performance by analytical methods developed in the study
of disordered systems. The typical case solutions obtained via the replica method are consistent with those
obtained in simulations using belief propagation decoding. We discuss the practical implications of the results
obtained and suggest a computationally efficient construction for one of the more practical configurations.

PACS numbgs): 02.50-r, 89.90:+n, 05.50:+q, 75.10.Hk

[. INTRODUCTION Gallager-type codes have been developed7], attempting
Error-correcting codes are commonly used for reIiabIeto.get as close as possibl_e to saturating Shannon’s bqund. In
data transmission through noisy media, especially in the caé:[g's paper we wil examine the properties of a.fam|ly of
of memoryless communication Where’ corrupted messageCsOdeS. based on one variation, the MN cq8 using .the
X —~“"established methods of statistical phydi8s11], to provide
cannot be repeatedly sent. These techniques play an impof-

; ; L a theoretical study based on the typical performance of codes
tant role in a wide range of applications from memory de-

vices to deep space explorations, and are expected to becoﬁ]aéher on the worst case analysis.
PSP P ' P This paper is organized as follows. In the next two sec-

even more important due to the rapid development in mObII(?ions, we introduce Gallager-type error-correcting codes in

ph(lnr?eas agﬁ;:lteslltl:t;?izeihc:rgénnlérg;:aet:%rg ded\adimen- detail and link them to the statistical mechanics framework.
sional B%olean message ,vecg)n/vhereg- (0.1), Vi, to an We then examine the equilibrium properties of various mem-
9 i S Vi bers of this family of codes using the replica mettiselction

?r/lat(nzmttgtljmt?\?shonhaIaBr?(?iIsear;o(;r?r?wetlvr\:ic::rg}ovr\:hé%gr:ietlhel\rl]ois IV) and compare the bit-error rate below criticality. In Sec.
9 Y ’ , we examine the relation between belief-propagatidR)

corrtuptlonhdurmg trantsr?s*;s'tmn can bekrréoge[[id bylthe 1n0|s ecoding and the Thouless-Anderson-Palnt€AP) ap-
vector¢, where corrupted bits are marked by the value 1 an roach to diluted spin systems; we then use it for comparing

all other bits are zero, such that the received corrupted cod he analytical results obtained via the replica method to those
word take_s the. fornz=z,+{ (mod 2. The cprrupted MES- obtained from simulations using BP decoding. In Sec. VI we
sage received is then decoded by the receiver to retrieve t@EIHOW a computationally efficient construction for one of the
original message. more practical configurations. Finally, we present conclu-

T_he error-correcting ability comes at thg expense of Imcor'sions for the current work and suggest future research direc-
mation redundancy. Shannon showed in his seminal Wigrk tions

that error-free communication is theoretically possible if the
code rate, representing the fraction of informative bits in the
transmitted codeword, is below the channel capacity; in the Il. GALLAGER-TYPE ERROR-CORRECTING CODES

case of unbiased messages transmitted through a binary sym-Ttnhere are several variations of Gallager-type error-

metric channel (BSC), which we will focus on here, cqrrecting codes. The one discussed in this paper is termed
R=N/M satisfies the MN code, recently introduced by MacKay and Nggjl
In these codes, a Boolean messgde encoded into a code-
R<1+plog, p+(1—p)log,(1—p). (1)  word z, using two randomly constructed Boolean sparse ma-
tricesC5 and C,,, which are characterized in the following

The expression on the right is term&hannon’s bound Manner. _ _ o
However, Shannon’s derivation is nonconstructive and the The rectangular sparse matri¥s is of dimensionality
quest for codes that saturate Hd) has been one of the M XN, havingK randomly chosen nonzero unit elements per
central topics of information theory ever since. row andC per column. The matri, is anM <M (mod 2

In this paper we examine the efficiency and limitations ofinvertible matrix havingL randomly chosen nonzero ele-
Gallager-type error-correcting cof2, 3], which has attracted Ments per row and c_olumn. These matrices are shared by the
much interest recently among researchers in this field. Thigender and the receiver.
code was discovered almost forty years ago by Gallfgler ~ Using these matrices, one can encode a mesgage a
but was abandoned shortly after its invention due to the comcodewordz, in the following manner:
putational limitations of the time. Since their recent rediscov- .
ery by MacKay and NealMN) [3], different variations of 2=C,Cs¢ (mod 2). 2
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This is then transmitted via a noisy channel. Note that allPrior knowledge about possibly biased message and noise is
matrix and vector components are Boolean (0,1), and altepresented by the prior distributions
summations are carried out in this field. For simplicity, the

noise process is modeled hereafter by a binary symmetric N M

channel, where each bit is independently flipped with prob- ex Fszl S €x FnZl Tj

ability p. Extending the code presented here to other types of p(s)= = . PyD= ;,

noise is straightforward. (2 coshF N (2 coshF )M
During transmission, a noise vectdis added ta, and a (6)

corrupted codeword=z,+ £ (mod 2 is received at the other ] i o ]
end of the channel. Decoding is then carried out by taking®SPectively. A nonzero field is introduced for biased
the product of the matriC, and the received codewomj — Messages an, is determined by the flip rate of channel

which results inC¢¢+ C,¢=C,z=J. The equation noise ask,=(1/2)In(1-p)/p]. Using Egs.(5) and (6), the
posterior distribution ofS and = for given check] and ma-
CS+C,r=J (mod 2 3) tricesCg andC,, is of the form
is solved via the iterative methods of belief propagation 73(5',—|J,CS,Cn):P(‘”S’T’CS’C“)PS(S)P”(T)
[12,13 to obtain optimal estimates for Boolean vect@s P(|Cs,Cp)
and 7. BP methods in this context have recently been shown exd — BH(S. D
to be identical to a TAP based soluti¢gh4] of a similar = lim H=pHS AT, )], 7

physical systenf8]. Ja Z(J,D)

lll. A STATISTICAL MECHANICS PERSPECTIVE whereP(J|Cs, Cn) = 215.4P(|S 7,Cs, Co) P(S) Pa( ),

Sourlas was the first to point out that error-correcting
codes of this type have a similarity to Ising spin systems in
statistical physic$15]; he demonstrated this using a simple

M
H(S,AT.D)= >, 8§ —1;

. . 7j
e [ L) <)

version of the same nature. His work, which focused on ex- Fo o Fr

tensively connected systems, was recently extended to fi- _F 2:1 S— E Zl 7j

nitely connected system®,11]. We follow a similar ap- .

proach in the current investigation; preliminary results have

already been presented [ih0]. = £ Dy i D

To facilitate the statistical physics analysis, we first em- N

ploy the binary representation=(1) of the dynamical vari- X 5[_1;*7011 g i)

ablesS and 7 and of the check vectod rather than the

Boolean one (0,1). Theith component of E@3) is then XSG S, 7T ]

rewritten as N "
Fs > Fn 8
BA BAT (

i Tj = \]’u ) (4)
ieLy(n) jeln(n)
and
whereLs(u) andL,(u) are the sets of all indices of nonzero

elements in rowu of the sparse matriceSs andC,,, respec-  z(7,D)= lim >, exd — BH(S, 14 T,D)]
{S.7

tively. The checku is given by messagé and noisel as B—oiST
Ju=Micewéilljcr, (wéi: it should be emphasized that the
message vectaf and the noise vectaf themselves are not => 11 [14+3D6, i D)
known to the receiver. (S (in il -l troent
An interesting link can now be formulated between the
J X Ty, iy, Sy STy, T D

Bayesian framework of MN codes and Ising spin systems.

Rewriting Kronecker'ss for binary variablesx andy as N M
S[x;y]=(1+xy)/2=limg_ .exp(-B5 [-1xy]), one may Xexp( Fo> S+Fn>, T,-). 9)
argue that, using it as a likelihood, E@) gives rise to the i=1 =1

conditional probability of the checkfor givenS, 7, C4, and ] o o
C, The final form of posterior distributioi7) implies that the

MN code is identical to an Ising spin system defined by the

P(J|S,7,Cs,C) Hamiltonian(8) in the zero temperature limit=8"1—0. In
PhseEn Egs.(8) and(9), we introduced the sparse connectivity tensor
) D<i1 _____ i) which takes the value 1 if the corresponding in-

-1;3, II s II ~

b el dices of both message and noise are chdsen if all cor-

responding indices of the matric€ andC, are J and 0
(5)  otherwise, and coupling ;i

M
= lim exp( —,32 1]
n=1

B
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=&,&, - &,.4;,4, - {j, - These are used to isolate the dis- the partition function(9) with respect to the quenched vari-

order in choosing the matrix connections, embedded ibles§, ¢, andD and take the limih—0.
Dii,, .. iy and to simplify the notation. Carrying out the calculation in the zero temperature limit

The posterior distributior{7) can be used for decoding. B8—* gives rise to a set of order parameters
One can show that the expectation of the overlap between

the original messagé and the retrieved oné,

1 N . ' i=1
m= N Zl &idi, (10 (12)
A~ 1 M
is maximized by settingg to its Bayes-optimal estimator r S 2 Y 4B 7
- BT\ M Ay AT :
[16 1QI i=1 ‘Bﬂoc
~B_ s s wherea, B, ... represent replica indices, and the variables
&=sgnmp), m; _{S‘T} SPSI,Cs,Cr). (1D Z; andY; come from enforcing the restriction & and L

connections per index, respectiv¢l,20],

It is worthwhile noting that this optimal decoding is realized
at zero temperatureather than at dinite temperatureas in
[16—19. The reason is that the true likelihood tefB) cor-

responds to thground stateof the first term of the Hamil- 5( 2 D, —C

tonian (8) due to the existence of more degrees of freedom, (i S iy W20

in the form of the dynamical variables which do not ap- 5

pear in other systems. Introducing the additional variakles _ 3§ wd_Z iy 0Py, ip~ (CFD - (13)
increases the degrees of freedom in the spin system om o 2m ’

to N+ M, while the number of constraints from the chedks

remainsM. This implies that in spite of the existence of

quenched disorder caused b and D, the system is free 4 similarly for the restriction on theindices.

from frustratlon_even in th_e Iow-_temperature limit, wh|ph IS To proceed further, it is necessary to make an assumption
useful for practical decoding using local search algonthmsabout the order parameter symmetry. The assumption made

The Ia_st tthwo termst In Ec(B)t scallg W'thi and rema{ﬂ f|nt|:1e here is that of replica symmetry in both the order parameters
€ven in the zero temperature '”ﬁﬂ representing e 4nd the related conjugate variables
true prior distribution, which dominates the statistical prop-

erties of the system, while the first term vanishes to satisfy
the parity-check conditio).

_ | A A~
IV. EQUILIBRIUM PROPERTIES: Aap, ... ,y—aqf dX7(X)X,  Gap, ... =85 | dXm(X)X,
THE REPLICA METHOD (14

As we use the methods of statistical mechanics, we con-
centrate on the case of long messages, in the limit of B d o —a | avo
N,M— o while keeping the code rafe=N/M =K/C finite. Pap 9= | AYPYIY. Tap .. p=87 | dyp(Y)Y,
This limit is quite reasonable for this particular problem
since Gallager-type codes are usually used in the transmis-
sion of long (16— 1C°) messages, where finite size correc-wherel is the number of replica indices,, are normaliza-

tions are likely to be negligible. tion coefficients, andr(x), m(x), p(y), andp(y) represent
Since the first part of the Hamiltoniaf®) is invariant o1 pijity distributions. Unspecified integrals are over the
under the gauge transformatid®— &S, 7;—¢j7;, and range[ — 1,+1]. This ansatz is supported by the facts tfiat
Jiiy. ... =1, 1tis useful to decouple the correlation be- o'\, rent system is free of frustration afiid replica sym-
tween the vectorsS, = and & £ Rewriting the Hamiltonian ety preaking has never been observed at Nishimori’s con-
using this gauge, one obtains a similar expression to&0. tion [21] which corresponds to using correct pridtsand
apart from the second terms, which becomgSZ;-1£S, F, in our casd16]. The results obtained hereafter also sup-

anan/BEjzlngj. . .. . . .
: . ort this ansatz. Extremizing the partition function with re-
Due to the existence of several types of quenched dlsordé)r g P

in the system, it is natural to resort to the replica method foSPeCt to distributionsr(-), a(-), p(-), andp(-), one then
investigating the typical properties in equilibrium. More spe-0btains the free energy per spin
cifically, we calculate expectation values of thih power of

.....
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f ! InZ
=——(In
N< >§,§,D

C . . CL o Ccrfy
=extl, =, o Rln 2+Cf dx dxa(x) m(X)In(1+xx) + ?f dy dyp(y)p(y)ln(1+yy)—Rf kll dxm(Xy)

X

L K L c
[1 dMP(YO)'” 1+ 1 x [l )ﬁ)‘f ( I1 d;(k%(;(k))
=1 e R k=1

o

=1

C . C A C C o L A L .
eI (14+x9+e F]] (1—xk>)> —Rf (H dy|p<y|>)<ln(an5H (1+y)+e Fél] (1—y|>)>
k=1 k=1 p =1 i=1 e

(15
|
where angled brackets with subscrigis ¢, and D denote  where
averages over the message and noise distributions, respec- c
tively, and the sparse connectivity tensdr Message aver- $(2)= f H dx (X))
ages take the form =1
B E 1+ étanhFg 16 C
<"'>f_§:ﬂ 2 () (16) ><<5 z—tanr( Fét+ D, tanh—lii) > . (19
=1
3

and similarly for(- - -),. Details of the derivation are given

) ?’gﬁﬁ]ndlt);: .functional variation of with respect to the Examining the physical properties of the solutions for
o _g R - ) P ) various connectivity values exposes significant differences
distributions 7, 7, p, and p, one obtains the following petween the various cases. In particular, these solutions fall

The derivation of Eqs(18) and(19) is given in Appendix B.

saddle point equations: into three different categories: the casekef 1 and general
c1r L value, the case df =L =2, and all other parameter values
W(X):f |H1 dx (X)) where eitherK=3 or L=3 (and K>1). We describe the

results obtained for each of these cases separately.

C-1
x—tan)‘( EFg+ >, tanh%)
=1

> A. Analytical solution: The case ofK=3 or L=3, K>1
13

. < 5
Results for the cases #f=3 or L=3, K>1 can be ob-
tained analytically and have a simple and transparent inter-
K-1 L . . : . .
A pretation; we will therefore focus first on this simple case.
W(X):f ll:[l dx W(Xl)j |H1 dyip(y1) For unbiased messagésith F,=0), one can easily verify
that the ferromagnetic phase, characterizednsyl and the
ok L probability distributions
X— H X||=H1 Y|) ,

=1

X6

m(X)=8(x—1), m(X)=8X—1),
17 . n . (20)
p(y)=46(y—1), p(y)=6(y—1),
and the paramagnetic stateraf=0 with the probability dis-

L-1
P(Y):f |H1 dyip(y))

L1 tributions
_ S . A s .
X<5 Y ta”*( P 2 tanh y'mg’ 7(0=5(x), wX)=6(), p(§)=5),
1+tanhF
K L—-1 K L—-1 n
. . p(y)=————6(y—tanhF,)
p<y>=f I dx.w(x.)f 11 dylp(yoa(y—lljl x L1 y|>. 2 )
1-—tanhF,
After solving these equations, the expectation of the overlap +————d(y+tanhF,), (21)

between the messaggand the Bayesian optimal estimator _ _ _
(11), which serves as a performance measure, can be evalgatisfy the saddle point equatio(ts?). Other solutions may

ated as be obtained numerically; here we have represented the dis-
1/ N tributions by 16—10* bins and iterated Eqg17) 100-500
m= N<2 §isgr(Sq)ﬁﬁx> :f dz ¢(z)sgn(z), times with 16 Monte Carlo sampling steps for each itera-
i=1 £LD tion. No solutions other than the above two have been dis-

(18 covered.
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The thermodynamically dominant state is found by evalu- F

ating the free energy of the two solutions using Eth), (a) +1
which yields f

C 1 m

fremo=— RF“ tanhF,= — ﬁFntanth , (22 p F
F P 0 P
for the ferromagnetic solution and ke P ke P
F
f para= KIn2 In 2——In2cosH: 1 s

e

1 1 W Y P
=§In2 |n2—§|n2COSH: (23 W \'\/\ﬁ/ \/ 2 2 1 p

for the paramagnetic solution. Figuréal describes sche- P
matically the nature of the solutions for this case, in terms of Rhoor
the free energy and the magnetization obtained, for various

flip rate probabilities. The difference between the free ener- F
gies of Egs(22) and(23), +

In2 <
fferro_fpara:%[R_l+Hz(p)]- (24 ‘v \/\/ \/\/ \F

vanishes at the boundary between the two phases, P, p

-

e
-
o

Re=1—Hz(p)=1+plogy(p)+(1—-p)logy(1—p), FIG. 1. Left hand figures show schematic representations of the

(25 free energy landscape while figures on the right show the ferromag-

) o . , . netic, suboptimal ferromagnetic, and paramagnetic solutions as
which coincides with Shannon’s channel capacity. functions of the noise rate; thick and thin lines denote stable

Equation(25) indicates that all constructions with either gojytions of lower and higher free energies, respectively, dashed

K=3 orL=3 (andK>1) can potentially realize error-free |ines correspond to unstable solutiote.K=3 orL=3, K>1; the

data transmission fdR<R; in the limit where both message solid line on the horizontal axis represents the phase where the

and codeword lengthd andM become infinite, thus saturat- ferromagnetic solutionf, m=1) is thermodynamically dominant,

ing Shannon’s bound. while the paramagnetic solutiol®( m=0) becomes dominant for
the other phasé¢dashed ling The critical noisep, denotes Shan-
B. The case ofK =L =2 non’s channel capacityb) K=2 andL=2; the ferromagnetic so-

) . . lution and its mirror image are the only minima of the free energy
All codes with eitherK=3 or L=3, K>1 potentially  oyer a relatively small noise levéihe solid line on the horizontal
saturate Shannon’s bound and are characterized by a firgkis. The critical point, due to dynamical considerations, is the
order phase transition between the ferromagnetic and pargpinodal pointps where suboptimal ferromagnetic solutiors’(
magnetic solutions. On the other hand, numerical investigam<1) emerge. The thermodynamic transition pgigtat which the
tion based on Monte Carlo methods indicates significantlyferromagnetic solution loses its dominance is below the maximum
different physical characteristics foK=L=2 codes as noise level given by the channel capacity, which implies that these
shown in Fig. 1b). codes do not saturate Shannon’s bound even if optimally decoded.
At the highest noise level, the paramagnetic soluf@t) (c) K=1; the solid line on the horizontal axis represents the range
gives the unique extremum of the free energy until the nois@f noise levels where the ferromagnetic stefg is the only mini-
level reaches the first critical poimt;, at which the ferro- ~mum of the free energy. The suboptimal ferromagnetic statg (
magnetic solutio20) of higher free energy appears to be appears in the region represented by the dashed line. The spinodal
locally stable. As the noise level decreases, a second criticRPINt Ps, where theF" solution first appears, provides the highest
point p, appears, where the paramagnetic solution become@o'se value at which convergence to the ferromagnetic solution is
unstable and a suboptimal ferromagnetic solution and It§]uaranteed For higher noise levels, the system becomes bistable
mirror image emerge. Those solutions have lower free en and an additional unstable solution for the saddle point equations
necessanly appears. A thermodynamic transition occurs at the noise
ergy than the ferromagnetic solution until the noise IevelI
. " . evel p; where the stat&’ becomes dominant.
reaches the third critical poimi;. Below p3, the ferromag-
netic solution becomes the global minimum of the free en-
ergy, while the suboptimal ferromagnetic solutions still re- The analysis implies thats, the critical noise level below
main locally stable. However, the suboptimal solutionswhich the ferromagnetic solution becomes thermodynami-
disappear at the spinodal poipg and the ferromagnetic so- cally dominant, is lower thap.=H, *(1—R), which corre-
lution (and its mirror imagebecomes the unique stable so- sponds to Shannon’s bound. ThatksyL =2 does not satu-
lution of the saddle point equatiorf47), as shown by nu- rate Shannon’s bound, in contrast k=3 codes, even if
merical investigation for alp<<ps. optimally decoded. Nevertheless, it turns out that the free
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computationally difficult to follow the prescription exactly as
it requires a sum oveO(2N) terms. Belief propagation
[12,13 can be used for obtaining an approximate estimate. It
was recently show[8] that the BP algorithm can be derived,
at least in the current context, from the TAP approfeH to
diluted systems in statistical mechanics.

Both algorithms(BP and TAR are iterative methods that
effectively calculate the marginal posterior probabilities
P(S13,C5,Cr) =3 s, 1.#P(S7J,Cs,Cy) and
st o o 5, P(TJ-|J_,CS,Cn)=E{S,{,kﬂ}}P(S,TIJ,CS,Cn) _bas_ed. on th.e

P following three assumption$l) The posterior distribution is
factorizable with respect to dynamical variablBs.;  n

FIG. 2. Free energies obtained by solving the analytical equagnd 7i—1,...m- (2) The influence of the check,_; |
tions using Monte Carlo integrations fer=1, R=1/6, and several 5 specific siteS, (or 7;) is also factorizable(3) The contri-

values ofL. Full lines represent the ferromagnetic free energyp tion of single variablesS_; .y, Tzt M and

(FERRO, higher on the rightand the suboptimal ferromagnetic free L

. _ pu=1
energy (higher on the left for values ofL. =1, ....7. Thedashed  jgateq” parametrizing pseudomarginal posteriors and mar-
line indicates Shannon’s bound and the arrows represent the SD'Eﬁnalized conditional probabilities as

odal point valuep for L=2, .. .,7. Thethermodynamic transition

b
3+

_4F Shannon’s bound

=

coincides with the channel capacity within the numerical precision. 1+ mS-Si
I
P(SiH‘]V?ﬁM}’CS!Cn):Tﬂr
energy landscape, for noise levelsiP<ps, offers signifi- (26)
cant advantages in the decoding dynamic comparing to that 1+ mzj 7|
of other codesK=3 orL=3, K>1). P(TJHJVM},CS,Cn):T,
' C. Gen('eral L codes .With K=1 14 rAn;SLiSﬁ
The particular choice oK =1, independent of the value P(I,lS {2 u}:Cs,Cr)~ —
chosen forL, exhibits a different behavior presented sche- 5
matically in Fig. 1c); in this case also there are no simple Lf (27
lytical soluti Il solutions in thi i i7]
analytical solutions and all solutions in this scenario, except P17 43y4 1 CsCo) ~ i

for the ferromagnetic solution, have been obtained numeri- 2 '

cally. The first important difference to be noted is that the

paramagnetic stat@1) is no longer a solution of the saddle the above assumptions provide a set of self-consistent equa-
point equationg17) and is replaced by a suboptimal ferro- tions[8,11]

magnetic state. Convergence to the perfect solutionmof

=1 can be guaranteed only for corruption rates smaller than

that of the spinodal point, marking the maximal noise level
for which only the ferromagnetic solution exis{s< ps.
TheK=1 codes do not saturate Shannon’s bound in gen-

me) =tan|‘< Fo+ > tanh 1(r?1§|)) ,

ve Mg(l)/n
(28)

eral; however, we have found that at raRs 1/3 they out- m2|=tan"( Fot > tanhii(m})
perform theK =L =2 code while offering slightly improved veMa(l)u
dynamical(decoding properties. Studying the free energy in

this case shows that as the corruption rate increases, subop-

timal ferromagnetic solutionstable and unstablemerge at

the spinodal poinps. When the noise increases further this m;=J, ok
suboptimal state becomes the global minimunpatdomi- ke Lg(m)/l JeLn(w)
nating the system’s thermodynamics. The transitiorpat (29)
must occur at noise levels lower than or equal to the value m=3, I[I ms, [I m"
predicted by Shannon’s bound. In Fig. 2 we show free en- M erdw Mentwn M

ergy values computed for a given code rate and several val-

ues ofL, marking Shannon’s bound by a dashed line; it isHere, M¢(l) and M,(l) indicate the set of all indices of
clear that the thermodynamic transition observed numerinonzero components in theh column of the sparse matrices
cally (i.e., the point where the ferromagnetic free energyc andcC,, respectively. Similarly/s(x) andZ, () denote
equals the suboptimal ferromagnetic free enprgpincides  the set of all indices of nonzero components in thé row
with the channel capacity within the numerical precision. o the sparse matriced, andC,,, respectively. The notation

This implies that these codes saturate Shannon’s bound ﬁs(:“’)“ represents the set of all indices belonging(tg )
optimally decoded. except the index.

Equations(28) and (29) are solved iteratively using the
appropriate initial conditions. After obtaining a solution to

The Bayesian message estimét@é) potentially provides all m,; andm,,, an approximated posterior mean can be
the optimal retrieval of the original messages. However, it iscalculated as

V. DECODING: BELIEF PROPAGATION /TAP APPROACH
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s s introducing the new variablesx=&mS;, x=&m};,
M tanl‘( FS+ME%S(|) tanf=(myi) |, 30 y=¢m};, and§/=§jr?1;1j [11]. If one considers that these
variables are independently drawn from the distributions
which provides an approAX|mation to the Bayes-optimal esti-géixn)t’ eqa(uxazt’ioﬁ\(sﬁ,?)agrdep r(ggé\}g?egeﬁgﬁ tshyemg]l:f"/t-lr-l'g; aé(iﬂg_
mator (11) in the form of §5=sgn(m?). tions (28) and (29). This connection can be extended to the
Notice that the rather vague meaning of the field distribufree energy as Eq<$28) and (29) extremize the TAP free
tions introduced in the previous section becomes clear oenergy,

M M
n M 1 “ 1 A
f m {m)=—In2+ — IN(L+mSmS)+ — In(L+m" . m".
TAP({ } { }) N N ;1 iEEES(,u) ( i ,u,l) N ;LZ:]. Jeﬁzn(,u,) ( 1w MJ)
1 M 1N
—— In| 1+J mS. m’ | —= > In|eFs 1+mS)+e Fs 1-mS,
N ;;1 “ielt_s[,(u) ’“jelﬁ_n[(m ’”) N 21 Mel/\_/[ls(i) (1m0 Mel;/l[s(i) (1= m)

M

Eln

=1

. (31)

- e I a+mlp+e ™ [ @a-ml)
e Mp(j) meMp(j)

Zl -

This expression may be used for selecting the thermodyx H,(f,=(1+tanhFJ/2), the source redundankybelow
namically dominant state when Eq28) and(29) have sev- which the ferromagnetic solution becomes thermodynami-
eral solutions. cally dominant[Fig. 3(@]. The data were obtained by the

We have investigated the performance of the variou8P/TAP method(diamond$ and numerical solutions from
codes using BP/TAP equations as the decoding algorithnthe replica frameworksquares the dominant solution in the
Solutions have been obtained by iterating E@§) and(29)  BP/TAP results was selected by using the free en¢ggy.
100-500 times under various initial conditions. Since theNumerical solutions were obtained using*3a0* bin mod-
system is not frustrated, the dynamics converges withirgls for each distribution and were run for°1€teps per noise
10—30 updates in most cases except close to criticality. Thi&Vvel. The various results are very consistent and practically
numerical results mirror the behavior predicted by the anasaturate Shannon’s bound for the same noise level. However,
lytical solutions. it is important to point out that close to Shannon’s limit,

For eitherk=3 orL=3, K>1 codes, the ferromagnetic Por knowledgg of .thg orlglna_tl_message is required for set
solution ting up appropriate initial conditions that ensure convergence

to the ferromagnetic solution; such prior knowledge is not
(32) available in practice.

Although K,L=3 codes seem to offer optimal perfor-
mance when highly biased messages are transmitted, this
seems to be of little relevance in most cases, characterized by
the transmission of compressed unbiased messages or only
m;suzov rﬁii=0, m;j=tanth=1—2p, ﬁ12j=0, slightly biased messages. In this sengec,Lzz andK=1

(33) code_s can be considered more practlcal as the BP/TAP dy-
namics of these codes exhibit unique convergence to the fer-
are obtained in various runs depending on the initial conditomagnetic solutiorfor mirror image in theK=L=2 casg
tions (the message is assumed unbiased, resultingdn from any initial condition up to a certain noise level. This
=0). However, it is difficult to set the initial conditions property results from the fact that the corresponding free
within the basin of attraction of the ferromagnetic solutionenergies have no local minima other than the ferromagnetic
without prior knowledge about the transmitted messége  solution belowps.

Biased coding is sometimes used for alleviating this dif- In Figs. 3b) and 3c) we show the value opg for the
ficulty [3]. Using a redundant source of informatiequiva- cases ofK=L=2 andK=1, L=2 respectively, evaluated
lent to the introduction of a nonzero fiekd, in the statistical by numerical solutions from the replica framewof#ia-
physics description one effectively increases the probability monds and using the BP/TAP method. The casekof L
of the initial conditions being closer to the ferromagnetic =2 shows consistent successful decoding for the code rates
solution. The main drawback of this method is that the in-examined and up to noise levels slightly below, but close to,
formation per transmitted bit is significantly reduced due toShannon’s bound. It should be emphasized here that initial
this redundancy. In order to investigate how the maximunconditions are chosen almost randomly in the BP/TAP
performance is affected by transmitting biased messages, weethod, with a very slight bias dd(10 !9 in the initial
have evaluated the critical information rdtiee., code rate magnetization. This result suggests usiyg L =2 codegor

S _ ~S _ n _ ~n _
Mui=&, Mu=&, My=E, my=¢,

which provides perfect decodingn=1), and the paramag-
netic solution M=0)
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FIG. 4. The spinodal point noise leve} for K=1, R=1/6, and

several choices df. Numerical solutions are denoted by circles and

0 01 02 03 04 05 TAP decoding solutionsN=10% by black triangles.

p

FIG. 3. Critical code rate as a function of the flip rateob- The memory allocation for generating the matﬁ)glcs
tained from numerical solutions and the TAP approaiik=(L0%), scales a@(NZ) since this matrix is typically denséc) The
and averaged over 10 different initial conditions with error barsencoding itselfzo=C;1055 (mod 2) requireD(N?) opera-
much smaller than the symbol siz@) Numerical solutions foK g These computational costs become significant when
=L=3,C=6, and varying input biaé; ((J) and TAP solutions for long messagedl=10"—10 are transmitted, which is typi-

both unbiased {) and biased (.>) messages, 'n.'t.'al Cond'.t'ons .cally the case for which Gallager-type codes are being used.
were chosen close to the analytical ones. The critical rate is multis

plied by the source information content to obtain the maximal in-ThIS may require long encoding times and may delay the

formation transmission rate, which clearly does not go bey@nd transmission. - .
=3/6 in the case of biased messages; for unbiased patterns These problem_s may be solved by utilizing Systematlcally
H,(fo)=1. (b) For the unbiased case =L =2; initial conditions ~ cOonstructed matrices instead of random ones, with some
for the TAP (+) and the numerical solutionsX() were chosen to  Similarity to the constructions of4]. Here, we present a
be of almost zero magnetizatioie) For the case dK=1,L=2 and simple method to reduce the computational and memory
unbiased messages. We show numerical solutions of the analytic&PSts toO(N) for K=L=2 andK=1, L=2 codes. Our
equations ¢ ) and those obtained by the TAP approach)( The ~ proposal is mainly based on using a specific matrixGqr,
dashed line indicates the performancekcf L =2 codes for com-
parison. Codes wittK=1, L=2 outperformK=L=2 for code
ratesR<1/3.

similar), rather tharkK,L=3 codes, although the latter may _

potentially have better equilibrium properties. Cn=
In Fig. 3(c) we show that for code ratéR<1/3, codes

parametrized by =1 andL =2 outperformK=L=2 codes

with one additional advantage: Due to the absence of mirror 0O 00 O

symmetries these codes converge to the ferromagnetic state

much faster, and there is no risk of convergence to the mirroj,stead of a randomly constructed one. Ry, we use a

solution. The difference in performance becomes even larggs,dom matrix oK = 2 (or K=1) nonzero elements per row
as the code rate decreases. Higher code rates will result iy pefore.

performance deterioration due to the low connectivity, even-

tually bringing the system below the percolation threshold.
In Fig. 4 we examine the dependence of the noise level 0

the spinodal poinpg on the value ofL, and show that the

: (34

=}

o O - -
S O
= = O O
O O O
o O O O
o O O o©

=

1

The inversgmod 2 of E;l becomes the lower triangular
Watrix

choice ofL=2 is optimal within this family. Codes with 1000 0 0
=1 have very poor error-correction capabilities as their 1 1 0 O 0 0
Hamiltonian (8) corresponds to the Mattis model, which is 111 0 0 0
equivalent to a simple ferromagnet in a random field attain- c-l= (35)
ing magnetizatiom=1 only in the noiseless case. A 1111 00

VI. REDUCING ENCODING COSTS 11 1 1 1 1

The BP/TAP algorithm already offers an efficient decod-
ing method, which require®(N) operations; however, the This suggests that encoding the mességeto a codeword
current encoding scheme includes three costly proceges. 2 would require onlyO(N) operations by carrying it out in
The computational cost of constructing the generating matrixwo steps,
CglCS requiresO(N®) operations for inverting the matrix
C,, and O(N?) operations for the matrix multiplicatior{b) t,=(Cs§), (mod 2) for u=1,2,...M, (36
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TABLE |. Comparison between the maximal tolerable noise level for codes based on randomly and
systematically structured matrices in the casé&KefL =2; decoding is carried out using BP/TAP and the
transmission channel used is the BSC. The performance of the two matrix structures is extremely similar.

RateR=K/C 0.6666 0.5 0.4 0.3333 0.2857 0.2 0.1

Systematic matrix 0.0527 0.0934 0.1222 0.1416 0.1598 0.1927 0.2476
+0.0016 *0.0019 =*£0.0012 =*0.0016 *0.0007 =*0.0016 =*0.0010

Random matrix 0.0528 0.0930 0.1206 0.1439 0.1599 0.1931 0.2477
+0.0009 *0.0019 =*0.0010 =*=0.0017 =*0.0010 =*0.0014 =*=0.0014

2=(C,',=2)_,+t, (mod 2) for u=2,... M, These results are complementary to those obtained so far

. (37) by the information theory community and seem to indicate

0 ) _ that worst-case analysis can be, in some situations, too pes-
with z;=t,. Both steps requir®(N) operations due 10 the  gjmistic when compared to the typical performance results.
sparse nature of. In addition, the required memory re- geyond the theoretical aspects, we proposed an efficient
sources are also reduced@{N) since only the sparse ma- method for reducing the computational costs and the re-
trix Cs should be stored. _ _ _quired memory allocation by using a specific construction of

The possible drawback of using the systematic matrixpe matrixC,,. These codes are highly attractive and provide
(34) is a deterioration in the error-correction ability. We have g yer computational costs for both encoding and decoding.
examined the performance of this construction numericall{,5rious aspects that remain to be studied include a proper
to discover, to our surprise, that it is very similar to that of ynalysis of the finite size effects for rates below and above
random matrix based codes, as shown in Table I. Althoughne channel capacity, which are of great practical relevance;

our examination is limited only to BSC and independentyng the use of statistical physics methods for optimizing the
identically distributed messages, it seems to suggest th@kairix constructions.

some deterministically constructed matrices may be imple-
mented successfully in practice. ACKNOWLEDGMENTS
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and making use of the established methods of statistical

physics. We have discovered that for a certain choice of The purpose of this Appendix is to derive the averaged
parameters, eithet=3 or L=3, K>1, these codes poten- free energy per spifEq. (15)]. Applying the gauge transfor-
tially saturate the channel capacity, although this cannot bgation

used efficiently in practice due to the decrease in the basin of

attraction, which typically diverts the decoding dynamics to- 3=,
ward the undesired paramagnetic solution. Codes \Kith

=2 and L=2 show close to optimal performance while

keeping a large basin of attraction, resulting in more practi- S—Siéi (A1)
cal codes. Constructions of the fo= 1, L =2 outperform

_ i (=1
ieLg(n) jeLlp(p)

the K=L=2 codes for code ratdR<1/3, having improved T
dynamical properties. to Eq.(9), one may rewrite the partition function in the form
N M
Z(g,m):g exp( Fo2, §ia+Fnj§1 m»)(il ..... H lllll BP0t Pl i)
x%(1+Sil-~-SiKrjl~--r,-L)]. (A2)

Using the replica method, one calculates the quenched average mihtlp@wer of the partition function given by
N n M n
Feeoee £ 3 (o r3 63, ) (enlri3 0 3, 7))
sl...gh ... 0 i=1 a=1 ¢ ¢

><< I1 1L (143D, iy jL>(S1€;--~S“KTJ-“1--~TJ-“L—1)]> ; (A3)
D

(i1s e K1, - ) @=1
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where averages with respect§acan be easily performed,

n

e_FSE s’
a=1

£ i=1

1+tanth) ergl s ( 1—-tanhFg

:ﬂl <exp(§Fsi Sa)> , (A4)

3

NEREE

and similarly for(---),. The main problem is in averages over the sparse tensor realizationhich have complicated
constraints. Following the procedure introduced by Wong and Sherringfinthis is rewritten as

< I 11 [1+%D<i1 ---- il jL>(SiD11'”SiaKTJql'”TjaL_l)]>
D

(i1, ikl ey a=1

=1

N M
=N—1% 11 5(<i1 > Dy iy jL)_C)H 5(<i1 > Dy i jL)_L>

n
X I1 I (1+3D4,, . 4,

(ig, ... DEIETEES jL) a=1 AR

(S-St Tj"1~~rf’—1)], (A5)

1 Tk

where (- - ) represents Dirac’$ function and

N M
N=;i1:[l5< > 1y Pl iz ,-L>—C)H 5(. > Dy i 1L>_L) (AB)

represents the normalization constant.
We first evaluate this normalization constant using the integral representation &fftinetion and Eq(A6), to obtain

> , >D<il ..... il e jL>_L>

N 2rdh: M 2ndy: N _
T (e L e S, L e e
. : < ik .

=1 0 =1 0 i=1 \(ip, ... (P ETEE i
M
xI] 11 ei"iD@lvu-,iK:J.Jz,--~-J|_>)
=1\ (g, iKio, e, i)
N M
27dNi i 2rdv; i il iv; \D
- 0 a-icy — gLy oM@ Vi @ I Dy i i)
ﬂl(fo 27° 11:[1 fo 2n® % (ig, ..., iH‘l ..... jL)[(e e @@ ) T )]
N M
dz, dy,
— T 5—(C+1) — Jy-(L+D ... 7 Y. LY.
iljl[ 3g27ri Z ]]Ul[ §2wi Yi ](il ''''' i!_;[jl ''''' i (A+Zi - Z YY), (A7)

where we made use of the transformati@hs e”i,Yj =e'”, and carried out summations with respect to the realizatiaR.of
Expanding the product on the right hand side, one obtains

I [1+(Zi1~-~ZiKYJ-1~-~YJ-L)]=ex;{. > .>In[1+(Zi1~-~ZiKYJ-l~-~YJ-L)]
:exp(. > (Zil"'ZiKYil"'YiL)>

:ex;{%(ﬁlzi)i—l!(_% Yj)L] (A8)
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in the thermodynamic limit. Using the identities

:qua(ﬁlzi—q), 1=fdr5(§ Yj—r), (A9)

Eq. (A7) becomes

N[ dqg(EN ) [[ar 5(2 = I ( § 222 |1 | § 2y o)

qK r|_ N M
- _ (C+1) NT.
f f f 2mex ki ”).1( §§2mz ex;iqu))JHI

dy;
§2 IY (Hl)exp(rY))

(A10)
The contour integrals provide the constants
N ac N M FL M
(C+1) a1 (L+1) .
I1;[1( fﬁ —Z exp(qZ)) (C!) : 1;[ ( 3€2mY exp(rY)) (L!) : (A11)
respectively. Applying the saddle point method to the remaining integrals, one obtains
K rL
N=extrg gr.i exp{ KL —qg—rr+NCIng—NIn(CH)+MLInr—M In(Ll)” (A12)
which yields the following saddle point equations with respeaj,t, g, andr:
NC ML
q=—=, I=—«,
q r
. qul rL . rLfl qK
k- T K (AL3)
providing the normalization constant
qc FLAM qK rL
N= cr) o) AT —qq-—rr (A14)
Equation(A5) can be evaluated similarly. Following a similar calculation to that of Bq.) provides
<<i1 ..... i.!_;[il ) aH1 [1+3 Dy, iz J'L>(S"a1 ’ SIK i 1)]>D
N M
=N\ H é 7 (C+1) H ﬁyf('—*l)
= 2mi Z =1 2mi !
<, .H, | 14+(Z - 2Z;, YJL)H FA+S St Jl---frﬁ)). (A15)
1o Kolas oo L

Using the expansion
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m:

@ a 01 ] QA2 ] Qa2 a1, a2 al ‘1’2
1 arsy-sir )= 1+E S S 2 (SIS (SIS (i)
.« .. al-.. an-.. al-.. an al.-. an “ e al.-. an
" +(a1,2. an) (S'l S'l) (S'K S'K)(le le) (TjL TjL)
n
= al... am-.. a-. m al. am... al-.. am
mE:O (al,Z,aW (S'l S'l) (5 'k )( 1) (TjL TjL)’ (A16)
results in
L N 1+(ZiZ;, Y]L)H FA+ST S TJ-L))
n
2exl{<il ’’’’’ igl .... . Zil' . 'ZiKYil' . .YJ.LOEl (1+S|l. . 'S'KTJ'l' ..T]_L)/z
1 n
= — . DY . . . e e . al-.. am alo-. am
exp(zn (g, ..., igl ..... i Ziy iy YJLmzzo <al,2,am>(s|1 S (S S0
@y Xm g Xm
X( jl. ]1) (TjL" TiL))
1 n
B — ] Q%m7 ] Oy ag am ay am
exp[z”(mzo (o1, T ) <I1,.2--,|K>(S'1 Sy (8 D ,.2..40(711 L)) Y
1[ 2 1 (X K1
—~ - - @y am iyl @my L
exp{zn{m_oml _____ . K!<|le, S™Zi| (e YJ)H. (A17)

(g, ... i!_;[jl ..... i) 1+(Zi1‘ Zi YJl YJL)QEL (1+ S'K I TjL)>
n N M
= H f Aoy, ... ) Esal Samzi_qal...a Jdra oo 5(2 Tal 7-mYJ_rozl...oz
m=0 (aq, ..., am) 1 Tmo\ = ! ! ! ’ 1 mol = J J g Am

2” m=0 (ay, ..., am K! m=0 (ay, ..., am m m
n n
T Dy T am+m:0<a1’2,am> Aoy, .oy ST SZ,
n M
+ 22X e e T, } (A19)
m=0 (ay, . .am i=1
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In order to proceed further, one has to make an assumption about the order parameter symmetry. We adopt here the replica

symmetric ansatz for the order parametgrs, q, andr. This implies that the order parameters do not depend on the explicit

indices but only on their number. It is therefore convenient to represent them as moments of random variables defined over the
interval[ —1,1],

(A20)
oy, =0 AXEGOK, Ty = [ a5
Then, each term in EqA19) takes the form
n qz @ rlt; @ qK "
m§_)0< > > lK' . 1L' m:F > ( )J H dxgr( Xk)kaH dyip(ynyl"
= Qpy ey ¥ . . H m=0

it K
:%—lf H xkrr(xk)f H dyip(yr)

1+H ka y|) , (A21)

N
mZO< 2 >E1al ..... amiEl Slal...si”‘mzi:qIE Z f de(X)E xM - E g%, .. g%m
=0 (ag, ..., am = =

N
=q>, Z fde(x)H (1+S%). (A23)

Substituting these into EqA19), one obtains

(ZELD s~ 2 #EWH <exp<§F > s“)>§lh_ﬂ[1<exp<g|:né >>g ﬁ ( fﬁZm I(C+1)>

M
Yj
H ( o Y (L+1)>extr{wwpp}<exp{ {K' L'f H dx; (X))

L K L
Xf IT dyiptyn| 2+ xI1 vy
=1 =1 i1

}—qaf dxd&w<x>%<i><1+x“x>“—rr“f dy dYp(y)p()(1+yY)"

+q2 zfdm H (1+S”‘x)+r2 deyp(y)H (1+70 y)]) (A24)

a=1

The term involving the spin variablesis easily evaluated using the residue theorem,

2o 5§ e

ac c n @ c N
= af |H1 dx (X)) <H (eg': H (1+x)+e € H (1— x,))> 1 , (A25)
o ¢

N n
X exp( a2, i | dxw(o Il (1+ s?i))

a=1

and similarly for the term involving the variables Substituting these into EqA24), one obtains theth moment of the
partition function,
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<Z(§,g,1>)”>§,§,p=extr{m;r,p,,;}(expl—Ncde d&w(x)%(%)|n(1+x§<)“—1)—ML(fdy dyp(y)p(Y)In(1+yy)"—

zn{NCJ(H dka(xk)>(|1:[ley|p(y|))ln 1+kf[l xkllel Y|>n—1”

C C C n N
xf k1:[1 dik%(ik))<(er§k1'[1(1+§<k)+eFss‘kl"[l(l—)}k))>
I3
L L L n M
xf Hd“y|/3<9|>)<(anfH (1+y)+e "] (1—9l>)> ) (A26)
=1 i=1 =1 [

Finally, in the limitn—0 one obtains

<Z(§1§1D)n>§,§,D_ 1
nN

1
N(ln Z(§!§!D)>§,§,D: r!'ino

=exXtl 7 o0}
e
K
X < In
L

+e‘Fnﬂ_Hl (1-y))

C R . oa .. CL . A R
- Rln 2—CJ dx dxa(X) m(x)In(1+xx)— ?f dy dyp(y)p(y)In(1+yy)
K L C
[T xIly +f I1 dg(k%(%k))
k=1 1=1 k=1
Cll& n. - .
> +RJ(|1:[1 dylP(Y|))<|n(eF”{|Hl(1+Y|)
4
> 1 (A27)
¢

K L
kll kaW(Xk)) |1;[1 dylP(Yl))m 1+

C C
eI (1+x0+e P (1—%p)
k=1 k=1

APPENDIX B: EVALUATION OF THE MAGNETIZATION Decoupling the dynamical variables and introducing auxil-

Here, we derive explicitly Eq$18) and(19). After using E[aryéfun;g(())nsﬂ), l;( ), p(+), andp(-), of a similar form
the gauge transformatidy— &;S;, the magnetization can be 0 Eq. (A20), one obtains
written as

C
1 (m’)gzo= J [T dx m(x)
m=3 2 (SIMm))¢zo (B1) =1
N REZE

C
><<tanH’ FS§+k2 tanhls(k)> , (B3)
=1
&

introducing the notatiom;=(S;) ;... (Jauged averageFor
an arbitrary natural numbgx, one can computpth moment

of m; using the saddle point solution af(-).
Employing the identity
1 o2
(m >§£D_rlwlinopilinx<{sl 71},.2..,{5”,7“} SeS s ) Nof2n)/14x\2" M 1—x\™
: 39“X>=‘1+2J[';,,Zo(m ==
X exp( -B> Ha) > : (B2) (B4)
a=1 £0D

which holds for any arbitrary real numbers[ —1,1] and
whereH, denotes the gauged Hamiltonian of #ih replica.  Eqgs.(B3) and(B4), one obtains
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where we introduced a new notation for the distribution

thus reproducing Eq$18) and (19).

C

b(2)= f Bl dx; (X))

C

Z—Fé— > tanh‘1§<k) > ,
= ;

(B6)
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