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Dynamics of structural models with a long-range interaction: Glassy versus nonglassy behavior
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By making use of the Langevin dynamics and its generating functional~GF! formulation, the influence of
the long-range nature of the interaction on the tendency of the glass formation is systematically investigated. In
doing so, two types of models are considered:~i! the nondisordered model with a pure repulsive type of
interaction, and~ii ! the model with a randomly distributed strength of interaction~a quenched disordered
model!. The long-ranged potential of interaction is scaled with a number of particlesN in such a way as to
enable for the GF the saddle-point treatment as well as the systematic 1/N expansion around it. We show that
the nondisordered model has no glass transition, which is in line with the mean-field limit of the mode-
coupling theory~MCT! predictions. On the other hand, the model with a long-range interaction that has a
quenched disorder leads to MC equations which are generic for thep-spin glass model and polymeric manifold
in a random media.

PACS number~s!: 05.40.2a, 71.55.Jv, 75.10.Nr
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I. INTRODUCTION

The theoretical description of slow dynamics is a cruc
point to elucidate the nature of the glass transition in str
tural glass-forming liquids. One of the commonly used a
proaches, mode-coupling theory~MCT!, was designed from
the very beginning for the supercooled simple liquids@1#,
i.e., for the nondisordered models~as opposed to the mode
which contain quenched disorder naturally!. Later it was
proven that MC equations become exact for a number
spin-glass models@2–8# as well as for the polymeric mani
fold in a random media@7–11# ~i.e., for the models with
quenched disorder! provided that the number of variabl
components goes to the infinite.

Actually, applicability of the MC equations has been su
stantially extended to the case when the time translation
variance and the fluctuation-dissipation theorem does
hold any more@8#. This striking similarity between the mod
els with and without quenched disorder suggests that
effective disordered potential~e.g., in a supercooled liquid!
is in a sense ‘‘ self-induced’’ and the difference betwe
such a ‘‘self-induced disorder’’ and the quenched disor
might not be crucial@7,8#.

In order to provide some insight into self-induced diso
der, we employed in Ref.@12# a Feynman variational prin
ciple ~VP! for a set of interacting particles. Indeed it wa
shown that the VP is capable of treating metastable state
the glass-forming system. The main point in Ref.@12# was
that the partition function representation in terms of fun
tional integrals is twofold:~a! either as an integral over th
local density,r(r ), or ~b! over the conjugated tor(r ) field
c(r ). It has beenassumedthat thecomponent averagefree
energyF̄ ~which is only meaningful in the supercooled r
gime! is equal to the variational free energyFVP. There are
at least four strong reasons in favor of this~at first sight not
obvious! assumption.

~i! The variational free energyFVP is an upper bound for
PRE 621063-651X/2000/62~2!/1560~17!/$15.00
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the canonicalfree energy, i.e.,Fc<F̄5FVP, as it should be

sinceFc5F̄2TS , where the complexityS>0 @13#.
~ii ! After implementation of VP, the initial problem is

reduced to a self-consistent random field Ginzburg-Lan
model~RFGLM!. Then, as was shown previously, the corr
sponding fieldc(r ) must be upgraded to areplicatedfield
ca(r ), wherea51, . . . ,n ~with the final limit n→0) and the
density fieldr(r ) plays the role of an ‘‘external’’ field. Note
that here the densityr(r ) is Gaussian due to the use of th
VP. Eventually the correlators ofc andr fields can be de-
termined self-consistently.

~iii ! The resulting replicated partition function fo
RFGLM has a typical form which may eventually lead to t
replica symmetry breaking~RSB!, structural glass transition
and the ‘‘self-induced’’ disorder.

~iv! Finally, in the case of the long-range interaction, t
partition function allows the expansion around the sad
point, or mean-field~MF!, solution. It is possible to show
then that thenext to the mean-field approximationand VP
merge and both become exact, i.e.,F̄5Fc and the glassy
phase does not appear.

Some evidence for this behavior was deduced from
results for the particles on anM- dimensional hyperspher
@14# at large dimensions,M→`.

The aim of this paper is to face the full dynamical pro
lem for a nondisorded model with a long-range interactio
Using the expansion around the saddle-point solution,
derive the full equation of motion for the time-depende
density-density correlator and show that a ‘‘glassy’’ soluti
does not exist. Conversely, if we add a term describ
quenched disorder, by random distribution of the strength
the interaction potential, then the resulting equations of m
tion for two time density correlation and response functio
fall in the same class as MC equations which have b
widely discussed @2–11#. This means that the ‘‘self-
induced’’ disorder is not generic for the pure model with t
long-range interaction, and conversely on addition of
1560 ©2000 The American Physical Society
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quenched disorder the phase space becomes very rugge
sulting in slow dynamical processes.

The paper is organized as follows. In Sec. II we introdu
the theoretical model without quenched disorder. Its dyna
ics is discussed by using the functional integral techniq
The saddle-point solution yields the mean-field dynam
Expansions around the saddle point yield one-loop cor
tions. The Legendre transformation provides the possib
of the analysis of the full dynamic correlation matrix. In Se
III, quenched disorder is introduced by a ‘‘random bo
model’’ and a Gaussian disorder. The corresponding ge
ating functional~GF! is computed by the self-consistent Ha
tree approximation, which results in a set of coupled Lan
vin equations, which are solved in their asymptotic regim
More details on the calculations are laid out in the cor
sponding Appendixes.

II. THE MODEL WITHOUT QUENCHED DISORDER

We start from a simple model system which consists
interacting particles. To do so, let us consider a set
N(@1) particles ind-dimensional space interacting by a pa
potential of the form

V~r !5S m

NDexp~2kr !

4pr a
. ~2.1!

This is a typical example of a long-range potential with
characteristic lengthk and a coupling constantm/N. The
choice of this potential is twofold. It contains a cutoff atk21

and thus allows to control the range of the interaction. Mo
over, at small scales (r ,k21) it consists of a typical power
law decay with long-range character, if 0,a,2. Therefore,
the so chosen potential allows us to keep control of the ra
and nature of the interaction, which will become essen
below. To ensure extensivity of the total interaction ener
we require that the integral*ddV(r )5O(N0), i.e., it does
not depend on the number of particlesN. As a result, we
have k}N21/(d2a). The intermolecular potential~2.1! has
the form of the generalized Kac potential,

V~r !5kdf ~kr !, ~2.2!

which has been used for the rigorous treatment of the v
der-Waals theory@15#. In order to provide conditions for the
expansion around a saddle point, carried out later on~see
below!, we should require that the lengthk21 must be larger
compared to the characteristic size of the system~which
scales naturally asN1/d) at N→`. As a consequence, we fin
the limits for the range parametera,

0,a,d. ~2.3!

Below we shall restrict our considerations to the cased
53,a51, and the strength of the interactionm.0 ~pure
repulsion! without loss of generalization in the main stat
ments that we are going to predict. Then the Fourier tra
formation of the potential~2.1! takes the especially simpl
form
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V~k!5S m

ND 1

k21k2
, ~2.4!

which allows accurate analytic calculations. In the limitN
→` we have thusk2}N21, but the relevant minimum wave
vector iskmin

2 }N22/3 and thusk2 can be actually neglecte
under the integration over the wholek space. As a result, we
arrive formally at a one-component plasma model~OCP!
@16# where the electroneutrality is implicitly provided by
neutralizing background.

A. The generating functional method

In the following we set up the relevant equations of m
tion for the model system. We restrict ourselves to t
Langevin dynamics, which can be comfortably formulated
terms of dynamic functionals, which allows the systema
1/N-expansion treatment. The Langevin dynamics ofN par-
ticles interacting via the potential~2.1! ~at d53,a51, and
m.0) is described by the equation of motion

m0

]2

]t2
r (p)~ t !1g0

]

]t
r (p)~ t !

2
m

N (
m51

N

¹v~r (p)2r (m)!5f(p)~ t !, ~2.5!

wherem0 and g0 are the mass and the friction coefficien
respectively, p51,2, . . . ,N, and v(r ;k)5exp(2kr)/4pr .
The random force in Eq.~2.5! is Gaussian witĥ f i

(p)(t)&
50 and the correlator

^ f i
(p)~ t ! f j

(n)~ t8!&52Tg0dpmd i j d~ t2t8!, ~2.6!

where from now on we work in units where the Boltzma
constantkB51.

As was mentioned, it is more convenient to reformula
the Langevin problem~2.5! and~2.6! by using the celebrated
Martin-Siggia-Rose generating functional~GF! method@17#.
The method was first applied for thef4 model with the
long-range interaction in@18# and for the polymer melt dy-
namics in@19,20#. Despite the fact that the Langevin equ
tion ~2.5! is of the second order, it is possible to show th
the Jacobian which appears under transformation to the fu
tional variables is still equal to one~see the Appendix in
@21#!. After using this technique for the problem~2.5! and
~2.6!, the GF takes the form

Z$•••%5E )
p51

N

Dr (p)~ t !D r̂ (p)~ t !expH (
p51

N

A0@r (p), r̂ (p)#

1E dt(
p51

N

(
m51

N
m

N
ir̂ j

(p)~ t !¹ j
(p)v~r (p)2r (m)!J ,

~2.7!

where the action of the free system
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A0@r (p), r̂ (p)#5E dtH Tg0@ i r̂ j
(p)~ t !#21 i r̂ j

(p)~ t !Fm0

]2

]t2
r j

(p)~ t !

1g0

]

]t
r j

(p)~ t !G J . ~2.8!

In the following we are going to transform this functional
collective density variables. By using the transformations
the mass density

r~r !5 (
p51

N

d„r2r (p)~ t !… ~2.9!

and the longitudinal projection of the response field dens

p~r !5 (
p51

N

i r̂ i
(p)~ t !¹ id„r2r (p)~ t !… ~2.10!

for the GF one gets

Z$xa%5E )
a50

1

Dra~1!expH W$ra%

2
1

2E d1d2ra~1!Uab~1,2!rb~2!

1E d1ra~1!xa~1!J , ~2.11!

where the summation over the repeated Greek indices is
plied. In Eq.~2.11! we have introduced the two-dimension
field

ra~1![S r~1!

p~1! D , ~2.12!

wherea50,1 and 1[(r ,t). The ‘‘entropy’’ of the free sys-
tem is given as usual by

W$r,p%5 lnE )
p51

N

Dr (p)~ t !D r̂ (p)~ t !expH (
p51

N

A0$r
(p), r̂ (p)%J

3dFr~r ,t !2 (
p51

N

d„r2r (p)~ t !…G
3dFp~r ,t !2 (

p51

N

i r̂ j
(p)~ t !¹ jd„r2r (p)~ t !…G ,

~2.13!

Uab is the 232-interaction matrix

Uab~1,2!5S 0 V~ ur12r2u!

V~ ur12r2u! 0 D , ~2.14!

andxa(1) is a source field.
An alternative valuable representation of the GF can

obtained through the ‘‘functional Fourier transformation’’
o

y

-

e

exp$F$ca%%5E Dra~1!expHW$ra%2 i E d1ra~1!ca~1!J
~2.15!

and its inversion

exp$W$ra%%5E Dca~1!expHF$ca%

1 i E d1ra~1!ca~1!J . ~2.16!

The substitution of Eq.~2.13! into Eq. ~2.15! leads to the
explicit expression for the free-system GF,

exp$F$ca%%5E )
p51

N

Dr (p)~ t !D r̂ (p)~ t !

3expH (
p51

N

A0@r (p), r̂ (p)#2 i (
p51

N E dtc~r (p)!

1 i (
p51

N E dti r̂ j
(p)~ t !¹ jf~r !U

r5r (p)(t)
J ,

~2.17!

wherec(1) andf(1) are components of the column var
able

ca~1![S c~1!

f~1! D . ~2.18!

By making use of Eq.~2.16! in Eq. ~2.11! and after func-
tional integration overra(1), onegets

Z$xa ,la%5E )
a50

1

Dca~1!expH F$ca%

1
1

2E d1d2@ ica~1!1xa~1!#@U21#ab~1,2!

3@ icb~2!1xb~2!#1E d1ca~1!la~1!J ,

~2.19!

where we have also added a source fieldla(1) conjugated to
ca(1). As a result, Eqs.~2.11! and ~2.19! provide two
equivalent representations of the GF. For the purpose of
pansion around the saddle point, we use representation~2.19!
at la(1)50, which after the transformationca→ca1 ixa
yields

Z$xa%5E )
a50

1

Dca~1!exp$2NA@ca ;xa#%, ~2.20!

which is appropriate for a saddle-point integration, since
particle numberN is large. The action hereby is given as
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A@ca ;xa#5
1

2E dtE d3rd3r 8ca~r ,t !@v21#ab

3~r2r 8;k!cb~r 8,t !2
1

N
lnE )

p51

N

Dr (p)~ t !

3D r̂ (p)~ t !expH (
p51

N

A0@r (p), r̂ (p)#

2 i (
p51

N E dtra
(p)~ t !@ca„r

(p)~ t !…

1 ixa„r
(p)~ t !…#J , ~2.21!

and the interaction matrix

vab~r ;k!5S 0 1

1 0D exp~2kr !

4pr
. ~2.22!

Recall that the relationk}N21/2 is necessary for the validity
of the saddle-point integration. Moreover, we have defin
the column vector

r a
(p)~ t !5S 1

2 i r̂ j
(p)~ t !E dt

d

dr j
(p)~t!

D ~2.23!

for convenience.

B. The saddle-point solution and expansion around the SP

Minimization ofA@ca ;xa# with respect toca(1) leads to
the SP equations for the mean fieldsc̄a(1),

c̄a~r ,t !52
im

N E d3r 8vab~r2r 8!^rb~r 8,t !&SP,

~2.24!

where the averagê•••&SP is calculated by using thecumu-
lant GF,

PSP$c̄a1 ixa%[
1

N
lnE )

p51

N

Dr (p)~ t !D r̂ (p)~ t !

3expH (
p51

N

A0@r (p), r̂ (p)#

2 i (
p51

N E dtra
(p)~ t !@c̄a„r

(p)~ t !…

1 ixa„r
(p)~ t !…#J . ~2.25!

The correlation matrix in the random-phase approximat
~RPA! is defined in such a way that

Sab~1,2!5 lim
c̄a1 ixa→0

Fd^ra~1!&SP

Ndxb~2! G . ~2.26!
d

n

After linearization of Eq.~2.25! with respect toc̄a1 ixa ,
the 232 RPA correlation matrix is easily found to coincid
with the well-known form@19#

Sab~1,2!5$@ F̂211m v̂#21%ab~1,2!, ~2.27!

wherev̂ is the interaction matrix~2.22! andFab is the cor-
relation matrix for the free system. Fab(1,2)
5^Dra(1)Drb(2)&0 /N has the form

Fab~1,2!5S F00~1,2! F01~1,2!

F10~1,2! 0 D . ~2.28!

In Eq. ~2.28!, F01(1,2) andF10(1,2) are response function
whereasF00(1,2) stands for the correlation function. Th
relation between them is given by the fluctuation dissipat
theorem~FDT!, which in (k,t) representation has the form

2b
]

]t
F00~k,t !5F01~k,t !2F10~k,t !. ~2.29!

It is easy to check that in this case the FDT for the RPA-ty
correlation matrix~2.27! also holds,

2b
]

]t
S00~k,t !5S01~k,t !2S10~k,t !, ~2.30!

whereb51/T is the inverse temperature. The correspond
elements of the RPA matrix~2.27! are of an especially
simple form in the Fourier (k,v) representation, namely

S00~k,v!5
F00~k,v!

@11mv~k!F10~k,v!#@11mv~k!F01~k,v!#
,

~2.31!

S01~k,v!5
F01~k,v!

11mv~k!F01~k,v!
, ~2.32!

S10~k,v!5
F10~k,v!

11mv~k!F10~k,v!
. ~2.33!

It turns out to be interesting to recover the well-known for
in the static limit, where we haveS01(k,v→0)5bSst(k)
5@(bFst)

211mk22#, and for the correlator SRPA(k)
5Sst(k)/r0 one gets

SRPA~k!5
1

11
bmr0

k2

, ~2.34!

where we have usedFst5r0. This expression is completel
equivalent to the correlator for the OCP model@see Eq.
~10.1.7! in @16## with the direct correlation functionc(k)
52mb/k2 and the Debye wave numberkD5(bmr0)1/2.

Now let us expand the action~2.21! around the SP solu
tion ~2.24! up to the second order with respect to the flu
tuationsca(1)2c̄a(1). After the functional integration, we
arrive at the following result for the GF:
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P$xa%[
1

N
ln Z$xa%

5PSP$c̄a1xa%2
1

2N
Tr@ ln Tab~1,2!#, ~2.35!

whereTab(1,2) is the inverse matrix of the effective inte
actions@24#,

Tab~1,2!5
1

m
@v21#ab~1,2!1

1

N
^Dra~1!Drb~2!&SP.

~2.36!

In Eqs. ~2.35! and ~2.36! we deliberately keep the extern
field xa(1) nonzero because it is to be used in the n
subsection for the Legendre transformation.

C. The Legendre transformation

The functional Legendre transformation is a general w
to provide the Dyson equation for thefull correlation matrix
Gab(1,2) @22#. In doing so, theirreducibleGF,G$^ra(1)&%,
is defined by the identity

G$^ra~1!&%1P$^xa~1!&%5E d1^ra~1!&xa~1!.

~2.37!

By doing functional differentiation of Eq.~2.37!, one gets

xa~1!5
dG$^ra~1!&%

d^ra~1!&
~2.38!

and

@G21#ab~1,2!5
d2G$^ra~1!&%

d^ra~1!&d^rb~2!&
. ~2.39!

Taking into account the result in Eq.~2.35!, we find the
following result for GF:

G$^ra~1!&%5GSP$^ra~1!&%1
1

2N
Tr@ ln Tab~1,2!#,

~2.40!

where

GSP$^ra~1!&%52PSP$xa%1E d1^ra~1!&xa~1!.

~2.41!

In Eq. ~2.40! one should considerxa(1) as a functional of
^ra(1)& given by Eq.~2.38!. Double differentiation of Eq.
~2.40! leads to an equation of the Dyson form,

@G21#ab~1,2!5@S21#ab~1,2!2Sab~1,2!, ~2.42!

where the RPA-correlation matrix,Sab(1,2), is defined by
Eqs. ~2.31!–~2.33! and the ‘‘self-energy’’ functional
Sab(1,2) has the form
t

y

Sab~1,2!52
1

2N
TrH d2

d^ra~1!&d^rb~2!&
ln Tgd~3,4!J

xa50

.

~2.43!

In Eq. ~2.43!, the ‘‘trace’’ is taken over the variables 3,4 an
indicesg,d. The explicit differentiation in Eq.~2.43! leads to
the result

Sab~1,2!52
1

2N
TrH T̂21

d2T̂

d^ra~1!&d^rb~2!&
J

xa50

,

~2.44!

whereT̂ is a short-hand notation of the matrixTgd(3,4) and
we have taken into account thatdTab(1,2)/dxg(3)
5^Dra(1)Drb(2)Drg(3)&SP/N50 at xa50 because the
fluctuations are Gaussian. Further calculation yields

d2Tgd~3,4!

d^ra~1!&d^rb~2!&

5E d5d6
1

N
^Drg~3!Drd~4!Drv~5!Drx~6!&SP

3Rvb~5,2!Rxa~6,1!, ~2.45!

where

Rab~1,2!5
dqa~1!

d^rb~2!&
~2.46!

and the full mean field

qa~1!52 i c̄a~1!1xa~1!. ~2.47!

The expression forRab(1,2) can be easily found by differ
entiation of Eq.~2.47! with respect tô rb(2)&. Taking into
account Eqs.~2.24!, ~2.38!, and~2.39! at xa→0 one gets

Rab~1,2!5@G21#ab~1,2!

2mE d4d3vav~1,4!Svg~4,3!Rgb~3,2!

~2.48!

or finally

Rab~1,2!5E d3$@ 1̂1m v̂Ŝ#21%ag~1,3!@Ĝ21#gb~3,2!,

~2.49!

where the hatted variables stand for the correspondin
32 matrices. Substitution of Eqs.~2.49! and ~2.45! in Eq.
~2.44! yields

Sab~1,2!52E d3d4Kgd~3,4!@G21#ga~3,1!

3@G21#db~4,2!, ~2.50!

where the 232 vertex matrix has the form
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Kab~1,2!5E d3d4d5d6$@~m v̂ !211Ŝ#21%dg

3~4,3!Sgdvx
(4) ~3,4,5,6!$@ 1̂1m v̂Ŝ#21%va

3~5,1!$@ 1̂1m v̂Ŝ#21%xb~6,2!. ~2.51!

In Eq. ~2.51!, Sabgd
(4) (1,2,3,4) is the four-point~response!

correlator matrix in the RPA,

Sabgd
(4) ~1,2,3,4!5

1

N2
^Dra~1!Drb~2!Drg~3!Drd~4!&SP.

~2.52!

The explicit calculation ofSabgd
(4) (1,2,3,4) is implemented in

Appendix B. The vertex matrix can be seen as a one-l
diagram~see Fig. 1!.

The higher-loop contributions, which include genera
speaking 2m-point correlators,Sab . . . g

(2m) (1,2, . . . ,2m), can
be also considered, however the ‘‘self-energy’’ still has t
same convolution structure :Ŝ5Ĝ21* K̃* Ĝ21. Here the
vertex matrixK̃ab(1,2) is calculated in the RPA only. Tha
is why these contributions basically do not change our
sults.

As a result, in the (k,v) representation the Dyson equ
tion ~2.42! with the ‘‘self-energy’’ functional~2.50! reduces
to a quadratic one,

Gag~k,v!@S21#gd~k,v!Gdb~k,v!

2Gab~k,v!1Kab~k,v!50. ~2.53!

The coefficients of Eq.~2.53! trace the problem back to th
free system dynamics, which is embodied in the correlatio

FIG. 1. Diagramatic interpretation of the vertex matrix: the re
angle corresponds toSabgd

(4) (1,2,3,4); the dashed line to the effectiv

interaction matrix@(m v̂)211Ŝ#21; the wavy line to@ 1̂1m v̂Ŝ#21.
e

as
p

e

-

matricesFab(1,2) andFabgd
(4) (1,2,3,4). It is not surprising

then that a specification of the model for the free syst
dynamics is necessary, before going to the investigation
Eq. ~2.53!.

D. Analysis of the equation for the full correlation matrix

As we have mentioned, the explicit solution of Eq.~2.53!
needs the specification of the free system dynamics. T
simple models are most amenable for the theoretical tr
ment: the free diffusion model~FDM! and the relaxation
time approximation model~RTAM! @16,23#. The latter pro-
vide more reasonable dynamical information also for sh
time intervals,Dt,m0 /g0 , where the FDM completely
failed ~e.g., the sum rule does not hold!. It turns out that
upon calculation of the trace in Eq.~2.51!, the integral is
ultraviolet-divergent for FDM and only RTAM leads to th
finite result. The matrix elements for RTAM have the form

F00~k,v!5
2Fstk

2D

v21~k2D2v2t0!2
, ~2.54!

F01~k,v!5
bFstk

2D

2 iv1k2D2v2t0

, ~2.55!

F10~k,v!5
bFstk

2D

iv1k2D2v2t0

, ~2.56!

where we introduced the diffusion coefficientD5T/g0, the
characteristic time scalet05m0 /g0, and Fst5r0 for the
overall density. Att050 we return to FDM. In the case o
RTAM the solution of Eq.~2.53! for the full correlation ma-
trix reads

G01~k,v!5
11A124@2 ivtc2v2t0tc1xst

21#K01~k,v!

2@2 ivtc2v2t0tc1xst
21~k!#

,

~2.57!

G10~k,v!5G01~2k,2v!, ~2.58!

and

-

G00~k,v!5

tc

2b U11A124@2 ivtc2v2t0tc1xst
21~k!#K01~k,v!

2 ivtc2v2t0tc1xst
21~k!

U2

2K00~k,v!

Re$A124@2 ivtc2v2t0tc1xst
21~k!#K01~k,v!%

. ~2.59!
ith

sts
se
The explicit calculation of the matrixKab(k,v) @see Eq.
~2.51!# is given in Appendix C. The overall behavior of th
correlation functionG00(k,v) according Eq.~2.59! is shown
in Fig. 2 ~at m510,b50.1,r051, andt050.1). It can be
seen clearly there that no singularity appears atv→0.

The singularity, however, might be responsible for a gl
 s

transition. Instead, the low-frequency limit ofG00(k,v)
slowly changed with control parameters~which is not shown
in Fig. 2!. That means that for the nondisordered model w
a general repulsive long-ranged potential~2.1! the glass tran-
sition is not generic. This very important conclusion sugge
that for the model with a long-range interaction the pha



r
r

d

en
e
n-
l-
in
o

f.

es
le

he
s
v

on

t i
g

dy
w
-
th
u
r

t
ra

ed

to
re
uss-

tem
tion
re
lem
in-

ear

s,

1566 PRE 62V. G. ROSTIASHVILI AND T. A. VILGIS
space is too smooth to show a glass transition. In orde
obtain a glasslike transition, a competing interaction o
quenched disorder should be added. This leads to glassy
namics, as we will show in the next section.

It is interesting to note that for the generalized Kac pot
tial Eq. ~2.2!, where f (r ) and its Fourier transformation ar
positive definite functions, the MCT-memory kernel va
ishes atk→0 @25#. The corresponding argumentation is re
egated to Appendix D. The explanation for this result lies
the fact that the ‘‘cage effect,’’ which is a cornerstone
MCT, is missing in the MF limit.

The ‘‘glass transition’’ which has been studied in Re
@26# for the particles interacted via the Kac potential~2.2!
has a completely different nature. In Ref.@26# the function
f (r ) has a step form so that its Fourier transformf (k) is
negative at some value ofk. As a result, the system becom
unstable and a nonuniform configuration where the partic
are grouped into ‘‘clumps’’ shows up. It was found that t
slow dynamics of the MF model is associated with the
clumps and does not touch a single-particle motion. Ob
ously, it is different from the conventional glass transiti
@1#.

III. THE STRUCTURAL MODEL WITH COMPETING
QUENCHED INTERACTIONS

A. Specification of the model

In the previous sections we have shown in detail tha
the absence of disorder the dynamical spectrum chan
monotonically with a control parameter and no glassy
namics can be seen. The natural question which arises no
as follows: How will the introduction of competing interac
tions and/or quenched disorder affect the dynamics of
system discussed above? To provide an answer to this q
tion, we will use already existing models of heteropolyme
and their disordered two-body interaction@27–30#. The use
of these models and techniques is natural here, since
behavior of heteropolymers is well discussed in the lite
ture. In principle, two practical possibilities exist.

~i! The strength of the two-body interaction,m, in Eq.
~2.1! is now a random function of all pairs of the interact
particles,mpm ~‘‘random-bond model’’!.

FIG. 2. The correlation functionG00(k,v) vs rescaled variables
vt0 andkl0, wheret05m0 /g0 and l 05(t0 /bg0)1/2.
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~ii ! Each particle carries a single ‘‘charge’’sp , so that
mpm5j01bspsm and eachsp is randomly distributed
~‘‘random sequence model’’!.

It turns out to be sufficient for the purpose of this paper
restrict ourselves only to the ‘‘random-bond model,’’ whe
mpm does not depend on the choice of pairs and has a Ga
ian distribution,

P$mpm%}expH 2
~mpm2j0!2

2x2 J . ~3.1!

The competing long-range interactions frustrate the sys
of particles and the question is whether a glass transi
exists or not. Normally, frustration and frozen disorder a
enough for the existence of glassy phases. Here the prob
is more complicated, since the long-range nature of the
teraction may provide the opposite effects.

The averaging over the quenched disorder in Eq.~2.7!
~after the substitutionm→mpm) can be carried out in just the
same way as in Refs.@31,32#. Similarly, typical two-time-
dependent terms immediately appear. They are also bilin
with respect to the forces of interaction¹ jv(r ). In order to
rationalize these terms, it is convenient to introduce@besides
the mass density~2.9! and the response field density~2.10!#
the following collective variables:

Q0~r ,t;r 8,t8!5 (
p51

N

d„r2r p~ t !…d„r 82r 8p~ t8!…,

Q1~r ,t;r 8,t8!52 (
p51

N

i r̂ j~ t !¹ jd„r2r p~ t !…i r̂ l~ t8!

3¹ ld„r 82r 8p~ t8!…,
~3.2!

Q2~r ,t;r 8,t8!5 (
p51

N

i r̂ j~ t !¹ jd„r2r p~ t !…d„r 82r 8p~ t8!…,

Q3~r ,t;r 8,t8!52 (
p51

N

i r̂ j~ t8!¹ jd„r 82r p~ t8!…d„r2r p~ t !….

After the introduction of the four-dimensional column field

Qa~1;18!5FQ0~1;18!

Q1~1;18!

Q2~1;18!

Q3~1;18!

G , ~3.3!

wherea51, 2, 3, 4, and the 434 matrix,
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Gab~1,2,3,4!5F 0 v~1,3!v~2,4! 0 0

v~1,3!v~2,4! 0 0 0

0 0 0 v~1,4!v~3,2!

0 0 v~1,4!v~3,2! 0

G , ~3.4!

the whole expression for the GF takes the form

^Z&av$xa ,Ha%5E )
a50

1

)
a50

3

Dra~1!DQa~1;18!expH W̃$ra~1!;Qa~1;18!%2
j0

2NE d1d2ra~1!Uab~1,2!rb~2!

1E d1ra~1!xa~1!2
x2

4N2E d1d2d3d4Qa~1;2!Gab~1,2,3,4!Qb~3;4!1E d1d2Qa~1;2!Ha~1;2!J ,

~3.5!

where the entropy is given by

W̃$ra~1!;Qa~1;18!%5 lnE )
p51

N

Dr (p)~ t !D r̂ (p)~ t !exp$A0$r
(p), r̂ (p)%% )

a50

1

dFra~1!2 (
p51

N

r a
(p)~1!d„r12r (p)~ t !…G

3)
a51

4

dFQa~1;2!2 (
p51

N

pa
(p)~1;2!d„r12r (p)~ t1!…d„r22r (p)~ t2!…G . ~3.6!
f
n

a
e

’’
et
t

We had used the column operators

r a
(p)~1!5S 1

i r̂ j
(p)~ t1!¹ j ,1

D ,

pa
(p)~1;2!5S 1

2 i r̂ j
(p)~ t1!¹ j ,1i r̂ l

(p)~ t2!¹ l ,2

i r̂ j
(p)~ t1!¹ j ,1

2 i r̂ j
(p)~ t2!¹ j ,2

D ~3.7!

and the external field,Ha(1;2), conjugated toQa(1;2), has
been introduced also.

The two-point collective fields~3.2! have a meaning o
the dynamical ‘‘overlaps.’’ It is a dynamical generalizatio
of the Parisi ‘‘overlaps’’ in a replica space@33#. For ex-
ample, Q0(1;18) quantify density-density andQ2(1;18)
response-density overlaps, respectively, between two sp
time points. The ‘‘entropy’’~3.6! corresponds to the volum
in the dynamical phase space when not only fieldsra(1) but
also overlapsQa(1;18) are given. In a sense the ‘‘entropy
~3.6! is again the generalization of the entropy for the h
eropolymer spanned in a replica space at the given se
‘‘overlaps’’ @29#.

B. The saddle-point treatment

Let us introduce the functionalF̃$ca(1);Fa(1;18)% by
the functional Fourier transformation,
ce-

-
of

exp$W̃$ra~1!;Qa~1;18!%%

5E )
a50

1

)
a50

3

Dca~1!DFa~1;18!

3expH F̃$ca~1!;Fa~1;18!%1 i E d1ra~1!ca~1!

1 i E d1d2Qa~1;2!Fa~1;2!J . ~3.8!

After substitution in Eq.~3.5! and integration overra and
Qa(1;2), onegets

^Z&av$xa ,Ha%5E )
a50

1

)
a50

3

Dca~1!DFa~1;18!

3expH F̃$ca~1!;Fa~1;18!%

2
N

2j0
E d1d2ca~1!@v21#ab~1,2!cb~2!

2
N

x0
2E d1d2d3d4Fa~1;2!

3@G21#ab~1,2,3,4!Fb~3;4!J , ~3.9!

where
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F̃$ca~1!;Fa~1;18!%5 lnE )
p51

N

Dr (p)~ t !D r̂ (p)~ t !expH (
p51

N

A0@r (p), r̂ (p)#2 i (
p51

N E dtra
(p)~ t !@ca~r (p)~ t !!1 ixa~r (p)~ t !!#

2 i (
p51

N E dtdt8pa
(p)~ t;t8!$Fa@r (p)~ t !;r (p)~ t8!#1 iH a@r (p)~ t !;r (p)~ t8!#%J . ~3.10!

In order to ensure the extensivity of the whole effective action in Eq.~3.9!, we put the variancex25x0
2N @so that the variance

of the whole strength factor in Eq.~2.4! scaled asN21/2 akin to Ref.@28##. This enables us to represent the GF in a form sim
to Eq. ~2.20!,

^Z&av$xa%5E )
a50

1

)
a51

3

Dca~1!DFaexp$2NÃ@ca ,Fa ;xa ,Ha#%, ~3.11!

where

Ã@ca ,Fa ;xa ,Ha#5
1

2j0
E dtE d1d2ca~1!@v21#ab~1,2!cb~2!1

1

x0
2E d1d2d3d4Fa~1;2!@G21#ab~1,2,3,4!Fb~3;4!

2
1

N
lnE )

p51

N

Dr (p)~ t !D r̂ (p)~ t !expH (
p51

N

A0@r (p), r̂ (p)#2 i (
p51

N E dtra
(p)~ t !@ca„r

(p)~ t !…1 ixa„r
(p)~ t !…#

2 i (
p51

N E dtdt8pa
(p)~ t;t8!$Fa@r (p)~ t !;r (p)~ t8!#1 iH a@r (p)~ t !;r (p)~ t8!#%J . ~3.12!

The resulting SP equation reads

ca~1!52
i j0

N E d2vab~1,2!^rb~2!&SP, ~3.13!

Fa~1!52
ix0

2

N E d3d4Gab~1,2,3,4!^Qb~3;4!&SP, ~3.14!

where the averagê•••&SP is calculated with the GF,

^Z0&av$xa ,Ha%5E )
p51

N

Dr (p)~ t !D r̂ (p)~ t !expH (
p51

N

A0@r (p), r̂ (p)#2 i (
p51

N E dtra
(p)~ t !@c̄a„r

(p)~ t !…1 ixa„r
(p)~ t !…#

2 i (
p51

N E dtdt8pa
(p)~ t;t8!$F̄a@r (p)~ t !;r (p)~ t8!#1 iH a@r (p)~ t !;r (p)~ t8!#%J . ~3.15!

Thereby we are left with the GF of a free system which experiences the external mean fieldsc̄a1 ixa andF̄a1 iH a .
ro
in

s
SP
n
nc

.

e
y a

lds
C. The self-consistent Hartree approximation

In order to calculate the GF given by Eq.~3.15!, we will
use the self-consistent Hartree approximation~SCHA!. For
this approximation we replace the real action by an app
priate Gaussian one in such a way that all terms which
clude more than two fieldsr j

(p)(t) or/and r̂ j
(p)(t) are written

in all possible ways as products of pairs ofr j
(p)(t) or r̂ j

(p)(t)
coupled to self-consistent averages of the remaining field

The analogy between the SCHA and the
approximation at N→` for the special case whe
the nonquadratic terms in the action are only the fu
tions of the mean-squared displacementd2(t2t8)
5(p51

N ^@r (p)(t)2r (p)(t8)#2&/N has been proven in Ref.@9#.
In our case the action in Eq.~3.15! has a more general form
-
-

.

-

In Appendix D we show that the SCHA and thenext to the
saddle-point approximation~NSPA! merge and both becom
exact, if the GF with an arbitrary action can be treated b
steepest-descent approach atN→`.

Let us make the Fourier transformation of the mean fie

c̄a„r
(p)~ t !…5E d3k

~2p!3
c̄a~k!exp$ ikr (p)~ t !%, ~3.16!

F̄a„r
(p)~ t !;r (p)~ t8!…5E d3k1d3k2

~2p!6
F̄a~k1,k2!exp$ ik1r (p)~ t !

1ık2r (p)~ t8!%, ~3.17!

and insert it into Eq.~3.15!. Then for Eq.~3.15! we use the
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Hartree-type action@see Eq.~D24!#. By doing so we put for
simplicity the expectation valuej050. It is easy to assure
oneselves also that the ‘‘response-response overl

^Q1(1,18)&50 ~similar to ^ŝŝ&50 in Ref. @31#!. In the
curse of the derivation we have used SP equation~3.14! and
defined the correlator~or the incoherent scattering function!

C~k1,t;k2,t8!5
1

N
^Q0~k1,t;k2,t8!& ~3.18!

as well as the response functions

G~k1,t;k2,t8!52
1

N
^Q3~k1,t;k2,t8!& at t8,t,

~3.19!

G~k2,t;k1,t8!5
1

N
^Q2~k1,t;k2,t8!& at t8.t, ~3.20!

where^•••& stands for the averaging with the Hartree ty
of action. After collection of all terms, the final result~at
xa50 andHa50) then reads

^Z0&av$c̄a ,F̄a%5E )
p51

N

Dr (p)~ t !D r̂ (p)~ t !

3expH (
p51

N

A0@r (p), r̂ (p)#

1E dtdt8i r̂ (p)~ t !r (p)~ t !l~ t,t8!

2E dtdt8i r̂ (p)~ t !r (p)~ t8!l~ t,t8!

1E dtdt8i r̂ (p)~ t !i r̂ (p)~ t8!h~ t,t8!J ,

~3.21!

where

l~ t,t8!5
2

3
x0

2E d3k

~2p!3
k2uv~k!u2G~k;t,t8!C~k;t,t8!

~3.22!

and

h~ t,t8!5
1

3
x0

2E d3k

~2p!3
k2uv~k!u2@C~k;t,t8!#2.

~3.23!

In Eqs.~3.21!–~3.23! we have restricted ourselves to the h
mogeneous case,

C~k,t;k8,t8!5~2p!3d~k1k8!,C~k;t,t8!, ~3.24!

G~k,t;k8,t8!5~2p!3d~k1k8!G~k;t,t8!,

for the correlation and response function. The equation
motion for the one-particle correlator
’’

f

P~ t,t8!5
1

3 (
j 51

3

^r j
(p)~ t !r j

(p)~ t8!& ~3.25!

and the corresponding response function

G~ t,t8!5
1

3 (
j 51

3

^ i r̂ j
(p)~ t8!r j

(p)~ t !& ~3.26!

~which actually does not depend on the particle indexp) can
be derived from Eq.~3.21! by using the standard technique
@9#. The resulting equations read

Fm0

]2

]t2
1g0

]

]t
1E

2`

t

dtl~ t,t!GP~ t,t8!

2E
2`

t

dtl~ t,t!P~t,t8!1E
2`

t8
dth~ t,t!G~ t8,t!

522Tg0G~ t8,t ! ~3.27!

and

Fm0

]2

]t2
1g0

]

]t
1E

2`

t

dtl~ t,t!GG~ t,t8!

2E
2`

t

dtl~ t,t!G~t,t8!52d~ t2t8!. ~3.28!

Equations~3.27! and~3.28! should be supplemented with th
initial conditions g0G(t101,t)521 and G(t,t)50. By
making use of this condition, equipartitio
(m0/3)( j 51

3 ^ ṙ j (t) ṙ j (t)&5T, causalityG(t,t8)50 at t<t8, as

well as the condition (1/3)( j 51
3 ^ ṙ j (t)r j (t)&50, one finds

from Eq. ~3.27! the following equation:

F1

2
m0

]2

]t2
1E

2`

t

dtl~ t,t!GP~ t,t !2E
2`

t

dtl~ t,t!P~t,t8!

1E
2`

t

dth~ t,t!G~ t,t!52T. ~3.29!

Equations~3.27! and~3.28! have the same structure as th
Dyson equation~2.42!. After the matrices inversions and go
ing to the time domain, Eqs.~2.42! ~in the time-translational
invariant case! take the form

Fm0

]2

]t2
1g0

]

]t
1m~0!GG01~ t,t8!2E

2`

t

dtS10~ t2t!

3G01~t2t8!5d~ t2t8!, ~3.30!

Fm0

]2

]t2
1g0

]

]t
1m~0!GG00~ t,t8!2E

2`

t

dtS10~ t2t!

3G00~t2t8!2E dtS11~ t2t!G10~t2t8!

52Tg0G10~ t2t8!, ~3.31!
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wherem(0)5*0
`dtl(t) and the RPA-Fourier spectrum

S015
1

2 ig0v2m0v21m~0!
. ~3.32!

Equations~3.27! and~3.28! are converted to the Dyson equ
tions ~3.30! and ~3.31! provided that

G00~ t !5P~ t !, G01~ t !52G~ t !,
~3.33!

S10~ t !5l~ t !,S11~ t !5h~ t !.

We can show@19# that the relation

2b
]

]t
S11~ t !5S10~ t !2S01~ t ! ~3.34!

holds, provided that the FDT is satisfied forGab(t). We then
have in addition

2b
]

]t
G00~ t !5G01~ t !2G10~ t !. ~3.35!

Bearing Eqs.~3.33! in mind, Eq.~3.34! takes in our case the
form ~at t.0)

2b
]

]t
h~ t !5l~ t !. ~3.36!

The validity of the relationship~3.36! can be checked by
replacing Eqs.~3.22! and ~3.23! in Eq. ~3.36!.

The general equations~3.27! and ~3.28! are equivalent,
after the necessary changes have been made, to the c
sponding equations for thep-spin system or a particle in th
random potential at the large dimension@7–11#. The most
important features of these equations are theglassy dynami-
cal behaviorand the universalaging regime. At low tem-
peratures the system tries to minimize the energy and e
particle~with a numberp) tends to surround itself with othe
particles which assure the strength parametermpm,0. On the
other hand, the long-range interaction tries to support o
pairs (i j ) corresponding tom i j .0. As a result, the system
becomes ‘‘frustrated’’ and many local free-energy minim
appear.

In the spirit of Refs.@11,34,35# whent,t8→` we have to
discriminate between different cases:~i! the asymptotic re-
gime when (t2t8)/t→0 and~ii ! the aging regimewhen (t
2t8)/t8→O(1). The aging regime is much more compl
cated because the time-translational invariance and FDT
violated. This regime has been extensively investigated b
theoretically @8,11,34,35# and by computer simulation
@36,37#. In the following, we restrict ourselves only to th
asymptotic regime, for the sake of clarity and simplicity, a
since the main features will already be visible.

D. The asymptotic regime

This asymptotic regime is characterized by the large ti
scales, i.e.,t,t8→`, but keeping the differencet5t2t8 fi-
nite. Under these circumstances we can define
rre-

ch

er

re
th

e

Pas~t!5 lim
t8→`

P~ t81t,t8!,

~3.37!
Gas~t!5 lim

t8→`

G~ t81t,t8!.

Then the equation for the displacementDas52@Pas(0)
2Pas(t)#, response functionGas(t), and the static correlato
Pas(0) takes correspondingly the forms

Fm0

]2

]t2
1g0

]

]t
1M GDas~t!2E

0

t

dt8las~t2t8!Das~t8!

2E
0

`

dt8@las~t1t8!2las~t8!#Das~t8!

22E
0

`

dt8@has~t1t8!2has~t8!#Gas~t8!52T, ~3.38!

Fm0

]2

]t2
1g0

]

]t
1M GGas~t!2E

0

t

dt8las~t2t8!Gas~t8!50,

~3.39!

Pas~0!5
1

M2Mas
FT2

1

2E0

`

dtlasDas~t!2E
0

`

dthasGas~t!G ,
~3.40!

where

M5 lim
t→`

E
2`

t

dtl~ t,t!, ~3.41!

Mas5E
0

`

dtlas~t!. ~3.42!

However, it is also convenient to define the ‘‘anomaly’’M̄
5M2Mas @11#. Equations~3.38!–~3.40! has been analyzed
first in the context of a polymeric manifold in the rando
media@9,10# and the random-phase sine-Gordon model@38#.
The peculiarity of our model is defined by its memory fun
tions las(t) andhas(t).

For example, let as give an explicit expression forhas(t).
The Gaussian form of the correlator, C(t)
5exp$2k2Das(t)/2%, leads from Eq.~3.23! to the result

has~t!5
x0

2Ap

6

1

ADas~t!
. ~3.43!

Usually it is assumed that at high temperature FDT hol
i.e.,

2b
]

]t
Das~t!52Gas~t! ~3.44!

and

2b
]

]t
has~t!5las~t!. ~3.45!
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In this case Eqs.~3.38! and ~3.39! merge and take a simpl
form,

Fm0

]2

]t2
1g0

]

]t
1M GDas~t!

2E
0

t

dt8las~t2t8!Das~t8!52T. ~3.46!

It turns out @9,10,37# that the solution which satisfies th
FDT is only stable above a critical temperatureTc . For the
stability analysis it is convenient to represent Eq.~3.46! in
the form

Fm0

]2

]t2
1g0

]

]t
1M̄1Mas~t!GDas~t!

1bE
0

t

dt8@has~t2t8!2has~t!#
]

]t8
Das~t8!52T,

~3.47!

where

Mas~t!5E
t

`

dt8las~t8!. ~3.48!

For t→` the stability condition which comes out of Eq
~3.47! reads

@M̄1Mas~t!#Das~t!<2T. ~3.49!

Then the stationary value of the displacementDas(t→`)
5q0 reads

q05
2T

M̄
. ~3.50!

By taking into account Eqs.~3.44! and ~3.45!, the stability
condition becomes

D~q,T!>0 ~3.51!

for 0<q<q0, where

D~q,T![F S x0

T D 2 Ap

12Aq0

2
1

q0
Gq2S x0

T D 2 Ap

12
Aq11.

~3.52!

The critical valuesqc and Tc at which the condition~3.51!
first becomes violated is defined by the equations

D~qc ,Tc!50,
~3.53!

D8~qc ,Tc!50.

Consequently, Eqs.~3.53! have the simple solution

S Tc

x0
D 2

5
Apq0

24
and qc5q0 . ~3.54!
Figure 3 shows the behavior ofD(q,T) in the vicinity of
the critical point. It can be seen that the minimum,qm<q0,
at whichD(q,T)<0 appears continuously, i.e., the instab
ity of the FDT solution, shows up as a second-order ph
transition. This is analogous to the dynamics of polyme
manifolds in a medium with the long-range correlation
disorder @10#. In particular, if ‘‘anomaly’’ M̄→0, thenq0
→` andTc→`, so in this case the FDT solution is unstab
for any finite temperature.

Let us consider the dynamics at the temperature slig
above the critical point:T5Tc(11«), where 0,«!1. For
larget the decomposition

Das~t!5q02 f ~t! ~3.55!

is possible, wheref (t)!q0. The substitution of this decom
position into Eq.~3.47! and the expansion up to the seco
order with respect tof (t) yields

«q0f ~t!1
1

8
@ f ~t!#21

1

2E0

t

dt8@ f ~t2t8!2 f ~t!#

3
]

]t8
f ~t8!50. ~3.56!

Following Ref. @1#, let us make the Laplace transformatio
L@ f (t)#[ f̃ (z) and introduce the scaling functionsf̂( ẑ) or
f̂( t̂) in such a way that

f̃ ~z!5
c«

v«
f̂~ ẑ! or f ~t!5c«f̂~ t̂ !, ~3.57!

whereẑ5z/v« and t̂5tv« . If c«5« andv«5v0«1/a, then
one can write Eq.~3.56! in the form

q0f̂~ ẑ!2
3

8
L$f̂2~ t̂ !%~ ẑ!1 ẑf̂2~ ẑ!50 ~3.58!

@see Eq.~2.68b! of Ref. @1##.
In the critical regimeẑ@1 ~or t̂!1), the solution of Eq.

~3.58! has a formf̂( t̂)}t̂2a. In this limit the first term in
Eq. ~3.58! is dropped out and the exponent is defined by
equation

FIG. 3. D(q,T) vs q at x050.1,q05103 for different tempera-
tures:~i! full line corresponds toT5Tc50.1528;~ii ! dashed line to
T50.1535 ;~iii ! dot - dashed line toT50.151.
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G2~12a!

G~122a!
5

3

4
. ~3.59!

The solution of Eq.~3.59! givesa50.304 65. In the opposite
limit ẑ!1 ~or t̂@1), the last term in Eq.~3.58! can be ne-
glected. In this case the solution has the formf̂( t̂)
}A«t̂2aexp$2lt̂%, where A«58«q0G(12a)2(122a)/3G(1
22a)l2. As a result, the overall scaling reads

Das~t!55 q02
c«

~v«t!a
at v«t!1

q02
A«

~v«t!a
exp$2l~v«t!% at v«t@1,

~3.60!

wherel is some constant.
At T,Tc , the FDT is violated for the large time separ

tion t and the aging regime arises. It should be mention
that the asymptotic regime cannot be decoupled from
aging one@11,35#. In actual fact, the ‘‘anomaly’’M̄ in the
asymptotic equations~3.38!–~3.40! strictly speaking can be
calculated only from the aging regime. Because of the d
tinct aim of this paper, we are not going to discuss the ag
regime here, expecting to return to it in a later publicatio

IV. CONCLUSION

In the present paper we have considered the dynamic
two models with the long-range repulsive interaction. T
interaction potential was designed in a way to enable
saddle-point treatment as well as a fluctuation expansion

For the pure model we have derived Eq.~2.53! for the full
correlation matrixGab(k,v) in the one-loop approximation
which has an explicit solution@see Eqs.~2.57!–~2.59!#. This
solution has a ‘‘boring behavior’’ atv→0 which manifests
the absence of the glass dynamics. The physical backgro
of this stems from the fact that the potential is much too s
and the ‘‘cage effect’’ is completely missing.

This conclusion is in accordance with the interacting p
ticles statistical thermodynamics analysis, which was giv
in Ref. @12#. It was shown there that for the infinite rang
interaction potential, which allows a well-defined sadd
point treatment, the glassy phase is simply suppressed.

On the other hand, the same model but with a rando
distributed strength of interaction~the ‘‘random-bond
model’’! leads to the continuous glass transition. This type
transition is also the case for the polymeric manifolds in
disordered medium with long-range correlation@10# as well
as for thep-spin interaction spin-glass model at the lar
external field@3,6#. It would be also interesting to investiga
the more realistic ‘‘random sequence model’’ in which ea
particle carries a random ‘‘charge.’’

Qualitatively, the same glassy behavior has been foun
the pure spin models with the deterministic but very rapi
oscillating coupling between variables@39–42#. It was as-
sumed that the effective quenched disorder is ‘‘se
induced’’ @8,39#. This means that because of the slow d
namics, some degrees of freedom freeze and play the ro
the effectively quenched disorder.
d
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In conclusion, the glass transition in the pure systems
the interacting particles, where the disorder is actually ‘‘se
induced,’’ goes beyond the mean-field level@12#. This ap-
pears too difficult to implement in the present context, b
cause it implies the consideration of the short-ran
interaction potential as well as activated processes.
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APPENDIX A: CALCULATION OF THE FOUR-POINT
RPA-CORRELATION MATRIX

In the full analogy with Eq.~2.26!, the expression for
Sabgd

(4) (1,2,3,4) reads

Sabgd
(4) ~1,2,3,4!

5 lim
c̄a1 ixa→0

F d

N2dxb~2!dxg~3!dxd~4!
^ra~1!&SPG .

~A1!

The expansion of thêra(1)&SP up to the third order with
respect to the mean fieldc̄a1 ixa can be easily obtained
from Eq. ~2.25!,

^ra~1!&SP5^ra~1!&01E d2^Dra~1!Drb~2!&0@xb~2!

2 i c̄b~2!#1
1

2!E d2d3^Dra~1!

3Drb~2!Drg~3!&0@xb~2!2 i c̄b~2!#@xg~3!

2 i c̄g~3!#1
1

3!E d2d3d4^Dra~1!Drb~2!

3Drg~3!Drd~4!&0@xb~2!

2 i c̄b~2!#@xg~3!2 i c̄g~3!#@xd~4!2 i c̄d~4!#.

~A2!

By using the SP equation~2.24! and after threefold differen-
tiation with respect toxa(1) @see Eq.~A1!# we find

Sabgd
(4) ~1,2,3,4!5F āb̄ḡd̄

(4)
~ 1̄,2̄,3̄,4̄!$@ 1̂1m v̂F̂ (2)#21%āa~ 1̄,1!

3$@ 1̂1m v̂F̂ (2)#21%b̄b~ 2̄,2!

3$@ 1̂1m v̂F̂ (2)#21%ḡg~ 3̄,3!

3$@ 1̂1m v̂F̂ (2)#21%d̄d~ 4̄,4!, ~A3!

where the four-point free system correlation matrix
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Fabgd
(4) ~1,2,3,4!5

1

N2
^Dra~1!Drb~2!Drg~3!Drd~4!&0 .

~A4!

In Eq. ~A3! we imply the summation~integration! over the
barred indices~barred space-time variables!. When deriving
Eq. ~A3! we have also kept in mind that^Dra(1)Drb(2)&
}N and ^Dra(1)Drb(2)Drg(3)Drd(4)&0}N2, etc. The
fact that the matrixFabgd

(4) (1,2,3,4) is symmetrical with re
spect to simultaneous permutations of Greek indices
space-time arguments as well as Eq.~2.27! have been used

It is easy to show thatFabgd
(4) (1,2,3,4) is factorized,

Fabgd
(4) ~1,2,3,4!5Fab

(2)~1,2!Fgd
(2)~3,4!1Fag

(2)~1,3!Fbd
(2)~2,3!

1Fad
(2)~1,4!Fbg

(2)~2,3!. ~A5!

On the other side it is instructive to check that even in t
caseSabgd

(4) (1,2,3,4) cannot be factorized.

APPENDIX B: CALCULATION OF THE VERTEX
MATRIX Kab„1,2…

The substitution of Eg.~A3! into Eq.~2.51! after straight-
forward algebra yields

Kab~1,2!5$@~2m!21v̂211F̂#212@m21v̂211F̂#21%b̄ā

3~ 2̄,1̄!$F āb̄~ 1̄,2̄!F ḡ d̄~ 3̄,4̄!

1F āḡ~ 1̄,3̄!F b̄d̄~ 2̄,4̄!1F ād̄~ 1̄,4̄!F b̄ḡ~ 2̄,3̄!%

3$@ 1̄12m v̄F̄#21%ḡa~ 3̄,1!

3$@ 1̄12m v̂F̂#21%d̄b~ 4̄,2!, ~B1!

where as before for the repeated barred indices~variables!
the summation~integration! is implied. For the time-space
translational invariant case the respective Fourier transfor
tion leads to the result

Kab~k,v!5$IF ḡ d̄~k,v!1$@~2m!21v̂211F̂#21

2@m21v̂211F̂#21%b̄ā~2k,2v!F āḡ~2k,2v!

3F b̄d̄~k,v!1$@~2m!21v̂211F̂#21

2@m21v̂211F̂#21%b̄ā~k,v!F ād̄~k,v!

3F b̄ḡ~2k,2v!%$@ 1̄12m v̂F̂#21%ḡa

3~2k,2v!$@ 1̄12m v̄F̄#21%d̄b~k,v!, ~B2!

where the trace

I 5E d3qdv

~2p!4
$@ 1̂1~2m!21F̂21v̂21#21

2@ 1̂1m21F̂21v̂21#21%āā~q,v!. ~B3!

With the correlation matrixF̂ given by Eqs.~2.56!, by doing
integration overv one can check that the traceI 50. This
gives finally
d

s

a-

Kab~k,v!5Lab~k,v!1Lab~2k,2v!, ~B4!

where

Lab~k,v!5$@ 1̄12m v̂F̂#21%aḡ~k,v!F ḡb̄~k,v!

3$@ 1̂1~2m!21F̂21v̂21#21

2@ 1̂1m21F̂21v̂21#21%b̄d̄~q,v!

3$@ 1̄12m v̂F̂#21%aḡ~k,v!. ~B5!

APPENDIX C: THE MCT FOR THE GENERALIZED
KAC POTENTIAL

In this case the direct correlation functionc(r )
52bV(r ) and its Fourier transformation take the scali
form

c~k!52b f S k

k D . ~C1!

Let us insert this expression into the MCT-memory kern
@see Eq.~3.32! in @1##. It is reasonable then to rescale th
integration variables in the memory kernel,k→kk, p→kp,
as well as to put for the external wave vectorq5kq0, where
q0 is some reference wave vector. The last scaling me
that in the MF limit an experiment probes a very small wa
vector: q→0. The resulting scaling of the memory kerne
m(q,t), reads

m~kq0 ,t !5kdS̃~q0!
r0

2 E dkdp

~2p!2d
d (d)~k1p2q0!

3
$eL~q!b@k f ~k!1pf ~p!#%2

q0
2

S̃~k,t !S̃~p,t !,

~C2!

where we have taken into account the scaling form of
correlator:S(k,t)5S̃(k/k;t). Thus we finally arrive at the
scalingm(kq0 ,t)}kd→0 and the glass transition dies out

APPENDIX D: THE ANALOGY BETWEEN THE SCHA
AND NSPA

Let us prove that the SCHA becomes exact for the
given by Eq.~3.15! in the limit N→`. We will consider
even a more general GF,

Z$xa%5E )
p51

N

)
a50,1

Dxa
(p)~1!

3expH 2
1

2 (
p51

N E d1d2xa
(p)~1!Aab~1,2!xb

(p)~2!

1 (
p51

N

W@xa
(p)#1 (

p51

N E d1xa
(p)~1!xa~1!J , ~D1!

where we have used the short-hand notations
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xa
(p)~1!5S r j~ t !

i r̂ j~ t !
D , ~D2!

and ‘‘1’’ embraces Cartesian indices as well as the time v
able: 1[$ i , j ,k;t%. In Eq. ~D1!, W@xa

(p)# is an arbitrary func-
tional of xa

(p) .
Instead of the exact action functional in Eq.~D1!, we

consider now the trial one which has a Gaussian form,

S@xa
(p)~1!#5 (

p51

N H 1

2E d1d2xa
(p)~1!Aab~1,2!xb

(p)~2!

2E d1d2xa
(p)~1!Gab~1,2!xb

(p)~2!

2E d1La~1!xa
(p)~1!J . ~D3!

Let us look for the ‘‘best’’ coefficientsGab(1,2) andLa(1)
in a sense that the exact ‘‘free energy’’F@xa#52 ln Z$xa%
tends to the trial oneF0@xa#52 ln*)Dxa

(p)exp$2S@xa
(p)#%, i.e.,

F@xa#→F0@xa#, ~D4!

and both become exact atN→`.
We can show that the property~D3! is satisfied byGab

and La , which are obtained by extremization of the fun
tional

F$Gab ,La%52 lnE )
p51

N

)
a50,1

Dxa
(p)~1!exp$2S@xa

(p)#%

1 (
p51

N H E d1d2Gab~1,2!^xa
(p)~1!xb

(p)~2!&s

1E d1@La~1!2xa#^xa
(p)~1!&s

2^W@xa
(p)~1!#&sJ , ~D5!

where we use the notations

^•••&s5

E )
p51

N

)
a50,1

Dxa
(p)~1!•••exp$2S@xa

(p)#%

E )
p51

N

)
a50,1

Dxa
(p)~1!exp$2S@xa

(p)#%

.

~D6!

The extremization conditions read

d

dGag~1,2!
F50,

~D7!
d

dLa~1!
F50.

The variations in Eq.~D6! can be done directly. During th
calculation the generalized Wick’s theorem@22# should also
i-

be taken into account. Namely, because the averaging~D5! is
simply the Gaussian integral, Wick’s theorem yields

^xa
(p)~1!W@xa

(p)#&s5^xa
(p)~1!&s^W@xa

(p)#&s

1E d2^Dxa
(p)~1!Dxb

(p)~2!&s

3K d

dxb
(p)~2!

W@xa
(p)#L

s

, ~D8!

whereDxa
(p)(1)[xa

(p)(1)2^xa
(p)(1)&s . After straightforward

calculation we find

Gag~1,2!5
1

2 K d2

dxa
(p)~1!dxb

(p)~2!
W@xa

(p)#L
s

~D9!

and

La~1!5E d2@Aab~1,2!2Gab~1,2!#^xa
(p)~2!&s .

~D10!

Then equations for the two moments take the form

^xa
(p)~1!&s5E d2@A21#ab~1,2!F K d

dxb
(p)~2!

W@xa
(p)#L

s

1xb~2!G ~D11!

and

^Dxa
(p)~1!Dxb

(p)~2!&s5$@Â22Ĝ#21%ab~1,2!, ~D12!

whereÂ and Ĝ stand for the corresponding 232 matrices.
On the other side, the saddle-point~SP! treatment of Eq.

~D1! at N→` yields

2E d2Aab~1,2!x̄b
(p)~2!1

dW

dxa
(p)~1!

U
xa5 x̄a

1xa~1!50

~D13!

and

^Dxa
(p)~1!Dxb

(p)~2!&SP5$@Â22B̂#21%ab~1,2!,
~D14!

where

Bab~1,2!5
1

2

d2W

dxa
(p)~1!dxb

(p)~2!
U

xa5 x̄a

~D15!

and x̄a
(p)(1) stands for the field in SP.

In order to show the analogy between Eqs.~D11! and
~D12! and Eqs.~D13! and~D14!, let us make the functiona
Fourier transformation
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exp$K@ya
(p)~1!#%5E Dxa

(p)~1!expHW@xa
(p)~1!#

2 i E d1xa
(p)~1!ya

(p)~1!J ~D16!

and its inversion

exp$W@xa
(p)~1!#%5E Dya

(p)~1!expHK@ya
(p)~1!#

1 i E d1xa
(p)~1!ya

(p)~1!J . ~D17!

Then Eqs.~D13! and ~D14! can be written as

x̄a
(p)~1!5E d2@A21#ab~1,2!@ i ^yb

(p)~2!&SP1xb~2!#

~D18!

and

^Dxa
(p)~1!Dxb

(p)~2!&SP5$@Â1i^DyDy&SPi #21%ab~1,2!,
~D19!

where the correlation matrix

i^DyDy&SPi5^Dya
(p)~1!Dyb

(p)~2!&SP ~D20!

and
t.
^•••&SP5

E Dya
(p)
•••expHK@ya

(p)#1 i E d1x̄a
(p)~1!ya

(p)~1!J
E Dya

(p)expHK@ya
(p)#1 i E d1x̄a

(p)~1!ya
(p)~1!J .

~D21!

At N→` by making use of Eq.~D17!, one can immediately
see that

K d

dxa
(p)~1!

W@xa
(p)#L

s

→ i ^ya
(p)~1!&SP ~D22!

and

K d2

dxa
(p)~1!dxb

(p)~2!
W@xa

(p)#L
s

→2^Dya
(p)~1!Dyb

(p)~2!&SP,

~D23!

and the SCHA exactly corresponds to the NSPA. For
case which was treated in Sec. III C,^xa

(p)(1)&s50 and the
Hartree-type action~D3! cast the form

S@xa
(p)~1!#5 (

p51

N H 1

2E d1d2xa
(p)~1!Aab~1,2!xb

(p)~2!

2
1

2E d1d2K d2

dxa
(p)~1!dxb

(p)~2!
W@xa

(p)#L
s

3xa
(p)~1!xb

(p)~2!J . ~D24!
ys.
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