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Dynamics of structural models with a long-range interaction: Glassy versus nonglassy behavior
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By making use of the Langevin dynamics and its generating functi@gl formulation, the influence of
the long-range nature of the interaction on the tendency of the glass formation is systematically investigated. In
doing so, two types of models are consideréd:the nondisordered model with a pure repulsive type of
interaction, and(ii) the model with a randomly distributed strength of interactianquenched disordered
mode). The long-ranged potential of interaction is scaled with a number of parficiessuch a way as to
enable for the GF the saddle-point treatment as well as the systemstexpansion around it. We show that
the nondisordered model has no glass transition, which is in line with the mean-field limit of the mode-
coupling theory(MCT) predictions. On the other hand, the model with a long-range interaction that has a
qguenched disorder leads to MC equations which are generic farspé glass model and polymeric manifold
in a random media.

PACS numbd(s): 05.40—a, 71.55.Jv, 75.10.Nr

. INTRODUCTION the canonicalfree energy, i.e.chE= Fyp, as it should be
. I L _sinceF,=F—T3 , where the complexit. =0 [13].
The theoretical description of slow dynamics is a crucial . plexity: [13]

. lucid h f the al R (i) After implementation of VP, the initial problem is
point to elucidate the nature of the glass transition In StiUCteqceq 1o a self-consistent random field Ginzburg-Landau

tural glass-forming liquids. One of the commonly used ap+y,,qe|(RFGLM). Then, as was shown previously, the corre-
proaches, mode-coupling theoyiCT), was designed from sponding field(r) must be upgraded to eplicatedfield

the very beginning for the supercooled simple liqujds, u.(r), wherea=1 n (with the final limitn—0) and the
. . all), =1,... —
i.e., for the nondisordered moddkss opposed to the models density fieldp(r) plays the role of an “external” field. Note

which contain quenched disorder naturliyater it was hat here the density(r) is Gaussian due to the use of the

proven that MC equations become exact for a _numbe_r %p. Eventually the correlators af and p fields can be de-
spin-glass modelg2—8] as well as for the polymeric mani- . :
termined self-consistently.

fold in a random medid7—-11) (i.e., for the models with (i) The resulting replicated partition function for

quenched disordgrprovided that the number of variable RFGLM has a typical form which may eventually lead to the

components goes to. _the Infinite. i replica symmetry breakin@RSB), structural glass transition,
Actually, applicability of the MC equations has been sub-,.4 the “self-induced” disorder.

stantially extended to the case when the time translation in- (iv) Finally, in the case of the long-range interaction, the
variance and the fluctuation-dissipation theorem does NQiartition function allows the expansion around the saddle
hold any more8]. This striking similarity between the mod- point, or mean-fieldMF), solution. It is possible to show
els with and without quenched disorder suggests that thghen that thenext to the mean-field approximatiand VP
effective disordered potenti&é.g., in a supercooled liquid merge and both become exact, i.E=F, and the glassy

is in a sense “ self-induced” and the difference betweenphase does not appear.

might not be crucial7,8. _ _ results for the particles on aM- dimensional hypersphere
In order to provide some insight into self-induced disor-[14] at large dimensiongyl — .
der, we employed in Ref12] a Feynman variational prin- ~ The aim of this paper is to face the full dynamical prob-

ciple (VP) for a set of interacting particles. Indeed it was |em for a nondisorded model with a long-range interaction.
shown that the_ VP is capable of tre_ating_ me_ltastable states Qfsing the expansion around the saddle-point solution, we
the glass-forming system. The main point in REf2] was  gerive the full equation of motion for the time-dependent
that the partition function representation in terms of funC'density-density correlator and show that a “glassy” solution
tional integrals is twofold{a) either as an integral over the goes not exist. Conversely, if we add a term describing
local density,p(r), or (b) over the conjugated tp(r) field  guenched disorder, by random distribution of the strength of
#(r). It has beerassumedhat thecomponent averaglee  the interaction potential, then the resulting equations of mo-
energyF (which is only meaningful in the supercooled re- tion for two time density correlation and response functions
gime) is equal to the variational free ener§y,,. There are fall in the same class as MC equations which have been
at least four strong reasons in favor of tkét first sight not widely discussed[2-11]. This means that the “self-
obviousg assumption. induced” disorder is not generic for the pure model with the
(i) The variational free energly\p is an upper bound for long-range interaction, and conversely on addition of a
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guenched disorder the phase space becomes very rugged re-

sulting in slow dynamical processes. V(k):(
The paper is organized as follows. In Sec. Il we introduce

the theoretical model without quenched disorder. Its dynam-

ics is discussed by using the functional integral techniquewhich allows accurate analytic calculations. In the limit

The saddle-point solution yields the mean-field dynamics._,  we have thusc2=N~2, but the relevant minimum wave

Expansions around the saddle point yield one-loop correcyector isk,zn-nocN*ZB and thusk? can be actually neglected

tions. The Legendre transformation provides the possibility,nqer the iﬁtegration over the whdtespace. As a result, we

of the analysis of the full dynamic correlation matrix. In Sec. 4 rive formally at a one-component plasma mod@CP

lll, quenched disorder is introduced by a “random bondrqg] \where the electroneutrality is implicitly provided by a
model” and a Gaussian disorder. The corresponding 9enelieytralizing background.

ating functional(GF) is computed by the self-consistent Har-
tree approximation, which results in a set of coupled Lange-
vin equations, which are solved in their asymptotic regimes. A. The generating functional method

More details on the calculations are laid out in the corre- | the following we set up the relevant equations of mo-
sponding Appendixes. tion for the model system. We restrict ourselves to the
Langevin dynamics, which can be comfortably formulated in
Il. THE MODEL WITHOUT QUENCHED DISORDER terms of dynamic functionals, which allows the systematic
1/N-expansion treatment. The Langevin dynamicqNgbar-
We start from a simple model system which consists Ofjc|es interacting via the potenti@2.1) (at d=3,a=1, and

interacting particles. To do so, let us consider a set of,~0) s described by the equation of motion
N(>1) particles ind-dimensional space interacting by a pair
potential of the form

yu

N (2.9

K24 k2’

A ®)(t)+ J (P)(t
Mo~ 51 P0) + 3021 (1)

V(r)=(%)%. 2.1)

This is a typical example of a long-range potential with a

characteristic lengthc and a coupling constant/N. The  wherem, and y, are the mass and the friction coefficient,
choice of this potential is twofold. It contains a cutoffat! respectively, p=1,2,... N, and v(r;«)=exp(«r)/4xr.
and thus allows to control the range of the interaction. More-The random force in Eq(2.5) is Gaussian With(fi(p)(t)>
over, at small scales € « 1) it consists of a typical power- —q and the correlator

law decay with long-range character, i#Qv<<2. Therefore,

the so chosen potential allows us to keep control of the range
and nature of the interaction, which will become essential
below. To ensure extensivity of the total interaction energy,
we require that the integrald®Vv(r)=O(N°), i.e., it does where from now on we work in units where the Boltzmann
not depend on the number of particlsls As a result, we  constantkg=1.

N
2 Vv(r(P)_r(m)):f(P)(t), (2.5
m=1

2=

(FPOFM(t))=2T yodpmdy S(t—t'),  (2.6)

have kN~Y@~®  The intermolecular potential2.1) has As was mentioned, it is more convenient to reformulate
the form of the generalized Kac potential, the Langevin probleni2.5) and(2.6) by using the celebrated
Martin-Siggia-Rose generating functio@F) method[17].
V(r)= 9 («r), (2.2 The method was first applied for thé* model with the

long-range interaction ifi18] and for the polymer melt dy-
pamics in[19,20. Despite the fact that the Langevin equa-
tion (2.5 is of the second order, it is possible to show that
the Jacobian which appears under transformation to the func-
tional variables is still equal to onésee the Appendix in
[21]). After using this technique for the problef@.5 and
(2.6), the GF takes the form

which has been used for the rigorous treatment of the va
der-Waals theory15]. In order to provide conditions for the
expansion around a saddle point, carried out latersae
below), we should require that the lengkh * must be larger
compared to the characteristic size of the systevhich
scales naturally as'®) atN—o. As a consequence, we find
the limits for the range paramete;

N N
0<a<d. 2.3 Z{-- -}=f p]:[1 Dr(p)(t)DF(p)(t)ex% pzl Ag[r® r(P)]
Bel hall restrict iderations to the cas AL
elow we shall restrict our considerations to the case B o () ()
=3,a=1, and the strength of the interaction>0 (pure + dt’; 2«1 N (OViPu(r r(my s,

repulsion without loss of generalization in the main state-

ments that we are going to predict. Then the Fourier trans- 27
formation of the potentia(2.1) takes the especially simple

form where the action of the free system
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2
mO%rf”’(t) exp{F{wa}FJ Dpa(l)eXD[W{pa}—iJ dlpa(l)lﬂa(l)]
(2.19

Agr®P rP = | dt] Tylir (P(t)]12+ir (P(1)
J J

d
+ Yoar}p)(t)H- (2.8)  and its inversion

In the following we are going to transform this functional to exp{W{p,}}= J Dlﬁa(l)exp[ F{v.}
collective density variables. By using the transformations to
the mass density

+if dlpa(l)l/fa(l)]- (2.1

N
r=2>, 8r—rP(t 2.9
p(r) pzl ( (®) 29 The substitution of Eq(2.13 into Eqg. (2.15 leads to the

explicit expression for the free-system GF,
and the longitudinal projection of the response field density

N
N R
R exp{F{y, =f Dr®Pt)DrP)(t)
m(r)= >, irPt)v;s(r—rP(t)) (2.10 ARy} pll (
p=1
N N

for the GF one gets XeXPl pzl Ao[f(p),r(p)]—ipg1 f dty(r®)

1 N

Z{xa}=f CLIO Dpa(l)eXp[W{pa} +i > | dtirP () Ve(r) ]
p=1 r=r(P)(t)
1
2.1
-5 d1020,(10U,12042) @17
where /(1) and ¢(1) are components of the column vari-
+] dlpau)xa(l)], (21  able
where the summation over the repeated Greek indices is im- %(1)5( w(l))_ (2.18
plied. In Eq.(2.12) we have introduced the two-dimensional $(1)
field
By making use of Eq(2.16 in Eqg. (2.11) and after func-
p(1) tional integration ovep,(1), onegets
pa(l)E(W(l)), (2.12

1
wherea=0,1 and (r,t). The “entropy” of the free sys- Z{Xa’)\a}=f al_:[O D:pa(l)exp{ Flat
tem is given as usual by

N . N . +%f d1d2[i (1) + xa( 1)U 1ap(1,2)
W{p,ﬂ}=|ﬂf p];[l Dr(p)(t)Dr(p)(t)exp[ pgl Ao{r(p),r(p)}]

Xlip(2)+ xp(2) ]+ f dllﬂa(l)ha(l)],

N
p(r,t)— 21 5(r—r‘p’(t))}
&

X &)
(2.19
N
> _ 2 (p) o () where we have also added a source field1) conjugated to
.t pz'l IOV e (t))} ,(1). As aresult, Egs.(2.11) and (2.19 provide two
(2.13 equivalent representations of the GF. For the purpose of ex-
: pansion around the saddle point, we use representihg
U . is the 2x 2-interaction matrix at A ,(1)=0, which after the transformatio,— ¢, +ix,
@B yields
0 V(|r1_r2|)> 1
Ug (1,2)=( . (214
b V(Iri=ral) 0 Z{xo}= | I1 Dwa(Dexpi-NAT,ix. ]} (220

and y,(1) is a source field.
An alternative valuable representation of the GF can bevhich is appropriate for a saddle-point integration, since the
obtained through the “functional Fourier transformation”  particle numbeiN is large. The action hereby is given as
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1 3 3, 1 After linearization of Eq.(2.25 with respect to@ﬁixa,
Aldaixal=7 | dt] drd g (r,Olv " "ag the 2x 2 RPA correlation matrix is easily found to coincide
with the well-known form[19]

N
1
et ’ _ - (p) - ~
X(r—r ,K)l//‘B(r 1) Nlnf pl;[l DriP)(t) Saﬁ(1,2):{[F71+ﬂv]il}aﬁ(l,z), (2.27)
wherev is the interaction matrix2.22 and F.p is the cor-

N
xDr(p)(t)exp[le Ao[rP,r(P)] relaton matrix for the free system F,4(1,2)
= (Apa(1)Ap4(2))o/N has the form

N
i 2 | POl P D) Foo12) Foy(1,2)
p= F.s(1,2= 2.2
aB( ) F]_O(laz) O ( 8)
+iXa(r(P)(t))]}, (220 |n Eq.(2.28, Fyy(1,2) andF,(1,2) are response functions
whereasFyy(1,2) stands for the correlation function. The
and the interaction matrix relation between them is given by the fluctuation dissipation
theorem(FDT), which in (k,t) representation has the form
0 1)\ exp —«r)
Uap(liK)= 1 0l amr (2.22 J
_,Ba_tFoo(kJ):Fm(k,t)_Flo(k,t)- (2.29

Recall that the relatior«N~*? is necessary for the validity
of the saddle-point integration. Moreover, we have definedt is easy to check that in this case the FDT for the RPA-type

the column vector correlation matrix(2.27) also holds,
' —a Soo(k k k
- 1) =Spi(k,t) — Sio(k,t), 2.3
rP(t)= —if(p)(t)f i S 2.23 B oK, 1) = Spa(k,t) = Syo(k,t) (2.30
J (p)

whereB=1/T is the inverse temperature. The corresponding
elements of the RPA matrix2.27 are of an especially

for convenience. X i ; )
simple form in the Fourierk,w) representation, namely

B. The saddle-point solution and expansion around the SP

Foolk, o)
Minimization of A, ; x ] with respect taj,(1) leads to Sook, @)= [+ 20 (K FpgK.) [ 1+ 20 (K F o Ko)]”
the SP equations for the mean fielgis(1), (2.31)
- e : Foi(k,)
l//a(rat):__J d3r Vap(r=1"){pa(r',t))sp, — o™
N Soi(k,w)= : (2.32
where the averagé - - )spis calculated by using theumu- B Fiok,w)
lant GF, Siok,w)= 17 20 (KF g K.o) (2.33
N
— . 1 - It turns out to be interesting to recover the well-known form
=_ (p) (p)
Pse{ibatiXxat= Nlnf pﬂl DriP(®)DriP(t) in the static limit, where we hav&y,(k,w—0)= BSs(k)
N =[(BFg) *+uk 2], and for the correlator Sgpa(k)
- =S(k)/pg one gets
p=1
1
N . SRPA(k): 1 (234)
=i [ dtrP [ P(t) 14 Prpo
p=1 k2
+iXa(r(p)(t))]]. (2.25  where we have useBg=p,. This expression is completely
equivalent to the correlator for the OCP modseke Eg.

The correlation matrix in the random-phase approximation(_lo'l'n mz [16]] with the direct correlauo_n functlolr/lg(k)
= — uBlks and the Debye wave numbkp=(Brpg) ™~

(RPA) is defined in such a way that Now let us expand the actio2.21) around the SP solu-
&p (D)sp} tion (2.24) up to the second order with respect to the fluc-

_—— 2.2 i - i i i
Nox4(2) (2.2 tuationsy,(1)— ,(1). After the functional integration, we

S.p(1,2)=lim [
arrive at the following result for the GF:

Yatixa—0
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1 1 52
PiXar= N Z{Xa} 2,5(1,2)=— mTr[ 55 (1) (p5(2)) In T75(3,4)]

Xo=0
(2.43

In Eq.(2.43, the “trace” is taken over the variables 3,4 and

_ _ . o indicesy, é. The explicit differentiation in E¢(2.43 leads to
whereT ,4(1,2) is the inverse matrix of the effective inter- the result

actions[24],

— 1
=Pspdhat Xat — 5 THINTap(1,2)], (2.39

1. T
1 1 1,2)=— =Ty T ,
Taﬁ(l,z)=;[v*1]aﬁ(1,2)+N<Apa(1)ApB(2)>SP. 2ep(12)= 73N r{ 5<pa(1)>5<pﬁ(2)>]xao

(2.39 (2.49
In Egs. (2.35 and (2.36 we deliberately keep the external WhereT is a short-hand notation of the matiTx,5(3,4) and

field x,(1) nonzero because it is to be used in the nextve have taken into account thabT,z(1,2)/6x,(3)

subsection for the Legendre transformation. =(Ap,(1)Aps(2)Ap,(3))sp/N=0 at x,=0 because the
fluctuations are Gaussian. Further calculation yields

C. The Legendre transformation 52Ty5(3,4)

The functional Legendre transformation is a general WaY5(p (1)) 8(p4(2))
to provide the Dyson equation for tifigll correlation matrix

G,p5(1,2) [22]. In doing so, therreducible GF, I'{{p,(1))}, 1
is defined by the identity =J d5d67;(Ap,(3)Aps(4)Ap,(5)Ap,(6))sp

T{{pa(1)}+P{{xa(1))}= f dL(pa(1)) Xal(1). XRup(5,2R,a(6,1), (249

(2.37 where
By doing functional differentiation of E2.37), one gets 59.(1)
ST {{pal1 R 52 (248
P (CHER)) 038
“ (pa(1)) ' and the full mean field
and (1) =~ 1 P(1)+ xal 1), (2.4
(G 1,(1,2)= ST {(pa(1))} (2.39  The expression foR,,(1,2) can be easily found by differ-

pa(1))&pp(2)) entiation of Eq.(2.47) with respect to(p4(2)). Taking into
account Eqs(2.24), (2.38), and(2.39 at y,—0 one gets
Taking into account the result in Eq2.35, we find the

following result for GF: R.5(1,2) =[G ,4(1,2)

1 _
F{pal1)} =Ts(pa( D)} + 5 THINT4(1,2)], i | 04030.1.05,49R 32

(2.40 (2.48
where or finally
Po{pul 1)) =~ Pesdxad + [ d1pu(Dxa(1), Rp(1:2= [ GBI+ w081 131632
(2.41) (2.49

where the hatted variables stand for the corresponding 2

In Eq. (2.40 one should conside,(1) as a functional of X2 matrices. Substitution of Eq$2.49 and (2.45 in Eq.

(p.(1)) given by Eq.(2.38. Double differentiation of Eq.

(2.40 leads to an equation of the Dyson form, (2.4 yields
[G 1ap(1,2)=[S Map(1,2)—2,5(1,2), (242 zaﬁ(l,z):—f d3d4K,5(3,49[G '1,,(3,1)
where the RPA-correlation matri§,;(1,2), is defined by X[G_1]55(4,2), (2.50

Egs. (2.3D)-(2.33 and the “self-energy” functional
2 ,5(1,2) has the form where the X 2 vertex matrix has the form
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TN matricesF ,4(1,2) andF{}}.(1,2,3,4). It is not surprising
,’ \I then that a specification of the model for the free system
\\ / dynamics is necessary, before going to the investigation of
’\/\/\/\/\/\/:J:L;/\/\/\/\/\, e
La 2,B D. Analysis of the equation for the full correlation matrix

FIG. 1. Diagramatic interpretation of the vertex matrix: the rect- AS We have mentioned, the explicit solution of EB.53

angle corresponds &), 5(1,2,3,4); the dashed line to the effective needs the specification of the free system dynamics. Two
simple models are most amenable for the theoretical treat-

interaction matrix (o) "1+ 8] ~1; the wavy line to[ 1+ w0 S] L.
! I X (u0) ] e [1+uoS) ment: the free diffusion modelFDM) and the relaxation
time approximation modelRTAM) [16,23. The latter pro-

Kaﬁ(1,2)=J d3d4d5d6{[(uv) 1+ é]—l}gy vide more reasonable dynamical information also for short
time intervals,At<mg/vy, , where the FDM completely
« (4) 1+ unglt failed (e.g., th_e sum rule doe; not haldt turn; out thqt
(43)5,50,(34.5,8{[ 1+ 1oS] upon calculation of the trace in Eq2.51), the integral is
X(5,){[1+ w081 4(6,2) (2,57  Ultraviolet-divergent for FDM and only RTAM leads to the
, +8(6,2). .

finite result. The matrix elements for RTAM have the form
In Eq. (2.5D, S{),5(1,2,3,4) is the four-poin(responsg
S 2F k%D
correlator matrix in the RPA, s

Fodk,w)= w2+(k2D—w270)2’ (2.54

1
S(,6(1,2.34=(Apu(1)Ap4(2)Ap,(3)Apy(4)) sp.
N BF kD

25 =
(2.52 Fouk, o) oKD o (2.55
The explicit calculation o8{). 5(1,2,3,4) is implemented in
Appendix B. The vertex matrix can be seen as a one-loop )
diagram(see Fig. L Fio(k,w)= BFsk°D (2.56
The higher-loop contributions, which include generally ’ iw+k?D—wlry
speaking Mn-point correlators,SEme.)..7(1,2, ...,4n), can

be also considered, however the “self-energy” still has theyhere we introduced the diffusion coefficiebt=T/yq, the
same convolution structure =G *K*G~1. Here the characteristic time scaleg=mqg/ vy, and Fg=pq for the
vertex matrixK ,5(1,2) is calculated in the RPA only. That overall density. Atro=0 we return to FDM. In the case of
is why these contributions basically do not change our reRTAM the solution of Eq(2.53 for the full correlation ma-

sults. trix reads
As a result, in the K,w) representation the Dyson equa-
tion (2.42 with the “self-energy” functional(2.50 reduces 1+ V14— i 07— 0’roret Xg 1K oi(K, @)
to a quadratic one, Goi(k,w)= . > — ,
2l—iwr.— 0w Toret X (K)]
Gay(k,@)[S™],5(k, 0)G s5(k, ) (2.57)
— G p(k,0)+K,5(k,0)=0. (2.53

Giok,0)=Goy( —k, ~w), (2.58
The coefficients of Eq(2.53 trace the problem back to the
free system dynamicsvhich is embodied in the correlation and

7o [ 11407~ 0P Tomet X () Koi(k, @)
2B —iwrc—wZTOTC—F)(;tl(k)
Re{V1-4[—iw7e— 0’ romet X ()Kou(k )}

- Koo(k,a))

Goo(k,w): (259)

The explicit calculation of the matriX,4(k,0) [see Eq. transition. Instead, the low-frequency limit dBy(k,)
(2.51)] is given in Appendix C. The overall behavior of the slowly changed with control parametgighich is not shown
correlation functionGyo(k, ) according Eq(2.59 is shown in Fig. 2). That means that for the nondisordered model with
in Fig. 2 (at u=10,8=0.1,pp=1, and7y=0.1). It can be a general repulsive long-ranged potent®ll) the glass tran-
seen clearly there that no singularity appearsat0. sition is not generic. This very important conclusion suggests
The singularity, however, might be responsible for a glasghat for the model with a long-range interaction the phase
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(i) Each particle carries a single “charge,, so that
tpm= &t bo,oy and eacho, is randomly distributed
(“random sequence mode)”’

It turns out to be sufficient for the purpose of this paper to
restrict ourselves only to the “random-bond model,” where
Mpm does not depend on the choice of pairs and has a Gauss-
ian distribution,

2
~ (#pm— o) } | -

P ocexX

The competing long-range interactions frustrate the system
FIG. 2. The correlation functio®y(k, ) vs rescaled variables . P 9 9 9 . . y. .
N n 17 of particles and the question is whether a glass transition
wTy andklo, WhEI’ETO—mO/'yO andlo—(’Tolﬁ’yO) B

exists or not. Normally, frustration and frozen disorder are
enough for the existence of glassy phases. Here the problem

) . is more complicated, since the long-range nature of the in-
space is too smooth to show a glass transition. In order @, ction may provide the opposite effects.

obtain a glasslike transition, a competing interaction or a tha averagi ; ;
. ) ging over the quenched disorder in &37)
quenched disorder should be added. This leads to glassy d%’éfter the substitutiop.— z,) can be carried out in just the

namics, as we will show in the next section. . L ) .
It is interesting to note that for the generalized Kac poten-same way as in Ref$31,32. Similarly, typical two-time

tial Eq. (2.2), wheref(r) and its Fourier transformation are d(_ependent terms immediately appear. They are also bilinear
positive definite functions, the MCT-memory kernel van—W't.h respect o the force.s.of '”‘era‘?"‘“l”(f)- n ordelr o
ishes atc— 0 [25]. The corresponding argumentation is rel- rationalize thes_e terms, it is convenient to mtrod[lgmﬂdes
egated to Appendix D. The explanation for this result lies inte mass densit§2.9) and the response field densi§.10]
the fact that the “cage effect,” which is a cornerstone of the following collective variables:
MCT, is missing in the MF limit.

The “glass transition” which has been studied in Ref. N
[26] for the particles interacted via the Kac potential2) L L o
has a completely different nature. In Rg26] the function Qo(r.tir',t ):p; S(r=rP(1)s(r’ —r'P(t")),
f(r) has a step form so that its Fourier transfof(k) is
negative at some value &f As a result, the system becomes

unstable and a nonuniform configuration where the particles N

are grouped into “clumps” shows up. It was found that the Qu(rtir t')=— 2 iF ()V:8(r—rP(t))if (1)
slow dynamics of the MF model is associated with these phte = )

clumps and does not touch a single-particle motion. Obvi- L o

ously, it is different from the conventional glass transition XVio(r' —r'®(t"), 32
[1]. :

N
Qu(r,r' )= 2 ir () V;8(r—rP(1)8(r' —r'P(t")),
Ill. THE STRUCTURAL MODEL WITH COMPETING p=1
QUENCHED INTERACTIONS

A. Specification of the model N

In the previous sections we have shown in detail that in Qa(r,t;r',t")=— > ir(t")Vis(r' —rP(t"))o(r—rP(t)).
the absence of disorder the dynamical spectrum changed p=1
monotonically with a control parameter and no glassy dy-
namics can be seen. The natural question which arises now is ) ) ) ) )
as follows: How will the introduction of competing interac- After the introduction of the four-dimensional column fields,
tions and/or quenched disorder affect the dynamics of the
system discussed above? To provide an answer to this ques-

tion, we will use already existing models of heteropolymers Qo(1;1")
and their disordered two-body interactif®7—-30. The use Q4(1;1")
of these models and techniques is natural here, since the Q41;1")= ol (3.3
behavior of heteropolymers is well discussed in the litera- Q2(1:1)
ture. In principle, two practical possibilities exist. Q3(1;1")

(i) The strength of the two-body interactiop, in Eq.
(2.1) is now a random function of all pairs of the interacted
particles,u,y (“random-bond model’. wherea=1, 2, 3, 4, and the % 4 matrix,
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0 v(1,3)0(2,4) 0 0
v(1,3)0(2,4) 0 0 0

e 1,23.4= 0 0 0 v(1,49v(3,2) |’ 34
0 0 v(1,4)0(3,2) 0

the whole expression for the GF takes the form

1 3
(D)adXa Hal= f I 1T Dpa<1>DQa<1;1'>exp{ Wipa(1)iQa(1:1)}~ f—ﬁ, f d1d2po(1)U (12 p4(2)

2
¥ f A1 DX~ f d10203d4Q4(1;2) T 1,2,3,4Qu(34) + f d1d2Qa<1;2>Ha<1;2>],

(3.5
where the entropy is given by
N 1 N
W{p,(1);Qq1;1")}=In f [T Dr®PmDpr®(exp{Agr®,rPH T 6 pa(1)— 2 rg'”(l)a(rl—r(p)(t))}
p=1 a=0 p=1
4 N
<11 6[Qa<1;z>— 21 pP)(1;2)6(r, - r<p><t1>)5(r2—r<m<t2>)}. (3.6
a=1 p=

We had used the column operators explWip,(1);Q4(1;1)1)
1 1 3
Py=| . = Difo(1)DP4(1;1
rP(1) (ir}%)vj,l)’ fa[lo 11 pya(1)DP,(1:1)
XeXP['E{lﬁa(l):@a(l:l’)}JriJ dlpa(1) (1)
1
—iF PN, LiFP ()Y f : :
o(1:2) , (.Al()p),,l 1 (t2) V) 2 a7 +i ] d1d2Q,(1;2)®,(1;2)}. (3.9
irP(t) Vi g
—irP(t)V;, After substitution in Eq.(3.5 and integration ovep, and

Q.(1;2), onegets

and the external field;1,(1;2), conjugated tdQ,(1;2), has 13
been introduced also. a7
z Hal= D¢, (1)Dd4(1;1

The two-point collective field$3.2) have a meaning of (Z)ad Xa-Ha} f a[[o al;[o Ya(1)D®a(1:1)

the dynamical “overlaps.” It is a dynamical generalization

of the Parisi “overlaps” in a replica spad83]. For ex- ~ ) .

ample, Qu(1;1’) quantify density-density and),(1;1") xexp Figha(1);Pa(1;1)}

response-density overlaps, respectively, between two space-

time points. The “entropy”(3.6) corresponds to the volume N .

in the dynamical phase space when not only figlgcl) but - 2_§of d1d2¢ (Do ap(1.2)¢5(2)

also overlap€Q,(1;1’) are given. In a sense the “entropy”

(3.6) is again the generalization of the entropy for the het-

eropolymer spanned in a replica space at the given set of — — | d1d2d3d4d4(1;2)
“overlaps” [29]. Xo
X[F_l]ab(1.2,3,4)®b(3;4)}, (3.9
B. The saddle-point treatment

Let us introduce the functiondf{y,(1);®,(1;1")} by
the functional Fourier transformation, where
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N

N N
F{ypa(1);®4(1;1))=In| TI Dr<P>(t>D?<p>(t)exp{ El Ao[r@),?‘p)]—iEl f dtr® ([, (rP () +ix(rP(1)]
p=1 p= p=

N
—izl dtdt’p(ap)(t;t'){%[f(")(t):r(p’(t’)]+iHa[f(p)(t):r(p’(t’)]}}- (3.10
P

In order to ensure the extensivity of the whole effective action in(B§), we put the variancg?= XSN [so that the variance
of the whole strength factor in E¢R.4) scaled ad\~ ¥ akin to Ref.[28]]. This enables us to represent the GF in a form similar
to Eq.(2.20,

1 3
<Z>aV{Xa}: f CL-[O 5;1[;[1 Dlpa(l)DCDaexq_NhA[l//a 1(I)a;Xa 1Ha]}1 (311)

where

Z[zpa@a;xa,Ha]:zi&J dtf d1d2¢a(1)[v_1]a,3(1,2)¢3(2)+)%j d1d2d3d4d,(1;2)[T 1]41,2,3,4D(3;4)
0

N N N
—%In f 11 Dr<p><t>DF<P><t>expr Adlr®,r®]—i >, f dtr POy, (rP(0)) +ix, (rP(1)]
p=1 p=1 p=1

N
—i2 dtdt'pﬁf’(t;t'>{<1>a[r<p>(t>;r<p><t')]+iHa[r(m(t);r(p)(t')]}]. (3.12
o=
The resulting SP equation reads
a1)= - J d20,,5(1,2)(pp(2) s, (3.13
_ i)(g
Da(1)=— | d3d4T55(1,2,3,4(Qu(3;4))sp, (3.19

where the averagé - - )gpis calculated with the GF,

N N N
(ZoYad Xa Hal= f HlDr@)(t)DF‘p’(t)exp{ 21 Ao[rw%F(p’]—iEl f dtrP ([ g (rP (1)) +ix o rP(1))]
p= p= p=

N
—iEl dtdt’pg")(t;t'){@[r‘p’(t);r‘p’a’)]+iHa[r“”(t);r‘p)(t')]}]. (3.19
=

Thereby we are left with the GF of a free system which experiences the external mea@jeidga and (I_>a+iHa.

C. The self-consistent Hartree approximation In Appendix D we show that the SCHA and thext to the
saddle-point approximatiofNSPA) merge and both become

In order to calculate the GF given by E®.15, we will . . . i
use the self-consistent Hartree approximati®CHA). For exact, if the GF with an arbitrary action can be treated by a
steepest-descent approach\at> .

th!s approxmatlon we replace the real action by an appro- Let us make the Fourier transformation of the mean fields
priate Gaussian one in such a way that all terms which in-

clude more than two fieldsj(p)(t) or/andFJ(p)(t) are written o
in all possible ways as products of pairsréP(t) or r{P(t) ‘/’a(r(p)(t)):f
coupled to self-consistent averages of the remaining fields.

The analogy between the SCHA and the SP d3kid3Kk2—
approximation at N—c for the special case when @ (r(P(t):r(P(t’))= f ———Pa(kh k) explikrP(t)
the nonquadratic terms in the action are only the func- (2m)
tions of the mean-squared displacememt?(t—t’) 2.(0) /7
=30 ([r®P(t) —r®P)(t")]?)/N has been proven in Re]. IR, (3179
In our case the action in E¢B.15 has a more general form. and insert it into Eq(3.15. Then for Eq.(3.15 we use the

d*k — iler (P)
(Zw)sz//a(k)exphkr (1)}, (3.19
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Hartree-type actiofisee Eq(D24)]. By doing so we put for 1
simplicity the expectation valueo 0. It is easy to assure Ptt)=3 > (rPrP)) (3.25
oneselves also that the ‘“response-response overlap” =1

(Qu(1,1))=0 (similar to (00)=0 in Ref.[31). In the a4 the corresponding response function
curse of the derivation we have used SP equatioh4) and

defined the correlatadfor the incoherent scattering function

1 3
_52 r(D)(t (p)(t)> (3.26

1
C(khtk2,t) = T (Qo(kh E KA L)) (3.18
(which actually does not depend on the particle inggxan
be derived from Eq(3.21) by using the standard techniques

as well as the response functions . 5
P [9]. The resulting equations read

1
G(kl,t;kz,t’)z—N(Qg(kl,t;kz,t’» att'<t, 5 P Jt ]
My—+Yo—+ N(t,7) | P(t,t
(3.19 o&t2 Yo . TA(t,7) | P(L,t7)
2 +.1,1 47 1 14+.1,2 47 ’ t t’
G LK) = QoKL EKAE)) att'>t, (3.20 —j drk(t,r)P(r,t’HJ dr(t. )Gt 1)
where(- - -} stands for the averaging with the Hartree type _ ,
of action. After collection of all terms, the final resukt 2Tyod(t",1) (3.27
Xo=0 andH,=0) then reads and
N 2
. P\= P (t)DFP d
(Zoyad Ve o) prl Dr(H)DFP(1) [m - . T)lg(tt :
N
~ t
xexp{ p; Aol r(P),r ()] _f drA(t,DG(7,t)=—8(t—t'). (3.28
+ f dtdt’ir® ) rP )N (t,t’) Equationg3.27) and(3.28 should be supplemented with the
initial conditions y,G(t+0",t)=—1 and G(t,t)=0. By
e (0) making use of this condition, equipartition
—J dtdtirP PN L) (Mo/3)S3_4(r(1)Fj(1) =T, causalityG(t,t') =0 att=<t', as
well as the condition (1/:§)j3’zl<rj(t)rj(t)>=0, one finds
+f dtdt/iE(p)(t)i?(p)(t/)n(t’t/)], from Eq. (3.27 the following equation:
1 9?2 t t
(3.2 §m°ﬁ+f drA(t,7) P(t,t)—f dr(t, D P(7,t’)
where
t
3 +j d7yn(t,7)G(t,7)=2T. (3.29
’ 2 2 d>k 2 2 ’ ’ -®
At t )=§X0 5 5K lv(k)|[*G(k;t,t")C(k;t,t")
(2m) (3.22 Equationg3.27) and(3.28 have the same structure as the
' Dyson equatiori2.42). After the matrices inversions and go-
and ing to the time domain, Eq$2.42 (in the time-translational

invariant casgtake the form
3

1,0 kL, , : _
n(t,t')= 3X0f 5K lv(K)|?[C(Kk;t,t")] 92 F] ’ t
(2m) 05T Yo T 1(0) |Goa(tit) = | drZyft—7)
(3.23 ] -
In Egs.(3.2)—(3.23 we have restricted ourselves to the ho- XGpy(T—t")=6(t—t'), (3.30
mogeneous case, ]
5? 0 t
C(k,t:k’",t")=(2m)38(k+k"),C(k:t,t'), (3.29 mo?"‘?’oEJﬁu(o) Goo(t,t’)—ﬁwddlo(t—r)

G(k,t;k" ") =(2m)38(k+k")G(k;t,t"),

XGOO(T—I’)—f d7311(t—7)Gyg(7—t")

for the correlation and response function. The equation of

motion for the one-particle correlator =2TyoGqo(t—t), (3.3)
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where u(0)= [{dtA(t) and the RPA-Fourier spectrum Pod )= Iim P(t' +7,t"),
t/ oo
1 (3.37
(3.32 God 1) = lim G(t' +7,t").

t' —o

So1=

—iyow—mMow?+ u(0)

Equationg3.27) and(3.28) are converted to the Dyson equa- Then the equation for the displacemeft,=2[P.,{0)
tions (3.30 and(3.31) provided that —P.{7)], response functiog,{ 7), and the static correlator

P.d0) takes correspondingly the forms
Goo(H) =P(1), Gpa(t)=—G(1),

(3.33 92 r
S oD =N (1), 3 14(t) = 7(1). moﬁ+700—T+M Dod 1)~ fo d7'Nad 7= 7")Dad 7')
We can show19] that the relation .
) S R WEERR W Ve
_,35211('[):210(0_201(0 (3.39

—ZJ dr'[ad 7+ 7') = 7ad 7')1Gad 7') = 2T, (3.39
holds, provided that the FDT is satisfied faf,5(t). We then 0
have in addition

&2
moﬁ + ’yoz_ +M

J God 7)— fofdf’xas(f— )G 7)=0,
_ﬁEGOO(t):Gm(t)_GlO(t)- (3.39 (3.39
Bearing Eqs(3.33 in mind, Eq.(3.34) takes in our case the 1 1 (> o

form (att>0) Pad0)= M——Mas[T_ifo dT)\asDaiT)—J’O d77aGad 7)

(3.40

J
=B M=\, @36 o

The validity of the relationshig3.36 can be checked by
replacing Eqs(3.22 and(3.23 in Eq. (3.36.

The general equation@.27) and (3.28 are equivalent,
after the necessary changes have been made, to the corre- "
sponding equations for th@spin system or a particle in the Mas:f drNad 7). (3.42
random potential at the large dimensipi-11]. The most 0
important features of these equations areglassy dynami- _
cal behaviorand the universahging regime At low tem-  However, it is also convenient to define the “anomaliyt
peratures the system tries to minimize the energy and eachM — M, [11]. Equations(3.38—(3.40 has been analyzed
particle(with a numbep) tends to surround itself with other first in the context of a polymeric manifold in the random
particles which assure the strength parametgr<0. Onthe  media[9,10] and the random-phase sine-Gordon mdgel.
other hand, the long-range interaction tries to support othefhe peculiarity of our model is defined by its memory func-
pairs (j) corresponding tqu;;>0. As a result, the system tionsX,{7) and 77,{7).
becomes “frustrated” and many local free-energy minima For example, let as give an explicit expression Qg 7).
appear. The Gaussian form of the correlator, C(7)

In the spirit of Refs[11,34,33 whent,t’—o we have to  =exp{—k*D,{7)/2}, leads from Eq(3.23 to the result
discriminate between different case€p: the asymptotic re-

M = lim fﬁ dra(t,7), (3.41

t—o

gimewhen ¢—t")/t—0 and(ii) the aging regimewhen ( (7 X(Z)\/; 1 (3.43
—t’)/t’—0(1). Th i ime i h li- Nas 7))~ — . :
) (1) e aging regime is much more compli a 6 Dun)

cated because the time-translational invariance and FDT are
violated. This regime has been extensively investigated bot
theoretically [8,11,34,3% and by computer simulation

[36,37. In the following, we restrict ourselves only to the
asymptotic regime, for the sake of clarity and simplicity, and P
since the main features will already be visible. —ﬁgpa&( 7)=2G.d 7) (3.49

t'JsuaIIy it is assumed that at high temperature FDT holds,

D. The asymptotic regime and

This asymptotic regime is characterized by the large time
scales, i.e.t,t’ —oo, but keeping the difference=t—t’ fi-

J
nite. Under these circumstances we can define _'857733( ) =Nhad 7). (349
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In this case Eqs(3.38 and (3.39 merge and take a simple
form,

(92

My—+yo=——+M|D
007_2 Yo, ad 7)

- JOTdT’)\aS( 7—1)D{7')=2T. (3.49

It turns out[9,10,37 that the solution which satisfies the
FDT is only stable above a critical temperatdrg. For the
stability analysis it is convenient to represent E8.46) in
the form

az

J _
m0ﬁ+705+M+M347) Das(T)

T d
+ﬂf dr'[7ad 7 T,)_ﬂas(T)]_,’DaéT,)ZZTi
0 ar

(3.47)

where
M (1) = der')\as(r'). (3.48

For r—oo the stability condition which comes out of Eq.
(3.47) reads

[M+M{7)]D.d 7)<2T. (3.49

Then the stationary value of the displacemé&ny{ 7— =)
=(q reads

2T

Qo= M ' (359

By taking into account Eq93.44) and (3.49, the stability
condition becomes

D(q,T)=0 (3.51)
for 0=<q=gqg, where
(Xo)z Vm _iq_(Xo)zﬁ\/a+1
12\go Yo 12 '
(3.52

The critical valuegy, and T, at which the condition(3.51)
first becomes violated is defined by the equations

D(q,T)=

T

T

D(g¢,Te)=0,

(3.53
D'(Q¢,Te)=0.

Consequently, Eq$3.53 have the simple solution

EEs

Xo 24

and g.=(g- (3.59

Diqg,

)

FIG. 3. D(q,T) vs q at xo=0.1go= 10° for different tempera-
tures:(i) full line corresponds td@ =T =0.1528;(ii) dashed line to
T=0.1535 ;(iii ) dot - dashed line td=0.151.

Figure 3 shows the behavior 8f(q,T) in the vicinity of
the critical point. It can be seen that the minimuig,<q,
at whichD(q,T)=<0 appears continuously, i.e., the instabil-
ity of the FDT solution, shows up as a second-order phase
transition. This is analogous to the dynamics of polymeric
manifolds in a medium with the long-range correlation in
disorder[10]. In particular, if “anomaly” M—0, thenqg
—o0 andT,—00, so in this case the FDT solution is unstable
for any finite temperature.

Let us consider the dynamics at the temperature slightly
above the critical pointT=T(1+¢), where 0<e<1. For
large 7 the decomposition

Dad 7)=0qo—f(7) (3.59

is possible, wherd(7)<q,. The substitution of this decom-
position into Eq.(3.47) and the expansion up to the second
order with respect td(7) yields

. 2 1(~ ’ '
ol (1) + L1+ | drTH= 5~ ()]

J
%" f(+')=0. (3.56
at’
Following Ref.[1], let us make the Laplace transformation
L[f(7)]=f(2) and introduce the scaling functior&z) or
&(7) in such a way that

2= b o f(D=c,d(», (35

wherez=z/w, and7=rw, . If c,=¢ andw,= wee?, then
one can write Eq(3.56) in the form

Aa B e A A amo oA
Qo (2) — gﬁ{¢2( NH2)+2¢%(2)=0  (3.58

[see Eq(2.68h of Ref.[1]].
In the critical regimezs>>1 (or 7<1), the solution of Eq.
(3.59 has a forme(7) 7 2. In this limit the first term in

Eq. (3.58 is dropped out and the exponent is defined by the
equation
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I'’(1-a)

[(1-2a) 4° (3.59

The solution of Eq(3.59 givesa=0.304 65. In the opposite
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In conclusion, the glass transition in the pure systems of
the interacting particles, where the disorder is actually “self-
induced,” goes beyond the mean-field ley&R]. This ap-
pears too difficult to implement in the present context, be-
cause it implies the consideration of the short-range

limit z<1 (or 7>1), the last term in Eq(3.58 can be ne-
glected. In this case the solution has the fom(7)
«A, 7 %exp{—\7}, where A,=8&qol'(1—a)2(1~23/3T (1
—2a)\2. As a result, the overall scaling reads

interaction potential as well as activated processes.
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(3.60 APPENDIX A: CALCULATION OF THE FOUR-POINT

] RPA-CORRELATION MATRIX
where\ is some constant.

At T<T,, the FDT is violated for the large time separa- In the full analogy with Eq.(2.26), the expression for
tion = and the aging regime arises. It should be mentioned4,s(1,2,3.4) reads
that the asymptotic regime cannot be decoupled from the
aging one[11,35. In actual fact, the “anomaly’M in the  Sid,s(1.2,3.4
asymptotic equation&3.38—(3.40 strictly speaking can be

calculated only from the aging regime. Because of the dis-
tinct aim of this paper, we are not going to discuss the aging = [|im (pa(1))sp]-
regime here, expecting to return to it in a later publication. Vot ixa—0 NZ8x5(2) x(3) Sx 5(4)

(A1)
IV. CONCLUSION

In the present paper we have considered the dynamics (')I'fhe expansion of thép,(1))sp up to the third order with

two models with the long-range repulsive interaction. Thel€Spect to the mean fielg, +ix, can be easily obtained
interaction potential was designed in a way to enable thd©M Ed.(2.29,
saddle-point treatment as well as a fluctuation expansion.

For the pure model we have derived E2.53 for the full
correlation matrixG, 4(k, ) in the one-loop approximation,
which has an explicit solutiofsee Eqs(2.57—(2.59]. This
solution has a “boring behavior” ab—0 which manifests
the absence of the glass dynamics. The physical background
of this stems from the fact that the potential is much too soft
and the “cage effect” is completely missing.

This conclusion is in accordance with the interacting par-
ticles statistical thermodynamics analysis, which was given
in Ref. [12]. It was shown there that for the infinite range
interaction potential, which allows a well-defined saddle-
point treatment, the glassy phase is simply suppressed.

On the other hand, the same model but with a randomly
distributed strength of interactionthe ‘“random-bond
model”) leads to the continuous glass transition. This type of
transition is also the case for the polymeric manifolds in the ) ] ]
disordered medium with long-range correlatid®] as well ~ BY using the SP equatiof2.24 and after threefold differen-
as for thep-spin interaction spin-glass model at the largetiation with respect toy,(1) [see Eq(A1)] we find
external field 3,6]. It would be also interesting to investigate
the more realistic “random sequence model” in which each 5(014[375(1,2,3,4=F%(T,Z?,Z){[inLMﬁﬁ(z)]*l};a(T, 1)
particle carries a random “charge.”

Qualitatively, the same glassy behavior has been found in
the pure spin models with the deterministic but very rapidly
oscillating coupling between variabl¢89—42. It was as-
sumed that the effective quenched disorder is ‘“self-
induced” [8,39]. This means that because of the slow dy-
namics, some degrees of freedom freeze and play the role of
the effectively quenched disorder. where the four-point free system correlation matrix

<pa(1)>sp=<pa(1)>o+f d2(Ap,(1)Apg(2))ol xp5(2)

_ 1

1))+ 57 [ d2d3(ap,(1)

X Ap5(2)Ap,(3)d xal2) 1 52T x(3)
— 1

-—iwy(S)]+-§TJ‘d2d3d4(Apa(l)Apﬁ(2)

XAp,(3)Aps(4))ol xp(2)

—ig5(2) X)) =19, xs(4) —i¢s(4)].
(A2)

X1+ uoF@17154(2,2)
X{[1+uoF@171.(3,3)

X1+ poF @] Y55(4,4), (A3)
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. 1 Kep(K,0) =L, p(K,0)+L 45—k, —w), (B4)

Fibro(1234=5(8pu(1)Aps(2)Ap,(3)4p,(4))o-
where
(A4)
In Eq. (A3) we imply the summatioriintegration over the Lag(k,0)={[1+2u0F] (K 0)F 5k 0)
barred indicegbarred space-time variab)edVhen deriving ~ 1A 1A 1q-1
Eq. (A3) we have also kept in mind that\p,(1)Ap4(2)) X{[1+(2p) " F v 7]
«N and (Ap,(1)Ap (2)Ap7(3)Ap5(4)>00<N2, etc. The A C1p-17-11-1
ar—t . ! . —[1+

fact that the matr|>d:a4g75(1,2,3,4) is symmetrical with re- [1p R0 ] s ahe)
spect to simultaneous permutations of Greek indices and X{[TJFZM{),“:]*l}J(k,w)_ (B5)

space-time arguments as well as E227) have been used.

It is easy to show thng4ﬁ)75(1,2,3,4) is factorized,

F),5(1,2,34=F2(12F 23,49 +F2(1,3F(23

+FA(1,9F2(2,3. (A5)

APPENDIX C: THE MCT FOR THE GENERALIZED
KAC POTENTIAL

In this case the direct correlation functiow(r)
=—BV(r) and its Fourier transformation take the scaling

On the other side it is instructive to check that even in thisform

caseS\),5(1,2,3,4) cannot be factorized.

APPENDIX B: CALCULATION OF THE VERTEX
MATRIX K,z(1,2

The substitution of Eg(A3) into Eq.(2.5)) after straight-
forward algebra yields

Kap(12={[(2p) o "+ F] 1 ~[p "0~
X (2,){F5(1,2)F;5(3,4)
+Fo(1,3)F55(2,4) + F5(1,4)F 5,(2,3)}
X{[1+2uvF] 1},4(3,1)

14 ﬁ]*l}ﬁ—a

X{[1+2uvF] Y54(4,2), (B1)

where as before for the repeated barred indisesiables

the summatior(integration) is implied. For the time-space-
translational invariant case the respective Fourier transforma-

tion leads to the result

Kap(k,0) ={IF 5k, @) +{[(2p) 'o *+F]
[ M FT Y5k, — 0)Fay(— K, — )
XFask,@)+{[(2n) T T+ F]7!

+F1 gk o) F ok, o)

XFa(—k,—o)H[1+2u0F] Y,

—[u "t

X(—k,—o){[1+2u0F] Yss(k, @),  (B2)
where the trace
_ d*qde 117171
|—J(2W)4{[1+(2M) F v 7]
—[1+p Y o Y Yx(0,w). (B3)

With the correlation matri given by Egs(2.56), by doing
integration overo one can check that the trate=0. This
gives finally

k
c(k)=—,8f(;). (Cy
Let us insert this expression into the MCT-memory kernel
[see EQq.(3.32 in [1]]. It is reasonable then to rescale the
integration variables in the memory kernkk- «k, p— «p,
as well as to put for the external wave veotsr kg, where
go is some reference wave vector. The last scaling means
that in the MF limit an experiment probes a very small wave
vector: q—0. The resulting scaling of the memory kernel,
m(q,t), reads

8D (k+p—do)

po [ dkdp
m(KQO,t)=Kdé(CIo)7J (2m)2

L 2
MLaCIZLUCTATIG) & S Y
Yo

(C2

where we have taken into account the scaling form of the

correlator: S(k,t) =S(k/x;t). Thus we finally arrive at the
scalingm(xqg,t)=x%—0 and the glass transition dies out.

APPENDIX D: THE ANALOGY BETWEEN THE SCHA
AND NSPA

Let us prove that the SCHA becomes exact for the GF
given by Eqg.(3.15 in the limit N—o. We will consider
even a more general GF,

N
Zix.b=| II TI bx®(1)
p=1 a=0,1

N
1
Xexp{ -5 2 | d1d2xP(1)A,4(1.2xP(2)
2 &

N N
+El W[xﬁf’]+21 dlxﬁ,'”(l)xa(l)}, (D1)
p= p=

where we have used the short-hand notations
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ri(t) )
(D2)

(p) —
Xe (1) (ifj(t) :
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be taken into account. Namely, because the averd@Bpis
simply the Gaussian integral, Wick's theorem vyields

(xPOWIXPT) = (xP(1)) (W XPT)

and “1” embraces Cartesian indices as well as the time vari-

able: 1={i,j,k;t}. In Eq.(D1), W[xP] is an arbitrary func-

tional of x().
Instead of the exact action functional in EG@1), we
consider now the trial one which has a Gaussian form,

N
S[ngp)(l)]:pzl [%f dleX&p)(1)Aaﬁ(1'2)x(ﬁp)(2)
_J d1d2xP(1)T ,5(1,2x(2)

—f dlLa(l)x(ap)(l)). (D3)

Let us look for the “best” coefficientd”,5(1,2) andL (1)
in a sense that the exact “free energ¥|[ x.|=—InZ{x.}
tends to the trial on& [ x,]= — InSTIDxXPexp—IxP}, i.e.,

F[Xa]_”:O[Xa]!

and both become exact Bit— <.
We can show that the propert3) is satisfied byl" 4

(D4)

andL,, which are obtained by extremization of the func-

tional

N
DT Ly=—In| IT Tl DxP(1)exp—SxP1
p=1 a=0,1

N
+> Udldzraﬁ(1,2)<xgp>(1)xgp>(2)>s
p=1

N f A1[L (1) xoJ(XP(1))s
—<W[x£f’><1>]>s], (D3)

where we use the notations

H H Dx(P(1)- -

pla'f

-exp{— S[xP']}

(- )e=
||l || Dx(p)(l)exp[ S[x(p)]}
p=1 a=0
(D6)

The extremization conditions read

S o
ST (1,2

(D7)
)

LD

+f d2(AxP(1)AxP(2))s

x < &(fgp)(Z) W[XEYP)]> Sv (D8)

whereAxP(1)=x{P (1) (xP(1)),. After straightforward
calculation we find

2
i3 g ), o

and

Lo(1)= J 2 Aus(1,2)~ T g1 21XP(2)s.
(DlO)

Then equations for the two moments take the form

(p) — -1 (p)
<Xa (1)>s fdz[A ]aﬁ(lyz) <5X’%p)(2) W[Xa ]>S
+x4(2) (D12)
and
(AxP(1)AxP(2))s={[A-2["]"1},4(1,2), (D12)

whereA andI" stand for the corresponding<2 matrices.
On the other side, the saddle-po{®P treatment of Eq.
(D1) at N—co yields

_ +(P)
deAaﬁ(12)x (2)+ &(p)(l) +x4(1)=0
. (D13)
and
(AxP(1)AxP(2))sp={[A—2B]"},4(1,2),
(D14)
where
Pany,
aﬁ’( ) (Dls)

5X(p)(1)5X(P)(2) .

andx{P)(1) stands for the field in SP.
In order to show the analogy between E¢B11) and

The variations in Eq(D6) can be done directly. During the (D12) and Eqs(D13) and(D14), let us make the functional

calculation the generalized Wick’s theorg@2] should also

Fourier transformation
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expK[yP (1)1} = J Dx&"’(l)eXp{W[xEF)(l)]
—i f dlx&mu)y&")(l)] (D16)

and its inversion

expfWx{P(1)]}= f Dyif’)(l)exp[ KlyP(1)]
+if dlxgm(l)ygp)u)}. (D17)

Then Eqgs(D13) and(D14) can be written as

)= [ d2A 151201y ()t xs(2)]
(D18)

and

(AxP(1)AXP(2))sp={[A+[(AyAY)sdl] ™ ap(1,2),
(D19

where the correlation matrix
IKAYAY)sdl=(AyP(1)AYP(2))sp  (D20)

and
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[ oye- -exp{ Kiy®1+ | dﬂf)(l)y&p)(l)]

[ ool kv + [ andiayein)|
(D21)

At N—oo by making use of Eq(D17), one can immediately
see that

(- )sp=

—i(yP(1)sp (D22

S

- (p)
<5x£,"><1>w[x“ ]>

and

——(AyP(1)AYP(2))sp,

S

52
- (p)
<6x&p><1)5xgp><2>w[x" ]>

(D23

and the SCHA exactly corresponds to the NSPA. For the
case which was treated in Sec. Il x{P(1))s=0 and the
Hartree-type actioiD3) cast the form

N
1
xP(D)]= le l EJ d1d2xP(1)A,4(1,2xP(2)

2
- dld2{ ——— (p)
2] < &&P)(l)é\xg)(z) WX, ]>S

><xgp)(1)xg’>(2)} : (D24)
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