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The free energy of a field theory can be considered as a functional of the free correlation function. As such
it obeys a nonlinear functional differential equation that can be turned into a recursion relation. This is solved
order by order in the coupling constant to find all connected vacuum diagrams with their proper multiplicities.
The procedure is applied to a multicomponent scalar field theory wiih self-interaction and then to a theory
of two scalar fieldsp and A with an interactiong?A. All Feynman diagrams with external lines are obtained
from functional derivatives of the connected vacuum diagrams with respect to the free correlation function.
Finally, the recursive graphical construction is automatized by computer algebra with the help of a unique
matrix notation for the Feynman diagrams.

PACS numbgs): 05.70.Fh, 64.60-i
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If one wants to draw all Feynman diagrams of higher 2.1)
orders by hand, it becomes increasingly difficult to identify '

all topologically different connections between the verticesyith some coupling constamt In this short-hand notation,

To count the corresponding multiplicities is an even morethe spatial and tensorial arguments of the fig|che bilocal
tedious task. Fortunately, there exist now various convenienterne| G—1, and the quartic interactiol are indicated by

computer programs, for instand&YNARTS [1—3] or QGRAF simple number indices, i.e.,
[4,5], for constructing and counting Feynman diagrams in
different field theories. g
The purpose of this paper is to develop an alternative 1={x1, a1}, LEE d;,
systematic approach to construct all Feynman diagrams of a “
field theory. It relies on considering a Feynman diagram as a
functional of its graphical elements, i.e., its lines and verti-
ces. Functional derivatives with respect to these elements are
represented by graphical operations that remove lines or ver- V123V, ay g, a,(X1,X2,X3,Xg). 2.2
tices of a Feynman diagram in all possible ways. With these
operations, our approach proceeds in two steps. First the cothe kernel is a functional matri@~*, while V is a func-
nected vacuum diagrams are constructed, together with thefional tensor, both being symmetric in their indices. The en-
proper multiplicities, as solutions of a graphical recursionergy functional2.1) describes generically-dimensional Eu-
relation derived from a nonlinear functional differential clidean ¢* theories. These are models for a family of
equation. This relation was set up a long time §d), but  universality classes of continuous phase transitions, such as
so far it has only been solved to all orders in the couplingthe ON)-symmetric¢* theory, which serves to derive the
strength in the trivial case of zero-dimensional quantum fielctritical phenomena in dilute polymer solutiondN+£0),
theories. The present paper extends the previous work biging- and Heisenberg-like magnetN< 1,3), and superflu-
developing an efficient graphical algorithm for solving this ids (N=2). In all these cases, the energy functiofal) is
equation for two simple scalar field theories, a multicompo-specified by
nent scalar field theory witkh* self-interaction, and a theory

$1=ba,(%1), G =G, (X1, %),

1:92

. . K . . -1 _ 2
with two scalar fieldsp andA with the interactionp?A. In a Gy a,(X1:X2) = 8y (=I5 + M) (X1 —X5), (2.3
second step, all connected diagrams with external lines are
obtained from functional derivatives of the connected Vo, ay g a,(X1:X2,X3,X4)

vacuum diagrams with respect to the free correlation func-
tion. Finally, we demonstrate how to automatize our con- 1
struction method by computer algebra with the help of a - 5{5a1'a25a3ﬂ4+ 5a1'w35azﬂ4+ 5!!1’“45“2'013}
unique matrix notation for Feynman diagrams.
X 8(X17X2) 6(X1~X3) 6(X1~ Xa), (2.9
Il. SCALAR ¢* THEORY 2 _ .
where the massn“ is proportional to the temperature dis-
Consider a self-interacting scalar fiedgflwith N compo-  tance from the critical point. In the following we shall leave
nents ind Euclidean dimensions whose thermal fluctuationsG ! and V completely general, except for the symmetry
are controlled by the energy functional with respect to their indices, and insert the physical values
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(2.3) and(2.4) at the end. By using natural units in which the plicities. In particular, it becomes quite hard to identify by
Boltzmann constarkg times the temperaturg equals unity, inspection the numbeX of vertex permutations. This iden-
the partition function is determined as a functional integraltification problem is solved by introducing a uniqued matrix

over the Boltzmann weigtg ™~ E[¢] notation for the diagrams, to be explained in detail in Sec.
V.
Z:j Dep e ELY) 2.5 In the following, we shall generate iteratively all con-
nected vacuum diagrams. We start in Sec. Il A by identifying

) ~_ graphical operations associated with functional derivatives
and may be evaluated perturbatively as a power series in thgith respect to the kernas 1, or the free correlation func-

coupling constang. From this we obtain the negative free {ijon G. In Sec. Il B we show that these operations can be

energyW=InZ as an expansion applied to the one-loop contribution of the free partition
= 1 (—g\P function to generate all perturbative contributions to the par-
W= 2 _(_g) WP (2.6) tition function (2.5). In Sec. Il C we derive a nonlinear func-
p=o p! | 4! tional differential equation for the negative free enekly

whose graphical solution in Sec. Il D yields all connected

The coefficients W) may be displayed as connected vacuum diagrams order by order in the coupling strength.
vacuum diagrams constructed from lines and vertices. Each

line represents a free correlation function : . .
A. Basic graphical operations

: =Gya, (2.7) Each Feynman diagram is composed of integrals over
products of free correlation functions and may thus be
which is the functional inverse of the kern€~! in the  considered as a functional of the ker@l®. The connected
energy functional2.1), defined by vacuum diagrams satisfy a certain functional differential
equation, from which they will be constructed recursively.

1

f G.Gol=s 2.9 This will be done by a gr_aphical pr_ocedure, for W_hich we set
o 12723 T 18- ' up the necessary graphical rules in this subsection. First we
observe that functional derivatives with respect to the kernel
The vertices represent an integral over the interaction G~ 1 or to the free correlation functio® correspond to the
graphical prescriptions of cutting or of removing a single line
>< - / Vissa. 2.9 of a diagram in all possible ways, respectively.
1234

1. Cutting lines
To construct all connected vacuum diagrams contributing to
W) to each ordep in perturbation theory, one connegis
vertices with 4 legs in all possible ways according to Fey-
nman’s rules, which follow from Wick’s expansion of corre-
lation functions into a sum of all pair contractions. This
yields an increasing number of Feynman diagrams, each with 1
a certain multiplicity that follows from combinatorics. In to- Gy
tal there are 4%p! ways of ordering the g legs of thep 5G§41
vertices. This number is reduced by permutations of the legs
and the vertices that leave a vacuum diagram invariant. De=rom the identity(2.8) and the functional chain rule, we find
noting the number of self-, double, triple, and fourfold con-the effect of this derivative on the free correlation function
nections withS, D, T, F, there are 2%, 2IP, 31T, 4IF |eg
permutations. An additional reduction arises from the num- 6G1,
ber N of vertex permutations, leaving the vacuum diagrams ~255-17 G162t GG (212
unchanged, where the vertices remain attached to the lines 3
emerging from them in the same way as before. The resul
ing multiplicity of a connected vacuum diagram in tgé
theory is therefore given by the formul@,10]

Since¢ is a real scalar field, the kern@l ! is a symmet-
ric functional matrix. This property has to be taken into ac-
count when performing functional derivatives with respect to
the kernelG 1, whose basic rule is

1
= 51013042t 614035 (2.1

LT’his has the graphical representation

)
—2——1—2=1—34—2+1—4 3—2.
ME=0— 4!Pp! (2.10 56341
¢t T 21STP3ITAIFN” ' (213

The superscripE=0 records that the number of external Thus differentiating a free correlation function with respect
legs of the connected vacuum diagram is zero. The diagrame the kernelG ! amounts to cutting the associated line into
matic representation of the coefficiem&P) in the expansion two pieces. The differentiation rul€2.11) ensures that the
(2.6) of the negative free energl is displayed in Table | up spatial indices of the kernel are symmetrically attached to the
to five loops[12-14. newly created line ends in the two possible ways. When
For higher orders, the factorially increasing number ofdifferentiating a general Feynman integral with respect to
diagrams makes it more and more difficult to construct allG 2, the product rule of functional differentiation leads to a
topologically different diagrams and to count their multi- sum of diagrams in which each line is cut once.
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TABLE |. Connected vacuum diagrams and their multiplicities of #fetheory up to five loops. Each diagram is characterized by the
vector (SD,T,F;N) whose components specify the number of self-, double, triple, and fourfold connections, and of the vertex permutations
leaving the vacuum diagram unchanged, respectively.

P w
#1
1 3
(2,1,0,0;1)
#2 #3
2 2% @ 72
(0,0,0,1;2) (2,1,0,0;2)
#4 #5 #6 #7
3 1728 @ 3456 1728 2592
(0,3,0,0;6) (1,0,1,0;2) (3,0,0,0;86) (2,2,0,0;2)
#8 49 #10 #11 412
4 62208 248832 55296 497664 165888
(0,4,0,0:8) (0,2,0,0:8) (0,0,2,0:4) (1,2,0,0:2) (2,0,1,0:2)
413 414 415 416 417
248832 165888 248832 62208 124416 m
(2,1,0,0:4) (1,1,1,0:2) (3,1,0,02) (4,0,0,0:8) (2,3,0,0:2)

With this graphical operation, the product of two fields
can be rewritten as a derivative of the energy functional with

o

-2

SWP)

(2.18

respect to the kernel

OE[ ]

¢1¢2:2ﬁ’ (2.14

as follows directly from(2.1) and (2.11). Applying the sub-
stitution rule (2.14) to the functional integral for the fully
interacting two-point function

1
Glzzzf Do p1pre EL4), (2.19
we obtain the fundamental identity
Gi=—-2 oW 2.1

6G;

The cutting prescription(2.18 converts the vacuum dia-
grams ofpth order in the coefficient8/(P in Table | to the
corresponding ones in the coefficier@é%) of the two-point
function. The results are shown in Table Il up to four loops.
The numbering of diagrams used in Table Il reveals from
which connected vacuum diagrams they are obtained by cut-
ting a line. For instance, the diagrams 15.1-15.5 and their
multiplicities in Table Il follow from the connected vacuum
diagram 15 in Table I. We observe that the multiplicity of a
diagram of a two-point function obeys a formula similar to

(2.10:

e-2_ AlPpi2!

N TN (219

Thus, by cutting a line of the connected vacuum diagrams in
all possible ways, we obtain all diagrams of the fully inter-
acting two-point function. Analytically this has a Taylor se- | the numerator, the 2p! permutations of the g legs of
ries expansion in powers of the coupling constrsimilar  he p vertices are multiplied by a factor 2! for the permuta-
to (2.6 tions of theE=2 end points of the two-point function. The
numberN in the denominator counts the combined permuta-
tions of thep vertices and the two end points that leave the
diagram unchanged.

Performing a differentiation of the two-point function
(2.15 with respect to the kerned ! yields

(2.17)

with coefficients
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TABLE Il. Connected diagrams of the two-point function and their multiplicities of ¢ffetheory up to four loops. Each diagram is
characterized by the vectd8,D,T;N whose components specify the number of self-, double, triple connections, and of the combined
permutations of vertices and external lines leaving the diagram unchanged, respectively.

p G
#1.1
1 12
(1,0,0;2)
#2.1 #3.1 #3.2
2 192 288 288
(0,0,1;2) (1,1,0;2) (2,0,0;2)
B #45.1 #5.2 #53
3 @ 6912 20736 13824
(0,2,0;2)
(0,0,154) (1,1,0:2) (1,0,1;1)
#6.1 #6.2 #7.1 #7.2
10368 10368 M 10368 20736
(2,0,0:4) (3,0,0;2) (1,2,0;2) (2,1,0;1)
#8.1 #9.1 #9.2 #10.1 #10.2
4 | 995328 @ 1990656 1990656 221184 663552
(0,3,0:2) (0,1,0:4) (0,2,052) (0,0,22) (0,1,1;2)
#11.1 #11.2 #11.3 #114 #12.1
995328 @ 1990656 Q_@ 995328 3981312 % 995328
(0,2,0;4) (1,2,0;1) (1,2,0;2) (1,1,051) (2,1,0;2)
#12.2 #12.3 #12.4 #13.1 #13.2
331776 663552 663552 @D 995328 995328
(2,0,1;2) (2,0,1;1) (1,0,1;2) (2,0,0;4) (1,1,0;4)
#13.3 #14.1 #14.2 #14.3 #14.4
1990656 995328 663552 663552 Q@ 331776
2,1,0,1) (1,2,0:2) (1,1,151) (1,0,132) (0,1,14)
#15.1 #15.2 #15.3 #15.4 #15.5
995328 497664 497664 995328 995328
(3,1,0;1) (3,1,0;2) (2,1,0;4) (2,1,0;2) (3 0,0; 2)
Z‘é;g;l #16.2 #17.1 #17.2 #17.3
o 497664 m 497664 995328 497664
.0,0:) (4,0,0;2) (1,3,0;2) (2,2,0;1) 2,2,0;2)
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—2—=7=G123s G15,G34, (2.20 S — 2} e 292
5G,L s Tlzms 1234 pzl ol | a1 1234 (2.29

6G1, ] ( —g) P
whereG,34 denotes the fully interacting four-point function with coefficients

1
Gunig | D& hrdadatie ©9. (2.2 cog=—2205-3, (P
34 9=0
The termG4,G3,4 in (2.20 subtracts a certain set of discon- (2.29
nected diagrams fror@,34. By subtracting all disconnected They are listed diagrammatically in Table Il up to three
diagrams fromGy,3, we obtain the connected four-point |oops. As before in Table II, the multiple numbering in Table
function Il indicates the origin of each diagram of the connected
four-point function. For instance, the diagram 11.2.2, 11.4.3,
Gp3/=G1234~ G15G34— G156y~ G1.Gys  (2.22  14.1.2,14.3.3in Table Ill stems together with its multiplicity
from the diagrams 11.2, 11.4, 14.1, 14.3 in Table Il
in the form The multiplicity of each diagram of a connected four-
point function obeys a formula similar {@.19:

(p) p
[Plot oo o).

c 0G5
1236~ — 2 =1~ G18G24— G14G23. (2.23 41Ppl41
5G4 MEZ4o & p!4! 2.9
P4 _2!S+D3!TN' ( . @

The first term contains all diagrams obtained by cutting a
line in the diagrams of the two-point functid®,,. The sec- This multiplicity decomposes into equal parts if the spatial
ond and third terms remove from these the disconnected diandices 1, 2, 3, 4 are assigned to the-4 end points of the
grams. In this way we obtain the perturbative expansion connected four-point function, for instance:

62208 MOUX = 20m36 | YOOX] +20m36 YOO, +20m6 DO

(2.27)

Generalizing the multiplicitie$2.10, (2.19, and(2.26 for = Thus we can write the differentiatiof2.29 graphically as
connected vacuum diagrams, two- and four-point functiongollows:
to an arbitrary connected correlation function with an even

i é 1
numberE of end points, we see that = {13 amps1—ma 32}, (2.3]
03—4 2
£ 41PplE!
M ga= 215tD31T41FN” (2.28 Differentiating a line with respect to the free correlation

function removes the line, leaving in a symmetrized way the

where N counts the number of combined permutations ofspatial indices of the free correlation function on the vertices
vertices and external lines which leave the diagram unto which the line was connected.
changed. The effect of this derivative is illustrated by studying the
N diagrammatic effect of the operator
2. Removing lines

We now study the graphical effect of functional deriva- I::f G i (2.32
tives with respect to the free correlation functi@) where 2 286Gy, '
the basic differentiation rul€.11) becomes

Applying L to a connected vacuum diagram WP, the
(2.29 functional derivatived/ 5G4, generates diagrams in each of
' which one of the P lines of the original vacuum diagram is
removed. Subsequently, the removed lines are again rein-
We represent this graphically by extending the elements oferted, so that the connected vacuum diagraii® are

Feynman diagrams by an open dot with two labeled line endgigenfunctions of , whose eigenvaluescount the lines of
representing the delta function: the diagrams:

5G, 1
@ = E{ 813049+ 81403}

1—o—2= 31, (2.30 LW =2pWP, (2.33
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TABLE Ill. Connected diagrams of the four-point function and their multiplicities of ¢ffetheory up to three loops. Each diagram is
characterized by the vectd®, D, T; N) whose components specify the number of self-, double, triple connections, and of the combined
permutations of vertices and external lines leaving the diagram unchanged, respectively.

#5.2.2,#6.1.1
82944,41472
124416

(1,0,0;8)

P &)
#1.1.1
1 24 ><
(0,0,0;24)
#2.1.1,#3.1.1 #3.1.2,#3.2.1
) 1152,576 >O< 1152,1152 4+Q
1728 2304
(0,1,0;8) (1,0,0:6)
#40.01,#7.1.1 #4.1.2,#51.1,#5.2.1 #5.1.2,#53.2
3 41472,20736 m 165888,41472,41472 é 27648,27648 S
62208 248832 55296
(0,2,0;8) (0,1,0;4) (0,0,1;6)

#5.2.3,#5.3.1,#7.1.2,#7.2.1

82044,82944,41472,41472 m

248832

(1,1,0;2)

#6.1.2,#6.2.2,#7.2.2
20736,20736,82944
124416

L

(2,0,0,4)

#6.1.3,#6.2.1

82944

(2,0,0;6)

41472,41472 +Q_Q

#7.1.3,#7.2.3
41472,41472
82944

(1,1,0;6)

#8.1.1,#17.1.1

2985984
(0,3,0;8)
#9.1.1,#13.2.1
3981312,1990656
5971968
(0,1,0;16)
#9.2.2,#14.1.1,#14.4.3
7962624,1990656,1990656
11943936

(0,2,0;4)

A

#11.2.4,#11.3.2,#17.1.2,#17.2.1

#11.1.3,#11.2.1
3981312,3981312
7962624

(0,2,0;6)

3981312,3981312,1990656,1990656

11943936

(1,2,0;2)

(

#8.1.2,4#9.2.1,#10.2.1

1990656,995328 3981312,3981312,3981312
! XOOCX

11943936

{0,2,0;4)

#8.1.3,#11.1.2,#11.3.1
7962624,1990656,1990656
11943936

(0,2,0;4)

#9.1.3,#9.2.3,#11.1.1,%11.4.1

#9.1.2

0,0,0;24)

#10.1.1,#10.2.3,#14.2.1,#14.4.2
2654208,2654208,1327104,1327104

7962624

g

#11.2.2,#11.4.3,#14.1.2,%#14.3.3

(0,1,1;2)

7962624,7962624,3981312,3981312
23887872
(1,1,0;2)
#11.3.3,#11.4.4,#12.1.1,#12.4.5
7962624,7962624,3681312,3981312
23887872

(1,1,0;2)

15925248,15925248,7962624,7962624

47775744
(0,1,0;2)
#10.2.2,#12.4.1
2654208,1327104
3981312

(0,0,1;8)

#11.2.3,#11.4.2,#13.2.2,#13.3.1

7962624,7962624,3981312,3981312

23887872
(1,1,0;2)
#11.4.5,415.3.1,#15.4.1
7962624,1990656,1990656
11943936

(1,1,0;4)

©

=18
O
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TABLE lll. (Continued.

#11.4.6,#13.1.1,#13.2.3 #12.1.2,#12.2.2,#13.3.3,#17.2.2 #12.1.3,#16.1.2
15925248,3981312,3981312 1990656,1990656,3981312,3981312 QQQ 3981312,1990656
23887872 11943936 5971968
(1,0,0;4) (2,1,0;2) (2,0,0;8)
#12.1.4,#12.3.3 #15.1.1,#15.3.2 #12.2.1,#12.4.2 #123.2,#12.4.3,#14.22,#14.3.2
3981312,3981312,1990656,1990656 m 1327104,1327104 g 2 1327104,1327104,2654208,2654208 g 2
11943936 2654208 . 7962624
(2,1,0;2) (1,0,1;6) (1,0,1;2)

#12.3.1,#12.4.4 #13.1.2,#13.3.4,#15.4.2,#15.5.1 #13.1.3,#16.1.1
1327104,1327104 g 2 7962624,7962624,3981312,3981312 1990656,995328
2654208 23887872 2985984

(1,0,1;6) (2,0,0;2) (2,0,0;16)
#13.2.4,#13.3.5 #13.3.2,#15.2.1,#15.3.3 #14.1.3,#14.2.3,#17.1.3,#17.3.1
3981312,3981312 3981312,995328,995328 Q_d@ 3981312,3981312,1990656,1990656
7962624 5971968 11943936
(1,1,0;6) (2,1,0;4) (1,2,0;2)
#14.1.4,#15.4.4 #14.3.1,#14.4.1 #15.1.2,#15.5.3,%16.1.3,#16.2.2
3981312,1990656 1327104,1327104 3981312,3981312,1990656,1990656
5971968 2654208 11943936 Q@Q
(1,1,0;8) (0,0,1;12) (3,0,0;2)
#15.1.3,#15.4.3,#17.2.3,#17.3.2 #15.1.4,#154.5 #15.2.2,#15.5.2

1.3, .4.3,
1990656,1990656,3981312,3981312 1990656,1990656 1990656,1990656 Q@
11943936 3981312 3981312 b

(2,1,0;2) (2,1,0;6) (3,0,0;6)
#152.3,#15.4.6 #15.3.4,#15.5.4 #16.1.4,#16.2.1
1990656,1990656 1990656,1990656 1990656,1990656 M
3981312 3981312 3981312
!
(2,1,0;6) (2,0,0;12) (3,0,0;6)

#17.1.4,#17.2.4
1990656,1990656
3981312

(1,2,0;6)

As an example, take the explicit first-order expression for the B. Perturbation theory
vacuum diagrams, i.e.

" Field theoretic perturbation expressions are usually de-
W :3f1234V1234G12(3341 (234 rived by introducing an external curredtinto the energy
functional(2.1) which is linearly coupled to the fieleh [15—

and apply the basic rul@.29, leading to the desired eigen- 17]. Thus the partition functiori2.5 becomes in the pres-

value 2.

ence ofJ the generating functiona|[ J], which allows us to
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find all free n-point functions from functional derivatives in which thepth order contribution for the partition function
with respect to this external currehtin the normal phase of requires the evaluation ofgdfunctional derivatives with re-
a ¢* theory, the expectation value of the figfdis zero and spect to the current.

only correlation functions of an even number of fields are
nonzero. To calculate all of these, it is possible to substitute
two functional derivatives with respect to the currenby

one functional derivative with respect to the ker@i .. The derivation of the perturbation expansion simplifies, if
This reduces the number of functional derivatives in eactwe use functional derivatives with respect to the keel
order of perturbation theory by one-half and has the addiin the energy functional2.1) rather than with respect to the
tional advantage that the introduction of the currdrite-  currentJ. This allows us to substitute the previous expres-
comes superfluous. sion (2.39 for the partition function by

2. Kernel approach

1. Current approach

g 82 0)
Recall briefly the standard perturbative treatment, in Z=exp{—€ f V1234W eV , (2.4)
which the energy functiondP.1) is artificially extended by a 1234 12 734

source term

where the zeroth order of the negative free energy has the

E[¢,J]=E[¢]—le¢l. (2.395 diagrammatic representation
1
The functional integral for the generating functional w© = _l TrlnG-! = l O (2.42)
=-3 =3 .
Z[J]= | D¢ e El4J 2.3
] f ¢ (2:39 Expanding again the exponential in a power series, we obtain

is first explicitly calculated for a vanishing coupling constant )
, yieldin - 6
gy g Zz{ 1+ 9 f \Y,
1

1 1 6 Ji2as P 6G,6G5}
ZO[J]=ex ——TrInG’1+—f Gz J1d5¢,
2 2 )1

1({—g\?
(2.3 5176 f 12345675}/1234\/5678
where the trace of the logarithm of the kernel is defined by 54
the serieqsee p. 16 in Ref[18]) > 4 w(0
- 56176651065 G S (243

-1 (- -1 -1
TrinG™ =2 o, n{G12_512}"'{Gn1_5n1}-

n=1
(2.38 . L
Thus we need only half as many functional derivatives than

If the coupling constang does not vanish, one expands thein (2.40. Taking into account2.11), (2.12, and(2.39, we
generating functionaZ[ J] in powers of the quartic interac- gptain

tion V, and reexpresses the resulting powers of the field
within the functional integraf2.36 as functional derivatives

with respect to the currert The original partition function SWO 1 S2WO
(2.5 can thus be obtained from the free generating func- —1=—=G13, ——1—==17= {61824+ G1G23,
tional (2.37) by the formula Gy, 2 8G1, 6G;, 4
(2.49
Z—exp{ g f v 64 ]Z((’)[J]
= T 1234769 7 o7 o7
a4t Jazaa 03103200304 3=0 such that the partition functiodi becomes
(2.39
Expanding the exponential in a power series, we arrive at the -9 1({-g\2
perturbation expansion Z={1+—-3 Vi238515Gaat = | ——
41 7 1034 2\ 4!
z={1+ 2| v o
41 Jigas 1%%463163,63363, X f V12345678 [ 9G15G34G56G 78
12345678
R
2\ 41 12345678 123475678 424G 15626G37G48+ 72G 12G35G4GG78] +.. } eW(0>.
58
X +o.lz0 (2.45
6310356336140356366370d5 ]Z L] J:O’

(2.40  This has the diagrammatic representation
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7\? | 1O
2=31+ 2300 +3 () OO QO +u 3+ OO0 |+«
(2.46

All diagrams in this expansion follow directly by successively cutting lines of the basic one-loop vacuum di@ya@m
according to(2.43. By going to the logarithm of the partition functiaf) we find a diagrammatic expansion for the negative
free energyWv

N2
O+F3C0 +3 (4,9) 243+12000 + 0 e

l\DIb—-‘

which turns out to contain precisely all connected diagrams g 52 1 o
in (2.46 with the same multiplicities. In the next section we €Xp, — —f 1234 5T 5~—1 Ggg — Gsg
show that this diagrammatic expansion for the negative free 234 127734

energy can be derived more efficiently by solving a func- g 52
ional diff ial ion. X ex f ——To~—1I
tional differential equation p[ Jaa 123456 15634]

C. Functional differential equation for W=In Z _ 9 4
. . . ] = 5678 51
Regarding the partition functiod as a functional of the 8

kernelG~1, we derive a functional differential equation for 52
. i ivial i i X \Y , 25
Z. We start with the trivial identity exp{ f 1234 55T 3Gy ] (2.5)
o
f D(p%{@e{[‘ﬂ}:o, (2.48
! which follows from the canonical one
which follows via direct functional integration from the van-
ishing of the exponential at infinite fields. Taking into ac- 4 1
count the explicit form of the energy functioné2.1), we 5o ~=-1Gai— Gas g1~ 5 1013024+ 914023}
perform the functional derivative with respect to the field and 5 12 (2.52
obtain '
. Going over fromZ to W=In Z, the linear functional differ-
f Dd’[ 010~ J3G13 b2op3 ential equation2.50 turns into a nonlinear one:
9 ~El$]—
6 Vizashrpsdadps e =0. (249 _, W
345 012t2 | Gig=—1
3 6G3
Applying the substitution rul€2.14), this equation can be 2 S*W oW ”s
expressed in terms of the partition functi@h5) and its de- =39 1349 5G4 6G 1 + 5G,3 G, (2.53
rivatives with respect to the kern@l ™
5Z 2 527 If the coupling constanig vanishes, this is immediately
5122+2f Gl‘gl—,lz 59| Viss——1—"1- solved by(2.42. For a non-vanishing coupling constamt

the right-hand side if2.53 produces corrections t2.42)
(250 \yhich we shall denote withV™. Thus the negative free
energyW decomposes according to
Note that this linear functional differential equation for
the partition functior is, indeed, solved bg2.41) due to the
commutation relation W= WO + (it (2.59
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Inserting this into(2.53 and taking into accouni2.44), we

obtain the following functional differential equation for the

interaction negative free energy(™:

it
J' G_15vv('n
12 12 5G521
g g M(im)
== v Ga—=| V —
7 1234512G34 3 ) 1oaa 123517 56341
9 S2\(inD SWND syp/(int)
+3 V1234[ —T~—1°1 1 T (-
(2.55
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J G &N(_im)—_g V123451,G
225G, 4 | s, 1234512234
5\N(int)
-9 J' V1234515G35G 16 ——=—
123456 0Gsgg
g
3 V12345156 26G37G g
12345678
S2\(ind SWND syp/(int)
X + .
(5G565678 6Ggg 6Gyg
(2.58

D. Recursion relation and graphical solution
We now convert the functional differential equation

With the help of the functional chain rule, the first and sec-(2.58 into a recursion relation by expanding™ into a

ond derivatives with respect to the kerr@l'* are rewritten
as

o o
——=— | GGy — 2.5
3G L4 18524 56 (2.56
and
52 2
——F 7= GGG Gpg ———
5G12156341 f5678 152623748 5G556G78
1
+ 5 56{613GZSG4G+ G14G25G36
)
+ G23G15G 161 G24G15G 36} Fep
(2.57)

power series irg:

Wi — i 129y
“Zprla W
Using the property(2.33 that the coefficienW(P) satisfies

the eigenvalue problem of the line numbering operator
(2.32), we obtain the recursion relation

(2.59

SWP)

WP = 12j V12345 15G35G 46 Wse

123456

S2WP)
+ 4f \% Gr6G37Gag ===~
12345678 1231@ 1592637948 5G 565678

p—1
p
+4 ( )f V1238515G26G37G 48
=1 \4/ J 12345678

SW(P—a) s\W(@)

X—
0Ggg  6Gg

(2.60

and the initial condition(2.34). With the help of the graphi-

respectively, so that the functional differential equationcal rules of Sec. Il A, the recursion relatidd.60 can be

(2.55) for WM takes the formicompare Eq(51) in Ref.[7])

§2w e

(p+1) — A
w §1—263—4

p—1 p
>

q:l q

+ 4

This is iterated starting from

1
2 12
§> + d1—2

SWir—a) 1

61—2 2><4

written diagrammatically as follows:

Swip) 1

, O

3 sw)
§3—14’

>1.
P= (2.61

wo =3 00 .

(2.62

The right-hand side df2.61) contains three different graphical operations. The first two are linear and involve one- or two-line

amputations of the previous perturbative order. The third operation is nonlinear and mixes two different one-line amputations

of lower orders.
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An alternative way of formulating the above recursion relation may be based on the graphical rules

1
5W(P) 1 52W(P) 2
W = = —_ = ,
@ ’ 0G12 2@ 7 0G126Gy 3@ (2:63

4

With these, the recursion relatiqd.61) reads

To demonstrate the working @R.61), we calculate the connected vacuum diagrams up to five loops. Applying the linear
operations tq2.60, we obtain immediately

sw 1 2w 1

: C 3
= 6 T = 6 .

§1—2 2 T §1—2483—4 2><4 (269
Inserted into(2.61), these lead to the three-loop vacuum diagrams

we =2 S+ OO0 - (2.66

Proceeding to the next order, we have to perform one- and two-line amputations on the vacuum dia¢fa66s laading to

SW®

s =96 12 + 144 182 +144 OQ), (2.67)

and subsequently to

WD o O w1 OKS +ass 40
= 2 4
51—2403—4 3 4 2 4 ]
1 : Q,
+144 3+Q2 + 144 14—Q4 + 144 : (2.68
4 3 2 Q.4
|
Inserting (2.67) and (2.68 into (2.61) and taking into ac- M®P+*V=16p(p+1)MP
count(2.65, we find the connected vacuum diagrams of or- o1
der p=3 with their mgltiplicities as shown in Table I. We +163 p! M@OMP-: p=1
observe that the nonlinear operation(ih61) does not lead =1 (p—g—1)!(g—1)! ! :
to topologically new diagrams. It only corrects the multi-
plicities of the diagrams generated from the first two opera- (2.69

vacuum diagrams of the subsequent orgetr4 and their

multiplicities are listed in Table I. MD=3, (2.70
As a crosscheck we can also determine the total multi- o

plicities M of all connected vacuum diagrams contributing '€2ding to the total multiplicities

to W(P), To this end we recall that each of tM{P diagrams M@ =96, M®—0504, M 1880064, (2.71

in W) consists of p lines. The amputation of one or two ' ' ' ’

lines therefore leads topM® and 20(2p—1)M® dia-  which agree with the results listed in Table I. In addition we

grams with —1 and 2—2 lines, respectively. Consider- note that the next orders would contain
ing only the total multiplicities, the graphical recursion rela-
tions (2.61) reduce to the form derived before in RET] M) =616108032,M ®'=301093355520,
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M) =205062331760640 (2.72

connected vacuum diagrams.

lll. SCALAR ¢?A THEORY
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If we supplement the previous Feynman rul2s), (2.9) by

For the sake of generality, let us also study the situation

where the quartic interaction of th& theory is generated by
a scalar fieldA from a cubic¢? A interaction. The associated
energy functional

E[¢,A]=E%[¢,A]+E"™[¢,A] (3.9

decomposes into the free part

(0) 1 -1 1 1
E [¢,A]:§ 12G12 ¢’1¢2+§ 12H12A1A2 (3.2

and the interaction

EMMV] ¢,A]= \/76 f123V123¢1¢2A3- (3.3

Indeed, as the field appears only quadratically i(3.1), the
functional integral for the partition function

Z= J D¢DAe EL¢A] (3.4

can be exactly evaluated with respect to the filgielding

=f D¢ e B4l 35
with the effective energy functional
(eff) 1 o, 1 .
E [¢]=—§TrInH +§ Gitdib,
12
g
8 123456\/125\/346'_' seP1P2P3dy. (3.6

Apart from a trivial shift due to the negative free energy of

the field A, the effective energy functiondB.6) coincides
with that of a¢* theory in Eq.(2.1) with the quartic inter-
action

Vipz=—3 f 56V125V346H 56- (3.7

WO = —%Trln G- %Trln H'=

the free correlation function of the fiel
1 ~—~2 = Hip (3.8
and the cubic interaction
(3.9

S /123%23,

the intimate relation(3.7) between the¢*-theory and the
¢?A- theory can be graphically illustrated by

—~- L X

(3.10

<

This corresponds to a photon exchange in the so-calléd
andu channels of Mandelstam’s theory of the scattering ma-
trix. Their infinite repetitions yield the relevant forces in the
Hartree, Fock, and Bogoliubov approximations of many-
body physics. In the following we analyze tl#A theory
along similar lines as before thg* theory.

A. Perturbation theory

Expanding the exponential in the partition functi814)
in powers of the coupling constagt the resulting perturba-
tion series reads

p

(3.11)

Substituting the product of two fields or A by a functional
derivative with respect to the kerne® * or H™%, we con-
clude from(3.11)

(—29)° f 8 P
Z= Vi3V
pzo (2p)! | Jizause 227 5G 1, 6G 45 0H 3¢
xe?, (3.12

where the zeroth order of the negative free energy reads

(3.13

30430
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Inserting(3.13 in (3.12), the first-order contribution to the
negative free energy yields

wh=2 j V123V as6H 36G14G 25
123456

+ f V123V 4s6H36G12G 45, (3.19
123456
which corresponds to the Feynman diagrams
wh=2 & + O~0O . (3.19

B. Functional differential equation for W=In Z

The derivation of a functional differential equation for the
negative free energW requires the combination of two in-
dependent steps. Consider first the identity

P)
_% (4o EL6AN—
fD¢DA5¢l{¢2e 1=0, (3.16

which immediately yields with the energy function@&l.1)

o{(A)Z}
6Gy
(3.17)

. 8z
8107+ 2f Gra——1+ 2fgf Viag
3 5(523 34

where (A) denotes the expectation value of the fidldIn
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L M(ir‘lt) g
Go——=— V99V
J 1212 5G L} 2 | 1paase 123 45eH 36
X{G 1G5+ 2G 1G5}
SWIino
+g V10VaseG1oH36 <=1
123456 0G5
S2WY
g f Loaase 123 456H36{ 5G 156G 4"
SWM - s\p/(ind
+—_— . 3.2
5G, 5G451} (3.29

Taking into account the functional chain rulgs56), (2.57),
the functional derivatives with respect @ ! in (3.21) can
be rewritten in terms 06G:

SW(inD g

f Gz —= V123V aseH 36{ G12G a5+ 2G14G 25}
12 ©6Gp 4

123456

+9 6\/123V456H 361 G12G47Gsg

12345

5\/\/("“)
+2G14G/Gsg} G

+9 f —V123V4s6
1234567891
X H36G17G26G39dG41
52w(int)
X
( 5Grg0Gs;

5W(int) 5w(int)
6G.,g 6Ggq

]. (3.22

order to close the functional differential equation, we con-

sider the second identity

5
f ngDAé—Ale’E[‘f"A]:O, (3.18

which leads to

6Z
(A)Z= ng VosH1a —~—7- (3.19
234 0Gy3

Inserting(3.19 in (3.17), we result in the desired functional
differential equation for the negative free eneiyy=In Z:

_1 OW
01212 | Gyg—==1=-29 V134Vs67
2 0G5 34567

H 5°W . SW W
4 6G 4 0Gss  6GLs 6Go ]
(3.20

A subsequent separatiof2.54) of the zeroth-order3.13

C. Recursion relation and graphical solution

The functional differential equatio(8.22 is now solved
by the power series

©

1

Winh —
p=1 (2p)!

g p
(Z) WP, (3.23

Using the property(2.33 that the coefficientaV(P) satisfy
the eigenvalue condition of the operat@.32, we obtain
both the recursion relation

WP =4(2p+ 1){ f V123V asdH 36( G12G 47Gsg
12345678

SWP

+2G14G27Gsg) 5Gog + —V123V4s6

f 1234567891
X H36G17G28G39G41

SWP

p—1
2p>
X| =+
0G7g6Go1  g=1 (

SWHP—a) s\W(@
2q

6G7g  6Ggy
(3.29
and the initial valug3.14). Using the Feynman rule@.7),

leads to a functional differential equation for the interaction(3.8), and (3.9), the recursion relatiort3.24) reads graphi-

part of the free energy(m:

cally
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2

sWe swe) 1
R = S o Rt =)

1
52w () 2 p-1 2p Swir-a 5 s W@
7 A >1
§1—263—4 33 + ~ §1—2 1>MM"<3 3—af’ P=5
4 = 2q (3.25

which is iterated starting frort8.15. In analogy to(2.64), this recursion relation can be cast in a closed diagrammatic way by
using the alternative graphical rul€3.63:

@ =4(2p+1){c}%‘3;> +2@
++ :é ZZ } p=>1. (3.26

We illustrate the procedure of solving the recursion relat®25 by constructing the three-loop vacuum diagrams. Applying
one or two functional derivatives #3.15, we have

sw) 1 1 2w 2 4 1 2
=2 +4 ), = t 4 .
51—o D, ) ’§1—263—4 an® Do
(3.27
|
This is inserted intd3.25 to yield the three-loop diagrams IV. COMPUTER GENERATION OF DIAGRAMS

shown in Table IV with their multiplicities. The table also
contains the subsequent four-loop results, which we shall nqj
derive here in detail. Observe that the multiplicity of a con-
nected vacuum diagram in th¢?A theory is given by a

Continuing the solution of the graphical recursion rela-
ons (2.61) and(3.29 to higher loops becomes an arduous
task. We therefore automatize the procedure by computer
algebra. Here we restrict ourselves to tpttheory because

formula similar to(2.10 in the ¢™ theory: of its relevance for critical phenomena.
E—o_ (2p)!4P 3.2 A. Matrix representation of diagrams
2N T 2!S+DN ' ( . 8)

To implement the procedure on a computer we must rep-
resent Feynman diagrams in tié theory by algebraic sym-

HereSandD denote the number of self- and double connec-

tions, andN represents again the number of vertex permuta—bOIS‘ For this we use matrices as defined in Réfs10). Let

tions leaving the vacuum diagram unchanged. th; g‘e.:g.r:ebse;r;;vf rttlcege(t)f a g:}vzglglce:a%rcammzr;gﬂlabel
The connected vacuum diagrams of t#éA theory in y Ihdi P up J y

Table IV can, of course, be converted to corresponding one@’hose elementh;; (0<i, j<p) specify the number of lines

; S : : ing the vertices andj. The diagonal elementst;; (i
of the ¢* theory in Table I, by shrinking wiggly lines to a joining . !
point and dividing the resulting multiplicity by 3 in accor- >0) count the number of self-connections of iltle vertex.

dance with(3.10. This relation between connected vacuumEXtem"’lI Iines_ of a diagr_am are labeled as if they were con-
diagrams ing* and $A theory is emphasized by the num- nected to a single additional dummy vertex with number 0.

bering used in Table IV. For instance, the shrinking convertsThe matrix element o is set to zero by convention. The

the five diagrams 4.1-4.5 in Table IV to the diagram 4 inOf-diagonal elements lie in the interval<OM;; <4, while
Table I. Taking into account the different combinatorial fac—the diagonal elements for>0 are restricted by &M;;<2.

tors in the expansiof2.6) and(3.23 as well as the factor 3 We observe that the sum of the matrix elemelts in egch
in the shrinkage3.10, the multiplicity Mifo of a ¢* dia- but the zeroth row or column equals 4, where the diagonal

; -0 ) elements count twice,
gram results from the corresponding dm,ﬁzA of the ¢°A

partner diagrams via the rule P P
ZOM”"‘M“:ZO Mji+Mii:4' (41)
ME;O= ;MEZZO. (3.29 o - . .
é (2p—1)!1t A The matrix M is symmetric and is thus specified by
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TABLE IV. Connected vacuum diagrams and their multiplicities of #fé\ theory up to four loops. Each diagram is characterized by
the vector(S, D; N) whose components specify the number of self- and double connections as well as the vertex permutations leaving the
vacuum diagram unchanged, respectively.

P w®
#1.1 #1.2
! 2 & 1 (OO0
0,132) 2.02)
#2.1 #2.2 #3.1 #3.2 #3.3
2 a8 @ 2 OO0 96 @ 65 (DO =
(0,09) (0,239 (0,059) (1,02) @132)
#4.1 #4.2 #4.3 #4.4 #4.5
3 3840 @ 11520 @ ssi0 (34 ) 960 %@ 5760
(0,0:12) (0,059) (0,0512) (0,8:) (0,159)
#5.1 #5.2 #5.3 #5.4 #6.1
520 £ () 23010 @ 1520 y<0) w0 () ) 7680 @
0,132) (0,02 (1,02) (1,132) (0,0:6)
#6.2 #6.3 #6.4 #7.1 #7.2
1520 3«) 5160 (P« ) 960 11520 @ 560 (D)
(1,022 2.02) (3,0:6) (0,059) (0,09)
#7.3 #74 #7.5 #7.6
(1,0:2) (112) (2:22) (2,050)

(p+1)(p+2)/2—1 elements. Each matrix characterizes agiven diagram into different classes, which are defined by
unique diagram and determines its multiplicity via formulathe four tuplegE, S D, T) containing the number of external
(2.28. From the matriXM we read off directly the number of legs, self-, double, and triple connections of a vertex. The
self-, double, triple, fourfold connectiors D, T, F and the  classes are sorted by increasing numbels, tfienS, thenD,
number of external legE=3P_ M. It also permits us to thenT. In general, there can still be vertices that coincide in
calculate the numbeéX. For this we observe that the matrix all four numbers and whose ordering is therefore still arbi-
M is not unique, since so far the vertex numbering is arbitrary. To achieve unique ordering among these vertices, we
trary. In fact,N is the number of combined permutations of associate with each matrix a number whose digits are com-
vertices and external lines that leave the matdx un-  posed of the matrix elements;; (0<j<i=<p), i.e., we form
changed compare to the statement aftg.28]. If ny, de- the number with thef{+1)(p+2)/2—1 elements

notes the number of different matrices representing the same

diagram, the numbeX is given by M16M 11| M 20M 21M 29 M 3oM 3iM 3oM 33l .. .M. (4.3)
p! P To guide the eye, we have separated the digits stemming
N= Y Hl Moi!, (4.2)  from different rows by vertical lines. The smallest of these
=

numbers compatible with the vertex ordering introduced

, above is chosen to represent the diagram uniquely. Instead
where the matrix elementdy; count the number of external \ e coyid have also allowed all vertex permutations and iden-
legs connected to thith vertex. One way to determine the yifieq the number(4.3) with a unique representation of a
numberny is to repeatedly perform th@(p—1)/2 ex-  giyen diagram. However, for most diagrams containing sev-
changes of pairs of rows and columns except the zeroth onegry) yertices, this would drastically inflate the number of ad-
until no new matrix is generated anymore. For larger matriynissiple matrices and therefore the effort for finding a
ces this way of determiningy, is quite tedious. Below we unique representation.

will give a better approach. Inserting E@L.2) into the for- Now we can also give an improved procedure for finding
mula(2.28, we obtain the multiplicity of the diagram repre- " ot ' pe the number of different matrices compatible

. AT M
sented byM. This may be used to crosscheck the multiplici- s, the vertex ordering by the four tuples introduced above.
ties obtained before when solving the graphical recursion ot there bec classes of vertices arki ... k. vertices be-

vk

relation (2.61). .
So far, the vertex numbering has been arbitrary, makinglgonglng to each class. Then we have

the matrix representation of a diagram nonunique. To
achieve uniqueness, we customize to our problem the proce- Ny =
dure introduced inM11]. First we group the vertices in a

p! )

WnM (4.4)
=17



1552 KLEINERT, PELSTER, KASTENING, AND BACHMANN PRE 62

or, together with(4.2), From Eq. (4.5 we read off that the numbeX of vertex
permutations of the diagrard.9) is 2 (compare the corre-
1 (S P sponding entry in Table )l
N= o I k[ IT Mgt . (4.9 The matrixM contains, of course, all information on the
MAT= =t topological properties of a diagraf@,10]. For this we define

As an example, consider the following diagram of thethe submatrixM by removing the zeroth row and column

four-point function withp=3 vertices: from M. This allows us to recognize the connectedness of a
diagram: A diagram is disconnected if there is a vertex num-
bering for whichM is a block matrix. Furthermore a vertex

. (4.6) is a cut vertex, i.e., a vertex which links two otherwise dis-

_ ) ) _ connected parts of a diagram, if the matiixhas an almost
Its vertices are grouped into=2 classes witlk; =2 VerticeS  pjock form for an appropriate numbering of vertices in which
belonging to the first class characterized by the four tuple,[h block | | di | elenidnt. i
(E,S,D,T)=(1,0,1,0) andk,=1 vertex belonging to the € oc's~overap only on some .|agona element, 1.€.,
second classH,S,D,T)=(2,0,0,0). When labeling the ver- the matrixM takes block form Etheth row and column are
tices in view of the unique matrix representation, the vertexemoved. Similarly, the matri¥ allows us to recognize a
in the second class comes last because of the higher numbgne-particle-reducible diagram, which falls into two pieces
of external legs. Exchanging the other two vertices in thédy cutting a certain line. Removing a line amounts to reduc-
first class does not change the adjacency matrix anymore dugg the associated matrix elements in the submaﬁbby

to the reflection symmetry of the diagra®.6). Thus itS  gne |f the resulting matri has block form for a certain

unique matrix representation reads vertex ordering, the diagram is one-particle reducible.
011 2 B. Practical generation
1021 4.7 We are now prepared for the computer generation of
1 2 0 1|’ ' Feynman diagrams. First the vacuum diagrams are generated
5 1.1 0 from the recursion relatiof2.61). From these the diagrams

of the connected two- and four-point functions are obtained

by cutting or removing lines. We usedvA\THEMATICA pro-

gram to perform this task. The resulting unique matrix rep-

resentations of the diagrams up to the orgder4 are listed

10/120/2110. (4.8  inTables V-VII. They are the same as those derived before
by hand in Tables I-IIl. Higher-order results up po=6,

As there isn/,= 1 matrix compatible with the vertex ordering containing all diagrams that are relevant for the five-loop
by the four tuples, the numbe of vertex permutations of renormalization of ¢* theory in d=4—¢ dimensions
the diagram(4.6) is determined fron{4.5) as 4(compare the [10,20, are made available on the interri@®], where also
corresponding entry in Table )lI the program can be found.

A more complicated example is provided by the following
diagram of the two-point function witp=4 vertices:

with rows and columns indexed from 0 to 3. According to
Eq. (4.3), the matrix(4.7) yields the number

1. Connected vacuum diagrams

The computer solution of the recursion relati@62) ne-

@ : (4.9 cessitates to keep an exact record of the labeling of external

legs of intermediate diagrams which arise from differentiat-

Here we have againc=2 classes, the first one is ing a vacuum diagram with respect to a line once or twice.
(E,S,D,T)=(0,0,2,0) withk,=2 vertices and the second To this end we have to extend our previous matrix represen-
one E,S,D,T)=(1,0,1,0) withk,=2 vertices. Exchanging tation of diagrams where the external legs are labeled as if

both vertices in each class leads nowrty=2 different they were connected to a simple additional vertex with num-
matrices ber 0. For each matrix representing a diagram we define an
associated vector that contains the labels of the external legs

0 0 0 1 1 0 00 1 1 connected to each vertex. This vector has the length of the
00 2 2 0 002 0 2 dimension of the matrix and will be add'ed to the matrix as an
extra left column, separated by a vertical line. Consider, as
0 2 0 0 2f, 02020 an example, the diagra.6) of the four-point function with
1 2 0 0 1 1.0 2 0 1 p=3 vertices, where the spatial indices 1, 2, 3, 4 are as-
signed in a particular order:
1 0 2 10 1 2 010
(4.10 1 2
For the unique matrix representation we have to choose the 3 Aé‘! . (4.12

last matrix as it leads to the smaller number
In our extended matrix notation, such a diagram can be rep-
00/020 1024 12010. (4.1)  resented in total by six matrices:
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TABLE V. Unique matrix representation of all connected vacuum diagram*aheory up to the order
p=4. The number in the first column corresponds to their graphical representation in Table |. The matrix
elementsMl;; represent the numbers of lines connecting two vertigasdj, omitting M;,=0 for simplicity.
The running numbers of the vertices are listed on top of each column in the first two rows. The further
columns contain the vectd§, D, T, F; N) characterizing the topology of the diagram, the multiplidityand
the weightW=M/[(4!)Pp!]. The graphs are ordered according to their number of self-connections, then
double connections, then triple connections, then fourfold connections, then the ndn3ner

w®: 1 diagram

)—l:ﬁ=§. -

1
1

\M:;; | (s,D,T,F;N)
2

Ww®: 2 diagrams

[y

22
12

=

ij |(S,D,T,F;N)

w pofFE|w. .
]

40[(0,0,0,1;2)
21{(2,1,0,0;2)

W®: 4 diagrams

—

22
12

—

333
123

Mij

20(220
30(111

o~ oo FHw .
- oo o

201
111

1/48
1/24
1/32
1/48

W®: 10 diagrams

—

1414
1234

=
w0 © oF|e o

—H O OO OO0

14
11
12
13
17
15
16

3100
2110
2200
0021
1101
1011
1101
2001
2001
1101

1/144
1/32
1/128
1/48
1/16
1/48
1/32
1/64
1/32
1/128

—
H
2
B RN O
N S = N N
N O Rk K

R P, O N
N O B

When constructing of the vacuum diagrams from the recursion rel&i6d), starting from the two-loop diagra2.62, we
have to represent three different elementary operations in our extended matrix notation:
(i) Taking one or two derivatives of a vacuum diagram with respect to a line. For example, we apply this operation to the

vacuum diagram 2 in Table |

oSO N B+ B

{}
{3}

{1.2}

{4}

= N = O
N B O
P O N

N B O B
P O L DN

—_
S
—-

(3

{1,2}

N P P O
N O R
o N B
O B N

P N O BB
= O N BB
S r P DN
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TABLE VI. Unique matrix representation of all diagrams of the connected two-point functiaf adheory up to the ordep=4. The
numbers in the first column correspond to their graphical representation in Table Il. The matrix elbtyerggresent the numbers of lines
connecting two vertices andj. The running numbers of the vertices are listed on top of each column in the first two rows. The further
columns contain the vectd, D, T; N) characterizing the topology of the diagram, the multiplidityand the weightV=M/[(4!)Pp!]. The
graphs are ordered according to their number of self-connections, then double connections, then triple connections, then ti#e3humber

G%): 30 diagrams
1|(11]222]3333 44444
7{101{012]0123(01234
G(l)' 1 diner: 7# M;; (8,D,T;N) M w
i ¢ 1 dlagram 10.1([00[010]1030[13000( (0,0,2;2) | 221184|1/36
il 11 9.1|/00|020|1110{11110|(0,1,0;4) | 1990656 | 1/4
j|| 01 14.4||00|030{0110|20020| (0,1,1;4) | 331776 |1/24
# |[Mij | (5,078 |M | W 10.2|{00]030[1010[11020|(0,1,1;2) | 663552|1/12
11| 21 [(1,0,0:2) [12]1/2 11.1{|00|010{0220|21100| (0,2,0;4) | 995328 1/8
9.21100|010|1120|12100](0,2,0;2) (1990656 | 1/4
GY: 3 diagrams 8.1/00{020[1020(12010| (0,3,0;2) | 995328| 1/8
1|(11]222 12.4|/00({030(0011|21010((1,0,1;2) | 663552|1/12
j||01|012 14.3]00|030{1110|10011(1,0,1;2) | 663552(1/12
# || My |(spmsny|M | W 13.2|/00({020(0111(21100((1,1,0;4) | 995328| 1/8
2.1{[10{130](0,0,1;2) [192]|1/6 11.4|/00({011(1110(12010|(1,1,0;1) | 3981312 1/2
3.1{/01]220((1,1,0;2) [288(1/4 14.2|/00{001(1300(11200((1,1,1;1) | 663552|1/12
3.2{|11]111|(2,0,0;2) [288[1/4 11.3|/00({001(1210(12100((1,2,0;2) | 995328| 1/8
11.2|/00{020(1120(11001 [ (1,2,0;1) | 1990656 | 1/4
G7: 8 diagrams 14.1||00{021|1100|11020| (1,2,0;2) | 995328 1/8
122213333 17.1{{00/020|0021|22000] (1,3,0;2) | 497664 |1/16
illo1]o12|o123 13.1{{01|001|1110{11110{(2,0,0;4) | 995328 1/8
” M |Gorm] M W 12.3|(00]011[1300(10101|(2,0,1;1) | 663552|1/12
15.5//01(011(1110(10011|(3,0,0;2) | 995328| 1/8
15.2|/00(021(1101|11001|(3,1,0;2) | 497664 |1/16
15.1]/01{001(1120(11001(3,1,0;1) | 995328| 1/8
16.2)/01(011{1011[11001 | (4,0,0;2) | 497664 |1/16
b g e
- e A
-

_ 1 2 2 1 1 2 2 1 (4.14
=3 K, + XK, + O+ XK |-

This has the matrix representation

5 {{lo 0 0 5 1o 11 1o 1 1
m{}004:25612 (3}/1 0 3|+({4|1 0 3
1o 4 0 {441 3 0 341 3 0
{+ |0 2 2 { |o 2 2 ¢ |lo 2 2
=3 {1,3}202+{2,3}202>+{1,4}2oz
{24412 2 0 {1,412 2 0 {23112 2 0
|0 2 2
+( {242 0 2)_ 4.19
{1,342 2 0
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The first and fourth matrix as well as the second and third matrix represent the same diagdabd)inas can be seen by
permuting rows and columns of either matrix.

(i) Combining two or three diagrams to one. We perform this operation by creating a block matrix of internal lines from
the submatrices representing the internal lines of the original diagrams. Then the zeroth row or column is added to represent
the respective original external spatial arguments. Let us illustrate the combination of two diagrams by the example

O 0211
{3 lo11
1 {} 02 {1,2} 12100
142 XD = | {13103 -
{1,2} |2 1 {1} 11003
{2} 1130
{2} 1030
(4.16
and the combination of three diagrams by
K, X DO =
2 2 4 4 -
{ 02492
{3 02 {} 0 4 {} |02 {1,2} |2100
_)
{1,2} |21 {1,2,3,4} {4 0 {3,4} |21 {1,2,3,4} (4000
3,4 2001
3.4} (4.17
|
We observe that the ordering of the submatrices in the
block matrix is arbitrary at this point; we just have to make
trix _ {}10000
sure to distribute the spatial labels of the external legs cor-
rectly. {} 0120
(iii) Connecting external legs with the same label and cre- m — (419
ating an internal line. This is achieved in our extended matrix - {} 0202
notation by eliminating the spatial labels of external legs that
appear twice, and by performing an appropriate entry in the 0021
matrix for the additional line. Thus we obtain, for instance, {}
from (4.16
0000 As we reobtain at this stage connected vacuum diagrams
{} where there are no more external legs to be labeled, we may
11 omit the extra left column of the matrices.
_ {} 01 (4.18 The selection of a unique matrix representation for the
= resulting vacuum diagrams obtained at each stage of the re-
{} 0103 cursion relation proceeds as explained in detail in Sec. IV A.
By comparing we find out which of the vacuum diagrams are
{} 0130 topologically identical and sum up their individual multi-

plicities. Along these lines, the recursion relatigh6l) is
solved by amMATHEMATICA program up to the ordep=6.
The results are shown in Table V and in Rgf9]. To each
and similarly from(4.17) order p, the numbersn{® of topologically different con-



1556 KLEINERT, PELSTER, KASTENING, AND BACHMANN PRE 62

nected vacuum diagrams are for the time-consuming high-loop diagrams which are com-
parable to those of other programs.

p |1{2|3{4 5|6 2. Two- and four-point functions G, and Gj,3,
from cutting lines

n®|12]|4(10]28 97 (4.20 Having found all connected vacuum diagrams, we derive
from these the diagrams of the connected two- and four-point
functions by using the relation€.18 and (2.295. In the

A direct comparison with other, already established com-matrix representation, cutting a line is essentially identical to
puter programs likeeEYNARTS [1-3] or QGRAF [4,5] shows removing a line as explained above, except that we now
that the automatization of the graphical recursion relatiorinterpret the labels that represent the external spatial labels as
(2.6)) in terms of oUMATHEMATICA code is inefficient. Ac-  sitting on the end of lines. Since we are not going to distin-
cording to our experience, the major part of the CPU timeguish between trivially “crossed” diagrams that are related
needed for the generation of high-loop order diagrams is deby exchanging external labels in our computer implementa-
voted to the reordering of vertices to obtain the unigue mation, we need no longer carry around external spatial labels.
trix representation of a diagram—a problem faced also byrhus we omit the extra left column of the matrix represent-
other graph-generating methods. After implementation of ang a diagram when generating vacuum diagrams. As an ex-
dedicated algorithm for the vertex ordering written for in- ample, consider cutting a line in diagram 3 in
stance in Fortran or C, we would therefore expect CPU timeJable |

)

— 2 000 =200+ 00 + 00X a2

which has the matrix representation

)

000
- 6G! L2

0 1 1 0 2 0 0 2
=21 1 1(+(2 O +1 0 1 2f. (4.22
1 11 0 2 2 2 0

=~ N O

0 2 1

Here the plus signs and multiplication by 2 have a set theoretical meaning and are not to be understood as matrix algebra
operations. The last two matrices represent, incidentally, the same diagfdr@inas can be seen by exchanging the last two
rows and columns of either matrix.

To create the connected four-point function, we also have to consider second derivatives of vacuum diagrams with respect
to G™L. If an external line is cut, an additional external line will be created, which is not connected to any vertex. It can be
interpreted as a self-connection of the zeroth vertex, which collects the external lines. This may be accommodated in the
matrix notation by letting the matrix elemekt,, count the number of lines not connected to any vertex. For example, taking
the derivative of the first diagram in E¢.21) gives

55-1QQ:+Q+Q++ 8 +2®, 4.23

with the matrix notation The first two matrices represent the same diagram as can be
seen from Eq(4.23. The last two matrices in Eq4.24)
correspond to disconnected diagrams: the first one because
of the absence of a connection between the two vertices, the

5 011 0 31 01 3 second one because of the disconnected line represented by
—~(1 1 1]=|13 0 1|+{1 1 1 the entryMg,=1. In the full expression for the two-loop
6G 11 1 11 1 31 0 contributionG${Z) to the four-point function in Eq2.25 all
disconnected diagrams arising from cutting a Iin@iﬁ) are
0 2 2 11 canceled by diagrams resulting from the sum. Therefore we
+2 1 0o]l+2(1 1 may omit the sum, take only the first term and discard all
> 0 1 11 disconnected diagrams it creates. This is particularly useful

for treating low orders by hand. If we include the sum, we
(4.29 use the prescription of combining diagrams into one as de-
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TABLE VII. Unique matrix representation of all diagrams of the connected four-point functiasf dheory up to the ordep=4. The
numbers in the first column correspond to their graphical representation in Table Ill. The matrix elbtyengjsresent the numbers of lines
connecting two vertices andj. The running numbers of the vertices are listed on top of each column in the first two rows. The further
columns contain the vecté® D, T; N) characterizing the topology of the diagram, the multiplidityand the weightv=M/[(4!)Pp!]. The
graphs are ordered according to their number of self-connections, then double connections, then triple connections, then tt#e3humber

taay: 1 diagram G33): 8 diagrams

aff 11 i|[11]222]3333

7| 601 jllo1]o12|0123
# |IMi;| ¢s,p, 783 |M|W 7 M;; 0N M W
1.1.1][ 40 1(0,0,0;24) [24] 1 5.1.2, 5.3.2]|00[130[3100{ (0,0,1;6) | 55296(2/3
4.1.2, 5.1.1, 5.2.1{10|120|2110| (0,1,0;4) | 248832| 3
G5): 2 diagrams 4.1.1, 7.1.1{{00|220{2200| (0,2,0;8) | 62208|3/4
i[[11]222 5.2.2, 6.1.1]|01{210(2110] (1,0,0;8) | 1244163 /2
jllo1|o12 7.1.3, 7.2.3||01|120(3010] (1,1,0;6) | 82944| 1
# Mi; |(so0m| M | W 5.2.3, 5.3.1, 7.1.2, 7.2.1{[10|111|2200] (1,1,0;2) |248832| 3
2.1.1, 3.1.1/[20]220] (0,1,0;8) | 1728[3/2 6.1.3, 6.2.1]|01|111[3100] (2,0,0;6) | 82944| 1
3.1.2, 3.2.1[|11(310] (1,0,0;6) 2304| 2 6.1.2, 6.2.2, 7.2.2|[11]101[2110] (2,0,0;4) |124416|3/2

Gi’g(;l ): 37 diagrams
1](11]222|3333 (44444
71/01({012(0123|01234
7# M;; (8,D,T;N) M w
9.1.2((10{110{1110{11110{(0,0,0;24) | 7962624| 1
10.2.2, 12.4.1]/00(030(2010(21010| (0,0,1;8) | 3981312(1/2
14.3.1, 14.4.1]/00(030 (1110 {30010 ((0,0,1;12)| 2654208(1/3
9.1.1, 13.2.1{|00|020|2110|21100|(0,1,0;16) | 5971968|3/4

9.1.3, 9.2.3, 11.1.1, 11.4.1|[00{110{1210{21100| (0,1,0;2) |47775744| 6
10.1.1, 10.2.3, 14.2.1, 14.4.2{[00{130|1100|20020| (0,1,1;2) | 7962624| 1
11.1.3, 11.2.1{|00(020{1120{31000| (0,2,0;6) | 7962624| 1
9.2.2, 14.1.1, 14.4.3]|00|110|1120|22000| (0,2,0;4) (119439363 /2
8.1.3, 11.1.2, 11.3.1{00|120|1200|20110| (0,2,0;4) [11943936|3/2
8.1.2, 9.2.1, 10.2.1{/10|100 {1120 (12100 (0,2,0;4) |11943936(3/2
8.1.1, 17.1.1{|00|020|2020|22000| (0,3,0;8) | 2985984(3/8

11.4.6, 13.1.1, 13.2.3||01{110{1110|20110| (1,0,0;4) |23887872| 3
12.3.1, 12.4.4|/00(011 {1300 (301001 (1,0,1;6) | 2654208(1/3
12.2.1, 12.4.2]/00(030 (1011 {31000 (1,0,1;6) | 2654208(1/3

12.3.2, 12.4.3, 14.2.2, 14.3.2{[00{130|1001|21010] (1,0,1;2) | 7962624| 1
11.4.5, 15.3.1, 15.4.1//00|011{2110|22000| (1,1,0;4) |11943936|3/2
14.1.4, 15.4.4]/00(021 {2100 (21010 (1,1,0;8) | 5971968(3/4

13.2.4, 13.3.5||00(011{1210{31000| (1,1,0;6) | 7962624| 1

11.2.3, 11.4.2, 13.2.2, 13.3.1{[00{120|1101|21100| (1,1,0;2) [23887872| 3
11.3.3, 11.4.4, 12.1.1, 12.4.5|[01{100|1120|21100| (1,1,0;2) [23887872| 3
11.2.2, 11.4.3, 14.1.2, 14.3.3|[10{110|1120|11001| (1,1,0;2) [23887872| 3
17.1.4, 17.2.4]/00 (021 {1200 {30010 (1,2,0;6) | 3981312(1/2
11.2.4, 11.3.2, 17.1.2, 17.2.1{[00{120|1011|22000| (1,2,0;2) [11943936|3/2
14.1.3, 14.2.3, 17.1.3, 17.3.1{[01{100|1210|20200| (1,2,0;2) (119439363 /2
13.1.3, 16.1.1{|01 {001 {2110{21100 |(2,0,0;16) | 2985984 (3/8
12.1.3, 16.1.2{|01 {011 {2010{21010| (2,0,0;8) | 5971968(3/4
15.3.4, 15.5.4|/01 {011 {1110{30010 ((2,0,0;12)| 3981312(1/2

13.1.2, 13.3.4, 15.4.2, 15.5.1{[01{110|1011|21100| (2,0,0;2) [23887872| 3
15.2.3, 15.4.6//00(021 {1101 {31000 (2,1,0;6) | 3981312(1/2
15.1.4, 15.4.5|/01 {001 {1120 (31000 (2,1,0;6) | 3981312(1/2
13.3.2, 15.2.1, 15.3.3||00(111 {1101 {22000 (2,1,0;4) | 5971968(3/4
12.1.4, 12.3.3, 15.1.1, 15.3.2{[01{110|1101|20200| (2,1,0;2) (119439363 /2
15.1.3, 15.4.3, 17.2.3, 17.3.2{[01{120|1001|20110] (2,1,0;2) (119439363 /2
12.1.2, 12.2.2, 13.3.3, 17.2.2{[10{120|1011|11001| (2,1,0;2) (119439363 /2
16.1.4, 16.2.1|/01 {011 {1011 {31000 (3,0,0;6) | 3981312(1/2
15.1.2, 15.5.3, 16.1.3, 16.2.2{[01{101|1101|21100] (3,0,0;2) (119439363 /2
15.2.2, 15.5.2||110(111 {1101 {11001 | (3,0,0;6) | 3981312(1/2
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scribed above in Sec. IV B, except that we now omit theomit examples here and just note that we can again omit

extra vector with the labels of spatial arguments. external labels if we are not distinguishing between trivially
“crossed” diagrams.

3. Two- and four-point functions G, and G{,3, The generation of diagrams of the connected two- and

from removing lines four-point functions has been implemented in both possible

Instead of cutting lines of connected vacuum diagramdVays. Cutting or removing one or two lines in the connected
once or twice, the perturbative coefficients®@f, and G{,3, vacuum dzg)g]rams(li)p to the ord@#G 'e‘f"ds to th? following
can also be obtained graphically by removing lines. Indeedumbersn;” andny™ of topologically different diagrams of
from (2.16), (2.44), (2.54), and (2.56 we get for the two- G{Y andG§%) :
point function

SW(ind p {11234 5 6
6122612+2L4Gl3624w, (4.29
3“ n{® ['1]3]8[30]118 ] 548
so that we have fop>0 2@ 119218!37181 1010
P (4.29
SWP)
G(lg)ZZJ' G136y —=— (4.26
34 0G34
V. OUTLOOK
at our disposal to compute the coefficie@g from remov- Using the example of* and ¢2A theory, we have devel-

ing one line in the connected vacuum diagravi¥ in all  gped in this work a new method to generate all topologically
possible ways. The corresponding matrix operations argifferent Feynman diagrams together with their proper mul-
identical to the ones for cutting a line so that in this respectjplicities without any combinatorial considerations. Solving
there is no difference between both procedures to obtaig graphical recursion relation leads to the connected vacuum

G2 - _ diagrams and a subsequent cutting of their lines results in the
Combining(4.29 with (2.12, (2.23, and(2.56, we get  connected diagrams. Although our automatization in terms
for the connected four-point function of a MATHEMATICA code[19] turned out to be inefficient in

comparison with other, already established programs like

c :4J' GGG G s FEYNARTS [1-3] or QGRAF[4,5], the construction method as
123477 [ ogg 1220737748 5G . 5G g such is conceptually attractive as it immediately follows
_ _ from the functional integral approach to field theory. As de-
SW oW tailed in Sec. IV B, we expect that a sophisticated implemen-

_4J'5678615G27(G36G48+ GaeGas) 5Gsgs 06Gq,g ' tation of our program will be as efficient as existing codes.

In separate publications our method is applied to generate
(427 the Feynman diagrams of quantum electrodynard$ and
one-particle irreducible diagrams in the ordered phas¢“of
theory, where the energy functional contains a mixture of
WP cubic and quartic in_tgractior{QZ,Z?}. The work[22] also
%2(392:4f GlsterGwW suggests the capability of our new method beyond a mere
5678 560578 generation of graphs. For example, a formal proof of the fact
that W generates connected graphs and that the effective en-
ergy " generates one-particle irreducible graphs could be es-
tablished. Also, a simple all-orders resummation of perturba-
tion theory is presented there. We believe that our method
» SW WP 429 has great potential in formalizing physically interesting re-
0Ggg  6Gog ' summations without concern over combinatorics of graphs
explicitly, a frequent source of errors in the history of resum-
Again, the sum serves only to subtract disconnected diamations.
grams that are created by the first term, so we may choose to It is hoped that our method will eventually be combined
omit the second term and to discard the disconnected diawith efficient numerical algorithms for actually evaluating
grams in the first term. Feynman diagrams, e.g., for a more accurate determination
Now the problem of generating diagrams is reduced to thef universal quantities in critical phenomena.
generation of vacuum diagrams and subsequently taking
fu_nctional deri\_/atives with respect B,,. An advantag_e of ACKNOWLEDGEMENTS
this approach is that external lines do not appear at interme-
diate steps. So when one uses the cancellation of discon- We are grateful to Dr. Bruno van den Bossche and Florian
nected terms as a cross check, there are less operations toJasch for contributing various useful comments. M.B. and
performed than with cutting. At the end one just interpretsB.K. acknowledge support by the Studienstiftung des deut-
external labels as sitting on external lines. Since all necessagchen Volkes and the Deutsche Forschungsgemeinschaft
operations on matrices have already been introduced, WdFG), respectively.

which is equivalent to

p—1
p
—42( ) f G 15627 GasGagt GasGao)
ag=1\9/ Jse78
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