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The Mellin transform of the probability density of the determinaniNof N random real-symmetric matrices
from the Gaussian orthogonal ensemble is calculated. The determinant probability density is given by a single
Meijer G function for oddN. The distribution of the potential at the origin, within the Coulomb gas interpre-
tation, is investigated from the Mellin transform of the determinant distribution and is shown to be asymptoti-
cally Gaussian.

PACS numbegs): 02.50—r

[. INTRODUCTION tial in the scaled asymptotic limil—oco provided its vari-
ance is finite[5—10. The potential fluctuations have been
Random matrix theory finds considerable use in variougnvestigated in 2D and 3D classical charged systgisl2]
branches of physics, notably in nuclear physics, quanturﬁnd more recently for circular ensembles by Baker and For-
chaology, and for investigating Hamiltonians of disordered€Stér, who further studied the dipole moment statiglic
and strongly interacting quantum systefis-3, and refer- Within the log-gas interpretation, the statistic of the potential

: % _ at the origin is obtained fof (x) = —In|x|, that is, forF=
Fioos M. e Gaussian ensembles have boen studied efg D may hus be derved ety fiom the distrouton
. . . . . . N . =

tenswe_ly [1-3] z_a|_'1d are still be|_ng |nvest|gated.2 Their tition functions of log gases whose confining harmonic po-
probability densities are proportional to exir(Hy)l,  tential includes a supplementary logarithmic contribution are
where tr means trace. Matrices are real symmetric for thy._products of the derivation of the determinant distributions
Gaussian orthogonal ensembl&OE), Hermitian for the of Gaussian ensemblésee Eqs(10), (12), (19), and(26) for
Gaussian unitary ensembl€UE), and quaternion self-dual g=1]. The RME’s associated with the latter log gases belong
for the Gaussian symplectic ensemble. Many characteristicsg the family of generalized Gaussian ensembplg;14.
both exact at finiteN and asymptotic at larghl, of the dis- The probability densities of the determinant were derived
tributions of eigenvalues dfiX N random matrices of vari- only recently in terms of MeijeG functions by Mehta and
ous symmetries are known for the Gaussian ensemblgsormand 15] for the GUE and for the Gaussian ensemble of
[1-3]. complex matrices without further constraints on the entries.

The properties of eigenvalues of random matrix en-The determinant density was expressed with the help of Mel-
sembleRME'’s) can be interpreted in two dimensio(@D)  lin's inversion integral by Nyquist, Rice, and Riordgt6] in
from the equilibrium characteristics of a gas Mfidentical ~ the case of a random matrix ensemble of real matrices with
point charges on a lingl—10], often referred to as a log gas N° identically and independently distributétid) Gaussian
[9,10], which interact via a logarithmic Coulomb potential €ntries while properties of random determinants are dis-
and are confined by an external potential. The external pgcussed by Girkd17], who mentions general applications of
tential is harmonic in the case of Gaussian ensembles as c% pdom determinants, in particular in solid state physics
be seen by rewriting Eq1) below as a Boltzmann factor at (=hap. 27. It is worth recalling that Wigner derived the ei-

a temperature H that depends only on the symmetry of the ggnvalue d_|str|but|on of the GUE because .he wanted to o.b—
considered ensemble, wih=1, 2, and 4 for the orthogonal tain an estimate of the value_of a c_ietermlnant of a matrix
. " o . I+ Hy wherel y is anN X N unit matrix and the modulus of
unitary, and sympl_ect_|c e_nsembles, respecn\[eJyB]. T_he ach element of the Hermitian matriky is small as com-

problems of the distribution and associated fluctuations OE

X L s X ared with 1(first section of[18]).
linear statistics in RME’$1—-10], and references therdiare Mehta and Norman@L5] emphasize that the question of

of interest, for instance, in the study of conductance fluctuaghe determinant distribution remains open for the Gaussian
tions in mesoscopic conductors. The linear statistics problengythogonal ensemble and for the Gaussian symplectic en-
deals with physical quantitieB which are given by sums semble. The present paper solves this problem for the GOE
F=3}_,f(\y) over the eigenvalues, of a random matrix, case as it reports the calculation of the Mellin transform of
wheref(x) may depend nonlinearly on General arguments the probability density of the determinant ofNax N random
have been used to predict that the distribution of any lineareal-symmetric matrixd that belongs to that Gaussian en-
statistic is Gaussian and independent of the confining potersemble. The determinant density is shown to be proportional
to a single Meijer'sG function in the case of odtl. Exact
and asymptotic results are established for the potential statis-
*Electronic address: Renaud. Delannay@univ-rennesl.fr tic from the Mellin transforms of the determinant distribu-
TElectronic address: Gerard.Lecaer@mines.u-nancy.fr tions.
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e’ (X)=1, & (X)=sgr(x). 4

The joint distributions of eigenvalues for the Gaussianag described below foN=2p+1, the Mellin transform

ensembles argl—3]

N
1
PN,B()\l""')\N):CN,,B eX;{ - Ez(gl )\E)

[

1=<j<k=<N

X

(D)

|)\j_)\k|ﬁ>-

where =1, 2, and 4 for the orthogonal, unitary, and sym-
plectic ensembles, respectively, a@g ; is the reciprocal of
the Mehta integra[2], p. 354. The casg=0 in Eq. (1),

M) (s) is proportional to a produdi}_ ;T (s/2+ b)) de-

fined by N parametersb® (j=1,... N) whose explicit
knowledge is necessary to derive the determinant distribu-
tion, which is then proportional to a Meije& function,
Go(D?[b{ ,bs ... b{f)) [15,19-2]. These parameters
are known forB=2 [15] but as yet either unnoticed f@=0

or unknown forg=1.

A. Diagonal case:f=0

The Mellin transform of the symmetric distribution of the

which is of some interest in the present context, correspondgeterminantP("’(D) is easily derived for an, as the ei-
further to an ensemble of diagonal matrices whose eigenvabenvalues are independent= 1v2):

ues\,, k=1,... N, are iid Gaussian variables. The ele-

ments whose knowledge suffices to construct matrices of the

considered Gaussian ensembles, namety; for B
=0,1,2,H;; for g=1, and Refl;),Im(H;) for =2, with
i,j=1,...N(j>i), are recalled to be independently dis-

1 N

M (s)= WH r (5
j=1

il

that is,b{®’=0 for anyj in the range ¥&j<N. The distri-

tributed according to Gauss distributions with zero meangytion PO(D) is thus obtained as

and variancesH7)=0? and (Hf)=0%2 for f=1 and
([RgH;TP)=([Im[H;]))=0?2 for B=2. The notation

P (D) will be used throughout the text to designate the

probability density of the determinait of NXN Gaussian

random matrices either diagonal, real symmetric, or Hermitfor any value of o. For N=2 [20], p. 128,

ian according to the value g8. The distributionsP{?(D)
are symmetric whemN=2p+ 1. Indeed, the odd moments
calculated from Eq(1) satisfy the relation

((AA g Aope ) PFF Ly = (—1)(2PH1I2A+D)
X(()\l)\z. ..)\2p+l)2q+1>:0

for p=1,2, as can be shown by changing into —\; (j
=1,...,2+1). The distributiorPf\,O)(D) is symmetric for
any N, as a consequence of the relatigin |\, --\y)29+1)

=I}_,(A29"1=0. To express the sought-after determinant

distributions in terms of MeijeG functions, which are de-

fined as inverse Mellin transforms of ratios of products of

gamma function$19-21], we calculate separately the Mel-

lin transforms of the even and odd parts of the determinant

distributions[15]. Defining first
PN(D)=3[P\(D)=P\’(~D)], el

the associated Mellin transforms are

Mf@f(s):fo DS P (D)dD

N
:%JRNPN,B(NL---,RN)kE[l N5 e " (M) dN

©))
with

(1)
2p+1

Pops1(D)=K5y.1G

gfgif( D2/(20H)N

1
P'(D)= 5 52y Conl(D?/(20%)(0,0,.....0 (6)
P{(D)
=(1/lmo?)Ko(D/o?), where Ky(x) is a modified Bessel
function. The explicit form oP{")(D) is complicated in gen-
eral (see Sec. 4.5.2 d¢f19]).

B. Hermitian case: =2

Mehta and Normand15] have shown thaP(Nz)(D) is
given by a single MeijeiG function whose parameters are
bl(z):[j/ZJ (x| denotes the largest integetx) when N is
odd,N=2p+1:

PZ(D)=K@Z'GyR(D?%(206%)N0,1,1,2,2. .. p,p) (7)

and

N
KW t=20)N?[] T(3+Db{P), )
j=1
while it is a linear combination of twé functions wherN is
even(see[15]). A sketch of the calculation of the parameters
b}z) from generalized Hermite polynomials is given in Ap-
pendix A.

C. Real-symmetric case;8=1

The absolute value of the Vandermonde determinant in
Eq. (3) renders calculations more difficult in the real-
symmetric case. The simplicity of the symmetric distribu-
tions P(zf))H(D) for 8=0,2 suggests, however, that the un-
known distributionsP$), ; (D) might also be proportional to
a single MeijerG function. We prove indeed below that

13355

AA A A A

2p—1 2p+1

0 2 ' a )
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that is, b{'=0 and b{¥=3|(j—1)/21+% (j=2), while from which the needed Mellin transforms are directly calcu-
K(Zt)+l is given by Eq(8). ForN=1, all matrices reduce to a !ated (Sec. IIC 3. We define further the following general
single Gaussian element so th§) =0 (8=0,1,2) is in fact  Integral:

expected from Eq(6). We define the integrdiwith £~ (x)

given by Eq.(4)] N
|§\1V>:JNH dxcexd —V(xy)] H Ixi—x;[, (12)
RYk=1 1<i<js=N

N X2
|§,U(S,,3):f NH ka8+(Xk)|Xk|31eXF<_2_k2”
RTk=1 7 whereV(x) is an even function of. We outline in Appendix
B the calculation of the latter integral for odd (see also
X I (Xi—X;) (10  Sec. 14.3 of2]), and we obtain
si<js=

(Po,Py1) (Po,P3) -+ (Po,Pn-2) T(Po)
|F\IV):N!2<N,1),2 (P2,Py) (P2,P3) (P2,Pn-2) T(P2)
(Pn-1,P1) (Pn-1,P3) - (Pn-1,Pn-2) T(Pn-1)

[Egs. (B14) and (B15)], where the polynomials;, T(-) From Egs.(13) and (14), either using Gauss's recursion
and the inner product:,-) are defined by EqsB1), (B8), functions[21,25 or integrating by parts, we deduce the fol-
and (B11), respectively. lowing relations:

1. Calculation of If; .(s,1) for the GOE (s+2) T =T(x**?), (15

In the case of the GOBY” is equal tol | ,(s,1) [Eq.

(10)] with a potential (5+20) (X XAy =(x¥*2 X2 + T (s+i+]+1).

(16)
x? a. N odd For N odd, Eqs(15) and(16) and Eq.(A12) of
Vo(X)= T,Z_(S_ Dinfx]. 12 Mehta and Normangi15], namely,
N N N-1
In the following we calculately,(s,1) as Iy ,(s,1) defT(s+i+i)T . _ T (s+i 1
=gNStNN=D2 % (s,1). The monic polynomialsP () L D=0, n-1 j];[o s+, A0

[Egs. (B15) and (B16), Appendix Bl are chosen to be

P (X)=x™. From integral(6.455 of [21], which involves are used to expre$3; from the second determinant appear-
an incomplete gamma function, we deduce the inner produdng in Eq. (B15):

[Eq. (B11)] (x¥ ,x?*1) [Re(S)>0]:

N 2 DT:2(S+N1)’2F(S+N_1)
<x2‘,x21'“)=2f dxx21'+5exp(—3
0

{F(s+i+j+%)
xXogel ———————

2 .
xjxdyyzi_“sex%—y—) s+2i ij=0,...(N=3)2
0 2 g (N=3)72
_F(s+|+J+%)F Lerivist Saiiqa 2 1“(2) 11;[0 PE(sH]+2), (18
—T ,S+I+]+§,§+I+ AR
(13 From Eq.(B14), we obtain finally foN=2p+ 1 [Re&(S)>0].
i ; ; P + Nes—p_ N S
where F(-) is a hypergeometric function. SimilarljEq. l2p+11(8,1)=2 mr >
B8)], '
(B8)] (N=-1)/2
_ +oo ) X2 _ s X( H j!F(S-i—j—%)). (19
T(xz')IJ dxx2'|X|Slex;{—§>=2'+S’2F i+5]. 1=

(14 b. N evenForN even, using Eq16), Eq.(B16) becomes
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[(s+i+j+3)

S+ 2i _ :
Iﬁyl(s,l)zN!Zle I:O,..:.,(N*4)/2,J:0 ..... (N=2)/2 . (20)
<XN_2,X> <XN_2,X3>"'<XN_2,XN_1>
|
Denotingn=(N—2)/2, we replace the last colun@(n) by N xﬁ
a linear combination of columng(j) (0<j<n-—1): Iﬁl(s,1)=f NH dx sgr(xk)|xk|51exr< - ?”
' RYk=1
n—-1 1
I'(s+n+3)
Cl(m=C(n+ 2, (-1 '( )—cm.
[(s+j+3) X L Ixi=xgl (27)
(21) 1<i<j=<N
Theith element ofC’(n) (0<i<n-1) is It suffices to replace exp-V(x)] by sgn&exd —V(X] [Eq.
(A26) of [15]] in the calculations of Sec. IIC1 to express
T(s+n+}) T(s+i+j+d) integral (27). The inner produc{x?,x? *1) becomegRe(S)
C'(i,n)=———7— " J( )— >0]
( s+2i JZ . I T(s+j+1)
(22 o +o0 . x?
(X2 x3+1) = —2] dx x21+5exp( )
which is zero, as the sum in ER2) is equal to 0
d | & n d! X fﬂcdy y2i_1+seX[{ - yz)
— —1\i| | xstit+l12 _ U \NyS+ 1/ Z
dx 20( 1) J)X } _ dXI[(l X) X 2]x:l- X 2
(23 [(s+i+j+3)
The sole nonzero elemer@@,’ (n,n), can be calculated from s+2j+i
the Gauss relation [25] (b—a)F(a,b;c;z)+aF(a
+1b;c;z)—bF(a,b+1;c;z)=0, and from a relation which XF|l1,s+i+j+3 —+j +3:2]. (28

can, for instance, be proven by recurrence,

The calculation then proceeds along the same lines as previ-

n
[n
et — _1\N+] P
niF(1+n,biciz) ,-Zo( Y (j)F(l’b+J’C’Z) ously, interchanging the role of rows and columns. This

. yields
H (b+j-= ) (24 def(x* X" D] iZo (-2
N N—1 s+N+1
ieldin —_(_a N N, 1
y g ( 1) F( 2 !S+ 2 1 2 ’2)
r s+n+1) S N/2—1 / - .
C’(n,n)=;n!F n+1ls+n+i;=+n+1;3 jIT(s+j+3)
s+2n 2 X H _ (29
From this, integral(20) is finally found to be N=2p) and finally N=2p) [ReS)>0]
[Re(§)>0]
N/2 N! s+1
_ | 1= (S,l)Z(— 1)N/22(N+s—2)/2 r
+ — (N /2" _ 2p,1
I2p,a(s, ) =27 (N/2)1 ( H T (s+] 2)) P (N/2)! "\ 2
N/2
F(s/2,(1—s)/2;(s+N)/2;3) x| I1 j!F(S+J'—%))
=1
F(s+N)12) ’ 26 ‘
F((s+1)/2,1—s/2;(s+N+1)/2;3
a form which differs from the form of the Mellin transform ( : ( )/2:2) . (30
found for oddN [Eq. (19)] because of the last factor. F((s+N+1)/2)
2. Calculation of Iy ,(s,1) for the GOE (N even) 3. Mellin transforms
As 1y, (s,1)=cNNNTDR L (s,1),  we  calculate To summarize, the Mellin transforni&q. (3)] of the de-

I'v.1(s,1), which is nonzero only for eveN, terminant distributions are obtained from
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0.3
c,(8)

0.2 1

01} .

02} 1
c,(B)
0.3 : , .

0 0.5 1 15 2 B

FIG. 1. Parameters,(B8)=hb%®—p/2 and cs(B)=b{" — /2
calculated numerically frorigl(s,,B) [Eq. (10)] and from Eq.(393).

(31)

+
Mﬁj>+(s)=aN<s—1>{ NECE) ]

2| ,J\]’l(l,l)

using Eqs.(19) and (26) for odd and everN, respectively,
and from

Ina(sD) ] (32

MDD~ (g)= Ns= D] NI
2z (9=0 200,10

using Eq.(30) for N=2p while M{"~(s) is zero for oddN.
For =0,1,2 and N=2p+1, the integral of Eq.(10)
(+ case can be alternatively written as

I ;—p+1’U(S’B) = 2NS/2’7TN/20'[N(S_ 1)+Np]

N

I'(1+ Bmi2)T (s/2+b'A)) )
T'(1+ BT (3+bP)

m=1
with N,=N+AN(N—1)/2 and

b¥¥=0, bY=0, b§§>=%

m—1
2

1 m
- ho !
Tz Pm M (34)

(b from [15]) (m=2). Equation(33) reduces as expected
to a Mehta integrdlEq. (17.6.7, p. 354 of{ 2]] for s=1. The
determinant distributio®$), (D) given by Eq.(9) is finally
deduced from Eqg31) and(33) with parameterd() as its
Mellin transform is proportional to a product dffunctions
whose arguments are linear $fsee below Eq(4) and also
Eq. (3.4 of [15]]. Although the origin of Eq(33) is under-
stood only for some integer values Bf the question of its
validity for any noninteger8 ranging between 0 and 2 is
naturally raised where the unknown parametefd (b
=0) would be assumed to be explicitly independenNais
in Eqg. (34). We display in Fig. 1 the3 dependence of the
parameterss,(8) =b{® — B/2 (k=2,3) which are obtained
from a combination of a numerical calculation I@fl(s,,B)
and Eq.(33).

P (D)
z

N=5

05 1 15 2

FIG. 2. Determinant distribution®{((D) from Monte Carlo
simulations with 18 matrices(o=1) for (a) N=2 (circles and 3
(crossesand (b) N=4 (empty circle$ and 5(solid circles.

4. Determinant distribution

A general expression for the determinant distribution has
not been found forP(zt,)(D) but the latter is in theory
uniquely determined by an inversion of its Mellin transform.
It is worth calculating exact distributions fdi=2 and 3, as
they may be of interest in relation to physical properties in-
volving random matrices or random second-rank tensors in
2D or 3D. It is possible to derive an exact density fér
=2 by different methods. The distribution of the determinant
D=Hy,Hy—H7, of a 2x2 GOB matrixH;; might, for in-
stance, be obtained from a convolution of the distribution
PO(D) given below Eq.(6) and ay-square distribution. A
simpler calculation, sketched in Sec. IV, uses the distribution
of the determinant of the associated fixed-trace ensemble
[27] to yield

PSM(D)=
2 (D)=——

P3/(D)=

1 D
i _ 2
ﬁexp{ 02)[1 erf(y2D/o?)], D=0,

o2
(35)

where erfg) is the usual error functiof21]. Its moments are
given in Appendix C[Eq. (C6)]. Monte Carlo simulation
results[Fig. 2(@)] are in excellent agreement with E@5).

For N=3, expressingG3Jz|-) ((20], p. 98 gives the
determinant distribution as
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p(l)(D): 1 GB' Dz‘o} E
3 0_371_\/; 0,3 80’6| 474
1 13 2 3
i) (VZW)OFz(,Z,Z,—_e)_"'F(Z)
><D1’2F_15 D2+8F1
20| 222 808 P32
X b " F 37 i 36
20_3‘/2 or2 ,E,Z’ 8 6 ( )

For numerical purposes, it is worth mentioning that the de-
terminant distributions considered in the present paper cag
h

be calculated using Monte Carlo simulations to generate t
GB"’,\?(z|b1,...,bN) function, as it is proportional to the distri-
bution of the product oN independent gamma random vari-

ables[the jth variable has a densitf/j(x)ocxbj(ﬁ) exp(—x)]
[19,20. From the known asymptotic behavior of Meije%
functions [20], P%), (D) varies as [D|(N" DN
X exp(—N|D|*N/20?) for largeD while it is a constant what-
everN for small values oD, asb{®?)=0 [20], p. 145.

Some determinant distributio&’(D) are shown in Fig.
2. The moment$D™){#) of the determinant distributions are
simply obtained from the Mellin transforms:
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(D#* 1) =0). Explicit expressions for the moments of
the determinant distribution are given in Appendix C.

IIl. POTENTIAL STATISTIC

The moment generating functidg{{’(t) of the distribu-
tion g{f)(V) of V=In|D|, the negative of the potenti&l at
the origin(Sec. ), is related to the Mellin transform of the
even part of the determinant distributipg. (3)] by

+ oo
EP0- [ egPviav

:2f DIPP*(D)dD=2MP " (t+1). (39
0

t}<1 in Egs.(40) and (41)]. The moments are then calcu-
ated from (VKB =[d*E(F)(t)/dt"],_o, while the cumu-
Iants;c(kﬁ) of orderk [25] are deduced from the derivatives of
the cumulant generating function[E(t)] at t=0, «®
=[d*In[E{(t))/dt],—, The central moments of order 2 and 3
are equal to the cumulants of the same orde&‘f)z((v
_<V>(ﬁ))k>:K(kﬂ) (k=2,3).

Equation(31) extended toB+1 and Egs.(33) and (34)
yield the following cumulant generating function, which
holds whateveN for 8=0 [Eq. (5) and 8=2 [Eq. (2.18 of
[15]] and only forN odd,N=2p+1, for 8=1:

N 14 KB
[(t/2+3+b)
2ky(B) — opg (B)+ EP) ()= (202 _—. 40
(D29 =2M* (2k+ 1), 37 AURE i | W sy 40
(D HP =2Mf) (2k+2) (38 ForN even,N=2p, ES}(t) is obtained from Eq(26):
|
1+t t N+1+t 1\ T((1+D)/T(N+1)/2) & [T(t+m+3)
Esp () =2"0NF| ——, —=; ;—) (CHORTUE D) [ e (4D)
220 2 2] T(HT(N+1+1)/2) m=1| T(m+3)
|
In the diagonal case, the me&w)(® and the variancg:% a4 In E((L+0)/2,— t/2:(N+ 1+ 1)/2:2)
are proportional td\ as expected for a sum of iid random F(N)= T .
variables, being respectively equal toN/R)[ (%) t=0

+In(26%)], where §(z) is the psi function[21,25, and
N72/8 as deduced from E@40). In that case, the asymptotic
distribution of |D| is a log-normal distribution from the cen-
tral limit theorem[26].

The asymptotic mean(V){®=—N(%+In2) is deduced
whateverN and 8 from (In |D|)=N(In |\|), where the mean
(In|\]) is calculated from the asymptotic density of states

In the Hermitian and real-symmetric cases, the mean,_(\), which is a Wigner semi circlgl—3] of “radius” 1,

<V>(ﬁ) is

<V>(ﬁ)zﬂ|n(20-2)—5 ( 1 InN2+3,(p)+ 4,
2 P2 T
1 [N+1
S T A LT

whereX(p) =7 ¢(3) +2]_14(j +3),8p1 is 1 for B=1 and
0 otherwise, s, is 1 if N is even and 0 otherwise, and

p-(\)=(2/7)y1—\? (]\|<1), when o? is scaled so that
2NBo?=1. The largeN mean obtained with the latter scal-
ing up to terms of orde®(1/N) from Eq.(12) and Appendix

Dis
1
N .
wherev M= (In2)/2 andv(?=0.
The eigenvalue scaling obviously has no influence on the
values of central moments and of cumulants ofDihfor k

(V)P =—=N(3+In2)+vP+0

(43
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TABLE I. Comparison of some calculated moments and cumu- —_
lants[Egs. (42) and (44), p=1] with those obtained from Monte é— 0.4
Carlo simulations with % 10° and 2x 10° real-symmetric matrices
for N=60 (0>=1/120) andN= 101 (o>=1/202), respectively.

0.3
NWE
0.2
Simulation 60 —71.242 5.118 -—-3.53 8.0
Calculation —71.2449 5.1310 —3.5259 7.8688 01
Simulation 101 —120.160 5.639 —-3.54 7.4 )
Calculation —120.1629 5.6518 —3.5390 7.8695 3
0
-2 -1 0 1 2
u

=2. Equationg19) and(41) for f=1 and Eq.(40) with the

parameters(?)=[m/2] for =2 [15] yield the cumulants FIG. 3. Distribution f(u) of u=(In[D|—(V)®)/uf? (V)@
and ,u,(zl) are given in Table)lfrom Monte Carlo simulations with
5X10° and 2x10° real-symmetric matrices foN=60 (empty

1 1 -
KE(B)ZEE g S+l D Y+ circles andN= 101 (crosse} respectively, and standard Gauss dis-
=1 tribution (142 7)exp(=Uu?/2) (solid line).
+6 ! <k1>(N+l)+5 F(N)| (44
AR R AR PYE%A(D) =K, 163 1

for k=2, with a{M=1, a{?’=21"% where the polygamma D?
functions are defined by/*"Y(z)=d"In[T'(2)]/dZ, [¥(2) (26%)N
=9(2)] [21,25. Results of Monte Carlo simulations per-

formed with real-symmetric matrices are in very good agree-

ment with the calculated valug3able ). The asymptotic b(”—qj_—lJ

; b#=0, b!®=0
variances deduced from Eqg4) and (D6) are 1 v S Y )

X 0bi?, j=2,...,2p+1), (47)

1 jJ
- (22
Tz b {2

) ) . . ([15] for B=2), for j=2. As shown in27], the distributions
Equation(D7) gives asymptotic cumulants of order3 in-  found for the Gaussian ensembles can be further used to

psP(2)=logN, u$?()=3logN. (45)

dependent oN: derive the determinant distributions of fixed-trace ensembles
1 k-1 (FTE’s) of random matrices of the same symmetry. Rosenz-
(Do) — — k=11 _ (l— (k—=2)/1 weig and Bronk(see[2] and references thergirdefined
K o0 —r k 1 ]
() V) R fixed-trace ensembles by the condition thatHi{Hy)

=const with no other constrairit, is the Hermitian con-
(k=2)(1) (46) jugate ofHy). The latter constant is taken here as 1 without
2 loss of generality. The probability densitiga{’(R) (B

=0,1,2 of rescaled determinant® of such FTE's,
The cumulants of ordek=3 of

N

R=NN’2{H Nk

k=1

_In[(2Ve)ND[] _F-N(;+In2)
" w0 V()

are asymptotically equal to 0. The asymptotic distribution of
Uy is thus a standard Gauss distribution fdd2s2=1 but  for which F{’(R)=0 for |R|=1 and the determinant densi-
the convergence is sloFig. 3). Baker and Forrestef9]  ties of the associated Gaussian ensembles are shown to be
have shown that the potential statistic in circular ensembleselated by[27]

also satisfies a central limit theoremMs- o with variances

(1/B)In N (actually valid for general rationgb at least[9]) )
that are identical with those found hdi€g. (45)]. Repulsive B/ _ % B) Ny LN —N—1 2
interactions between eigenvalues and the resulting rigidity of N ( )_F(Np/Z)f|D|1/NFN (D/r™)re exp(—r)dr
the eigenvalue distribution produce a change of the width of (49
the asymptotic Gaussian from being proportionaNtt? for
uncorrelated eigenvalues f@=0 to proportional to (IN)*2
for correlated eigenvalues f@=1,2.

: (48)

for c=1/2 in Eq. (1) andN, given above Eq(34). Equa-
tion (35) (B=1, N=2), for instance, is derived from E¢49)
with F{Y(R)=1/2y2(1+R) for |R|<1. Conversely, the dis-
tributionsF(Z/f;)+ 1(R) are obtained from Eq$47) and(49) as
To summarize, the probability distributio ";)H(D) are  single MeijerG functions[27] namely,

IV. SUMMARY AND EXTENSION TO OTHER RME'S
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F®), (R)=DY, G210 The elements ofAy are thenh, Y2H{*) (x)exp(~x%/2). As
o monic polynomials areP{¥(x)=2""HW(x), the identity
@Jr (-1 i=1,....20+1 between the normalization constants that appear in the two
«| rR?| 2 (2p+1)’ Y _ previous expressions fcﬂz()\l,... An) [Eq. (A2)] yields Z,
0b!A) i=2,...,2p+1 as proportlonal to the prodth Oh The parametelg /2]
) (j=1,... N) which are obtained from EqA4) for j=n

(50 +1are equal to thé(? [15].

Results of Monte Carlo simulations of the distributions of the

determinant of such FTE's fod<11, to be reported ifi27], APPENDIX B: 1\ [Eq. (11)]

which are in excellent agreement with the theoretical distri- ) )
butions Eq{(50), as well as the results reported in Table | for ~ The Vandermonde determinant can be written as
B=1 which agree with Eqs(42) and (44) provide supple-

mentary confirmation of Eq47).

To conclude, the distributions of determinants of diago- H (Xi_xj):de(xij_l)lsi,jsN
nal, real-symmetric, and Hermitiall5] random matrices 1=<j<i=N
from Gaussian ensembles have complicated forms in most
o =defPi_1(x)]a<ij=n,  (BD)

cases. They are, however, conveniently represented by their

Mellin transforms, which are known exactly for any finlte

for =0, 1, 2. The asymptotic Gaussian distributions foundwhere P; 1(x;) is @ monic polynomial of degrele- 1, that
for the potential statistic of the log gases associated with thgs, with a coeff|c|ent of the leading term'~ -1 of 1. The
GOE and GUE have variances g}In N identical with those  integral

of the corresponding circular ensemb[&3 and fixed-trace

ensemble$27].

N
0= [ JT axeext—vosol T x| 82)
RNk=1 I<j=N

Isi<js=

APPENDIX A: b

From Eqgs.(3) and(4), the Mellin transformvi ff“(s) for
s real positive is proportional to the normalization constantis calculated for oddN with the method of alternate variables
Z\, of the eigenvalue distributioR,(\q,...,\y) of the uni-  [2], whose principle is to integrate first over odd variables
tarily invariant RME: Xokr1 [kK=0,...(N—=121)/2]. The resulting integral can be
expressed in terms of functiorg(x) defined as
Po(Hy)x|de(Hy)[* Texi —tr(HY)] (A1)

X
named the generalized Gaussian ensemil@3riL4]. Zy is (pi(X)ZJ Pi(t)exd —V(t)]dt. (B3)
calculated with the classical method of orthogonal polynomi- -
als [2]. The structure of the Vandermonde determinant is

used to reexpress the eigenvalue distribufg¢,...,\y), Integrating with respect tay ,Xs,... Xy, we write

Po(N1,..-\N)
1 N -
= —exp—| >, xz) IL it T oa=a)? V=Nt
Z % (il ; Ly j 1<iz]<N i j Iy’ =N! —oc<x2<x4<---<xN,1<+ocde[m”]IJ 0,...] -1
1 tAAT - (N=1)/2
—m et Ay N)' ( ) X III dXZkeXﬂ:—V(sz)] (B4)
=1

as a determinant where the elements of the matgxiepend

on the considered polynomialsee Eq.(5.2.10 of [2]]. With Xg=—%, Xy+1=+%, and
The orthogonal polynomials here are generalized Hermite

polynomials[22], p. 156 H{¥(x) with w=(s—1)/2, for

which m; o= Pi(XZI()! (BS)
+ oo
f_ H OOHR 00X expl—x®)dx= by (A3) M 21 ¢1(Xakr 2) = ¢i(X21) (B6)
with [22] for O<i=sN-1 and Os<ks<(N-1)/2. All second terms

in the odd-numbered columrisight member of Eq.(B6)]
s are eliminated by successive column additions, resulting

n+1
+ —) . (A4) in

2

hn—zzﬂ J'F >
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(N=1)/2
=N J I extl = Vixa ldx
—o<Xp<Xy <Xy-1<t® k=1
®o(X2) Po(X2):*@o(Xn-1) Po(Xn-1) ¢o(+)
X de : (B7)
en-1(X2)  Pnoa(X2) ren—1(Xn-1)  Pno1i(Xn-1)  en-a(+)

We denote a3 (P;) the linear application

+ o

T(Pi):¢i(+m):f Pi(exd —V(t)]dt.  (B8)

An expansion of the determinant in E@®7) with respect to
the last column yields a sum &f integrals:

N

I&V>=N!k§l(—1>k*1T<Pkfl>Mkfl (B9)
with
Mk—lzf A1
— oIy <IKg < <Xy < P
(N—1)/2
X n[[l dxonexd —V(xzn)],  (B10)

whereA, _; is the minor obtained after deleting théh row
and the last column of the full determinant in E§7). Us-

<f,g>=J_+m de_deyf(y)g(x)exq—vu)—wy)].
(B12)
We define next monic skew-orthogonal polynomi&gx)
[2,14,23,24
<Rvan>:rkZmn
with
1 if m=2k, n=2k+1
-1 if m=2k+1, n=2k (k=0,12...)
0, otherwise.
(B13)

The polynomials R,(x) are even whenm=2k while
Ro11(X) can be chosen to be odd. Whex, is chosen as
Pm(X) =R (X), the last line of the antisymmetric matrix as-
sociated withM,_, is zero fork<N and thusM,_;=0.
From results proven if2,14,23,24, the elements of the last
line are indeed &Ry_1,Ry,) for 0Osm<=N-1 (m#k—1),

Zmnn=

ing the symmetry and restoring an integration over indepengich is zero from Eq(B12). The only nonzero minor is

dent variables makes it possible to express ewégy ; with
the help of a Pfaffian of a skew-symmetritN{1)x (N

—1) matrix[2,23]. To obtain a final compact expression, we

define an inner product of functiorisandg as

(=1 x| airgeo- 10091
xXexg —V(x)—V(y)]. (B11

The inner product is zero whefrand g are either both even

thereforeM y_1:
Mn—1=(defgiJi -0, n-2)"?

W|th gij=2<Ri,Rj>=2rkZij, that iS, g”:O except fOI’

Oon2n+1=—Oon+1,m=2r, for n=0,...,(N—3)/2. Conse-
quently,
(N=3)/2

1k

rk) =N12(N-V2p.
(B14)

IN)= N!2(N—1>’2T(RN_1)<

or both odd. If one function is even and the other one is oddUsing linear combinations of rows and columns of the sec-

then

(Ro,R1)
<R2!Rl>

(Ro,R3) - *(Ro,Rn-2)
(Rz2,R3) *(Rz,Rn-2)

T(Ro)
T(Ry)

=

(Rn-1,R1) (Ry-1,R3)(Ry-1,Ry-2) T(Rn-1)

ond matrix in Eq.(B15), we deduce for odd

(x%.xh)
(x%x%)

<X0,X3>' . '(XO,XN_2>
<X2,X3>‘ . '<X2,XN_2>

T(x%)
T(x?)

<XN71,X1> <XN71,X3>' . ‘<XN71 ,XN72> T(XNfl)

<P01Pl>
<P2=P1>

(Po,P3)-«(Po,Pn-2)
(P2,P3)--«(P2,Pn_2)

T(Po)
T(Py)

(Pn-1,P1) (Pn-1,P3)(Pn-1,Pn-2) T(Pn-1)
(B15)
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The P,, polynomials that appear in the last matrix are con- mlg2m (T T(n+1/2)

strained to be monic polynomials of degneethat are even
polynomials whenm=2k and odd polynomials whem
=2k+1. WhenN is even I [Eq. (B2)] is [2,14,15,23

<P01Pl>
<P21Pl>

(Po,P3)--(Po,Pn-1)
V) 1o <P21P3>"'.<P2-PN71>
(Pn-2,P1) (Pn—2,P3)(Pn-2,Pn-1)
(B16)
with the same constraints as above Ry polynomials.

APPENDIX C: MOMENTS OF THE DETERMINANT
DISTRIBUTION P{(D)
For B=1, even momentskz1) are found from Eqg19),
(26), (30), and(37) to be
W 2T (k+ 1) 2

=

<D2k>§\lli2p+l o?

H

F(j+N/2)>
T(j+1/2)

(CY

Nk2"F((N+1)/2)F(k+%)
LK+ (N+1)/2)\/

N+1 |
k+3,— K k+ —— 2 V2

<D2k>N— 2p= 0_2

XF

(C2
j=1

F(j+(N+1)/2))
rg+3 |

Odd moments, which are nonzero only for evénare cal-
culated from Eqgs(26), (30), and(38) (k=0):

2T ((N+1)/2)T (k+2)

<D2k+1>'(\‘1i2p: (— 1)N2GN2k+1) 5

L(k+(N+3)/2) /7
N+3
XFlk+2, —kk+ —— %)
2
2k+1 .
% H W) (C3)
=1 L(j+3)

The variance®/("'=(D?)(V— ((D){M)? are calculated from
the previous moments:

" 40°N(N+2)[ [N+2)]?
VNZ2p+1= 37 2 J (C4
" o®N(2N+5)[ [N+1
VNZ2p= 3, > (CH

Their ratio tends to 1 whep—oo. For N=2, the moments
can be calculated directly from E(B5), using lemma 6.1 of
[28]:

(DM =(-1"

n=o0 n!

Jm

(Co)
That is,
m! g2™

2

for large m. Moments of the determinant distribution are
given by Mehta and Normand5] for the GUE case and

(DML~ (="

I'N(k+1/2)
71_N7?

<D2k>§\10):(20_2)Nk (C7)

for B=0 for anyN.

APPENDIX D: ASYMPTOTIC BEHAVIOR
OF 2 (p) (p=|N/2|, B=1,2

In addition to terms discussed below, the mg&q. (42)]
and thekth order cumulanfEqg. (44)] may include a sum
— (12 gk 1)[(N+1)/2]+551Fk(N) where — < I[(N
+1)/2)/2¢ is —3%In(N/2)+O(1N) for k=1 and
[(—1)< l(k—2)|]/2|\|k 1+ O(1/N¥) for k=2 [25], while

dInF((1+1t)/2,—t/2;(N+1+1)/2;3)

Fk(N): dtk

t=0

is O(1/N) for largeN. The asymptotic behaviors of the mean
[Eqg. (42)] and the cumulantfEq. (44), k=2] are then ob-
tained from that of

p

E (k— 1)

)+ ol

1
G ok

kll
P (3)

(D)

with aV=1, a@=2""K For k=1, ¢(x+1)=(x)
+1/x [25] allows the deduction

p 2p 1 1 p 1
i ly— 1 — —
2 wi+)=pe(z)-pr2p+D)| 2 Zmzzlm).
(D2)
From[21,25,
"1 1 1
2, p=Cthntz 40 r?)

where C~0.577 21 is the Euler constant, and we deduce
finally that

zgﬁ)(p)=(2p2+1) Inp—p+0 1)_ (D3)
p
From[25],

(D4)
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and we obtain P 1
SM=In p+1+C+2In2— 5 +0 5)’
p
2, YN+ = -2 UG (- D (k-2 (D6)
g > 1 1+C+2h2 (1
X<mz_o 2m+1) 1)
+(—1)Xk—1)125"Y(2p+1) and
X > —Rl D5 3 M(p)= —k—l_zkflwk‘“(i)—(k—1>¢<k‘2)(1)+o =
map+1 (2mMm+1)%)" k 2 2 2 p/’
The second term in the right-hand side of EB5) is Inp (k—1) 1
—(3)+0O(1/p) for k=2 and —(k—1)yp*2)(3)+0O(1/p) 2&2>(p)=—2k,T¢/<k*2>(%)+o _) (D7)
for k=3, while the contribution of the third term, which is of P

the order of 1)¥(k—2)/p*~2 for largep, can be neglected
in the expansion considered except ket 2. Finally, for k=3.
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