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Distribution of the determinant of a random real-symmetric matrix
from the Gaussian orthogonal ensemble
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The Mellin transform of the probability density of the determinant ofN3N random real-symmetric matrices
from the Gaussian orthogonal ensemble is calculated. The determinant probability density is given by a single
Meijer G function for oddN. The distribution of the potential at the origin, within the Coulomb gas interpre-
tation, is investigated from the Mellin transform of the determinant distribution and is shown to be asymptoti-
cally Gaussian.

PACS number~s!: 02.50.2r
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I. INTRODUCTION

Random matrix theory finds considerable use in vario
branches of physics, notably in nuclear physics, quan
chaology, and for investigating Hamiltonians of disorder
and strongly interacting quantum systems@1–3#, and refer-
ences therein#. Among the ensembles ofN3N random ma-
tricesHN , three Gaussian ensembles have been studied
tensively @1–3# and are still being investigated. The
probability densities are proportional to exp@2tr(HN

2 )#,
where tr means trace. Matrices are real symmetric for
Gaussian orthogonal ensemble~GOE!, Hermitian for the
Gaussian unitary ensemble~GUE!, and quaternion self-dua
for the Gaussian symplectic ensemble. Many characteris
both exact at finiteN and asymptotic at largeN, of the dis-
tributions of eigenvalues ofN3N random matrices of vari-
ous symmetries are known for the Gaussian ensem
@1–3#.

The properties of eigenvalues of random matrix e
sembles~RME’s! can be interpreted in two dimensions~2D!
from the equilibrium characteristics of a gas ofN identical
point charges on a line@1–10#, often referred to as a log ga
@9,10#, which interact via a logarithmic Coulomb potenti
and are confined by an external potential. The external
tential is harmonic in the case of Gaussian ensembles as
be seen by rewriting Eq.~1! below as a Boltzmann factor a
a temperature 1/b that depends only on the symmetry of th
considered ensemble, withb51, 2, and 4 for the orthogona
unitary, and symplectic ensembles, respectively@1–3#. The
problems of the distribution and associated fluctuations
linear statistics in RME’s@1–10#, and references therein# are
of interest, for instance, in the study of conductance fluct
tions in mesoscopic conductors. The linear statistics prob
deals with physical quantitiesF which are given by sums
F5(k51

N f (lk) over the eigenvalueslk of a random matrix,
wheref (x) may depend nonlinearly onx. General arguments
have been used to predict that the distribution of any lin
statistic is Gaussian and independent of the confining po
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tial in the scaled asymptotic limitN→` provided its vari-
ance is finite@5–10#. The potential fluctuations have bee
investigated in 2D and 3D classical charged systems@11,12#
and more recently for circular ensembles by Baker and F
rester, who further studied the dipole moment statistic@9#.
Within the log-gas interpretation, the statistic of the poten
at the origin is obtained forf (x)52 lnuxu, that is, for F5
2 lnuDu. It may thus be derived directly from the distributio
of the determinantD of HN . We notice further that the par
tition functions of log gases whose confining harmonic p
tential includes a supplementary logarithmic contribution
by-products of the derivation of the determinant distributio
of Gaussian ensembles@see Eqs.~10!, ~12!, ~19!, and~26! for
b51#. The RME’s associated with the latter log gases belo
to the family of generalized Gaussian ensembles@13,14#.

The probability densities of the determinant were deriv
only recently in terms of MeijerG functions by Mehta and
Normand@15# for the GUE and for the Gaussian ensemble
complex matrices without further constraints on the entri
The determinant density was expressed with the help of M
lin’s inversion integral by Nyquist, Rice, and Riordan@16# in
the case of a random matrix ensemble of real matrices w
N2 identically and independently distributed~iid! Gaussian
entries while properties of random determinants are d
cussed by Girko@17#, who mentions general applications o
random determinants, in particular in solid state phys
~Chap. 27!. It is worth recalling that Wigner derived the e
genvalue distribution of the GUE because he wanted to
tain an estimate of the value of a determinant of a ma
I N1HN whereI N is anN3N unit matrix and the modulus o
each element of the Hermitian matrixHN is small as com-
pared with 1~first section of@18#!.

Mehta and Normand@15# emphasize that the question o
the determinant distribution remains open for the Gauss
orthogonal ensemble and for the Gaussian symplectic
semble. The present paper solves this problem for the G
case as it reports the calculation of the Mellin transform
the probability density of the determinant of aN3N random
real-symmetric matrixHN that belongs to that Gaussian e
semble. The determinant density is shown to be proportio
to a single Meijer’sG function in the case of oddN. Exact
and asymptotic results are established for the potential st
tic from the Mellin transforms of the determinant distrib
tions.
1526 ©2000 The American Physical Society
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II. DETERMINANT DISTRIBUTIONS

The joint distributions of eigenvalues for the Gauss
ensembles are@1–3#

PN,b~l1 ,...,lN!5CN,b expF2
1

2s2 S (
k51

N

lk
2D G

3S )
1< j ,k<N

ul j2lkubD , ~1!

whereb51, 2, and 4 for the orthogonal, unitary, and sym
plectic ensembles, respectively, andCN,b is the reciprocal of
the Mehta integral@2#, p. 354. The caseb50 in Eq. ~1!,
which is of some interest in the present context, correspo
further to an ensemble of diagonal matrices whose eigen
ues lk , k51, . . . ,N, are iid Gaussian variables. The el
ments whose knowledge suffices to construct matrices of
considered Gaussian ensembles, namely,Hii for b
50,1,2,Hi j for b51, and Re(Hij),Im(Hij) for b52, with
i , j 51, . . . ,N( j . i ), are recalled to be independently di
tributed according to Gauss distributions with zero me
and varianceŝ Hii

2 &5s2 and ^Hi j
2 &5s2/2 for b51 and

^†Re@Hij#‡
2&5^†Im@Hij#‡

2&5s2/2 for b52. The notation
PN

(b)(D) will be used throughout the text to designate t
probability density of the determinantD of N3N Gaussian
random matrices either diagonal, real symmetric, or Herm
ian according to the value ofb. The distributionsPN

(b)(D)
are symmetric whenN52p11. Indeed, the odd moment
calculated from Eq.~1! satisfy the relation

^~l1l2¯l2p11!2q11&5~21!~2p11!~2q11!

3^~l1l2¯l2p11!2q11&50

for b51,2, as can be shown by changingl j into 2l j ( j
51, . . . ,2p11). The distributionPN

(0)(D) is symmetric for
any N, as a consequence of the relation^(l1l2¯lN)2q11&
5Pk51

N ^lk
2q11&50. To express the sought-after determina

distributions in terms of MeijerG functions, which are de-
fined as inverse Mellin transforms of ratios of products
gamma functions@19–21#, we calculate separately the Me
lin transforms of the even and odd parts of the determin
distributions@15#. Defining first

PN
~b!6~D !5 1

2 @PN
~b!~D !6PN

~b!~2D !#, ~2!

the associated Mellin transforms are

MN
~b!6~s!5E

0

`

Ds21PN
~b!6~D !dD

5 1
2 E

RN
PN,b~l1 ,...,lN!)

k51

N

ulkus21«6~lk!dlk

~3!

with
ds
l-

e

s

t-

t

f

nt

«1~x!51, «2~x!5sgn~x!. ~4!

As described below forN52p11, the Mellin transform
M2p11

(b)1 (s) is proportional to a productP j 51
N G(s/21bj

(b)) de-
fined by N parametersbj

(b) ( j 51, . . . ,N) whose explicit
knowledge is necessary to derive the determinant distr
tion, which is then proportional to a MeijerG function,
G0,N

N,0(D2ub1
(b) ,b2

(b) , ...,bN
(b)) @15,19–21#. These parameter

are known forb52 @15# but as yet either unnoticed forb50
or unknown forb51.

A. Diagonal case:bÄ0

The Mellin transform of the symmetric distribution of th
determinantPN

(0)(D) is easily derived for anyN, as the ei-
genvalues are independent (s51/&):

MN
~0!~s!5

1

2pN/2 )
j 51

N

GS s

2D , ~5!

that is,bj
(0)50 for any j in the range 1< j <N. The distri-

bution PN
(0)(D) is thus obtained as

PN
~0!~D !5

1

~2ps2!N/2 G0,N
N,0

„D2/~2s2!Nu0,0, . . . ,0… ~6!

for any value of s. For N52 @20#, p. 128, P2
(0)(D)

5(1/ps2)K0(D/s2), where K0(x) is a modified Besse
function. The explicit form ofPN

(0)(D) is complicated in gen-
eral ~see Sec. 4.5.2 of@19#!.

B. Hermitian case: bÄ2

Mehta and Normand@15# have shown thatPN
(2)(D) is

given by a single MeijerG function whose parameters ar
bj

(2)5 b j /2c ~bxc denotes the largest integer<x! when N is
odd,N52p11:

PN
~2!~D !5KN

~2!G0,N
N,0

„D2/~2s2!Nu0,1,1,2,2, . . . ,p,p… ~7!

and

@KN
~b!#215~2s2!N/2)

j 51

N

G~ 1
2 1bj

~b!!, ~8!

while it is a linear combination of twoG functions whenN is
even~see@15#!. A sketch of the calculation of the paramete
bj

(2) from generalized Hermite polynomials is given in Ap
pendix A.

C. Real-symmetric case:bÄ1

The absolute value of the Vandermonde determinan
Eq. ~3! renders calculations more difficult in the rea
symmetric case. The simplicity of the symmetric distrib
tions P2p11

(b) (D) for b50,2 suggests, however, that the u
known distributionsP2p11

(1) (D) might also be proportional to
a single MeijerG function. We prove indeed below that
P2p11
~1! ~D !5K2p11

~1! G0,2p11
2p11,0S D2/~2s2!NU0,

1

4
,
3

4
,
3

4
,
5

4
,
5

4
,...,

2p21

4
,
2p11

4 D , ~9!
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that is, b1
(1)50 and bj

(1)5 1
2 b( j 21)/2c1 1

4 ( j >2), while
K2p11

(1) is given by Eq.~8!. ForN51, all matrices reduce to a
single Gaussian element so thatb1

(b)50 (b50,1,2) is in fact
expected from Eq.~6!. We define the integral@with «6(x)
given by Eq.~4!#

I N,s
6 ~s,b!5E

RN)k51

N Fdxk«
6~xk!uxkus21 expS 2

xk
2

2s2D G
3U )

1< i , j <N
~xi2xj !Ub

, ~10!
u

from which the needed Mellin transforms are directly calc
lated ~Sec. II C 3!. We define further the following genera
integral:

I N
~V!5E

RN)k51

N

dxk exp@2V~xk!# )
1< i , j <N

uxi2xj u, ~11!

whereV(x) is an even function ofx. We outline in Appendix
B the calculation of the latter integral for oddN ~see also
Sec. 14.3 of@2#!, and we obtain
I N
~V!5N!2 ~N21!/2U ^P0 ,P1& ^P0 ,P3& ¯ ^P0 ,PN22& T~P0!

^P2 ,P1& ^P2 ,P3& ¯ ^P2 ,PN22& T~P2!

]

^PN21 ,P1& ^PN21 ,P3& ¯ ^PN21 ,PN22& T~PN21!

U

n
l-

r-
@Eqs. ~B14! and ~B15!#, where the polynomialsPj , T(•)
and the inner product̂•,•& are defined by Eqs.~B1!, ~B8!,
and ~B11!, respectively.

1. Calculation of IN,s
¿

„s,1… for the GOE

In the case of the GOE,I N
(V) is equal toI N,s

1 (s,1) @Eq.
~10!# with a potential

Vs~x!5
x2

2s22~s21!lnuxu. ~12!

In the following we calculate I N,1
1 (s,1) as I N,s

1 (s,1)
5sNs1N(N21)/2I N,1

1 (s,1). The monic polynomialsPm(x)
@Eqs. ~B15! and ~B16!, Appendix B# are chosen to be
Pm(x)5xm. From integral~6.455! of @21#, which involves
an incomplete gamma function, we deduce the inner prod
@Eq. ~B11!# ^x2i ,x2 j 11& @Re~S!.0#:

^x2i ,x2 j 11&52E
0

1`

dx x2 j 1s expS 2
x2

2 D
3E

0

x

dy y2i 211s expS 2
y2

2 D
5

G~s1 i 1 j 1 1
2 !

s12i
FS 1,s1 i 1 j 1 1

2 ;
s

2
1 i 11;1

2 D ,

~13!

where F(•) is a hypergeometric function. Similarly@Eq.
~B8!#,

T~x2i !5E
2`

1`

dx x2i uxus21 expS 2
x2

2 D52i 1s/2GS i 1
s

2D .

~14!
ct

From Eqs. ~13! and ~14!, either using Gauss’s recursio
functions@21,25# or integrating by parts, we deduce the fo
lowing relations:

~s12i !T~x2i !5T~x2i 12!, ~15!

~s12i !^x2i ,x2 j 11&5^x2i 12,x2 j 11&1G~s1 i 1 j 1 1
2 !.

~16!

a. N odd. For N odd, Eqs.~15! and~16! and Eq.~A12! of
Mehta and Normand@15#, namely,

det@G~s1 i 1 j !# i , j 50, . . . ,N215 )
j 50

N21

j !G~s1 j !, ~17!

are used to expressDT from the second determinant appea
ing in Eq. ~B15!:

DT52~s1N21!/2GS s1N21

2 D
3detFG~s1 i 1 j 1 1

2 !

s12i
G

i , j 50, . . . ,~N23!/2

52s/2GS s

2D )
j 50

~N23!/2

j !G~s1 j 1 1
2 !. ~18!

From Eq.~B14!, we obtain finally forN52p11 @Re~S!.0#.

I 2p11,1
1 ~s,1!52~N1s21!/2

N!

@~N21!/2#!
GS s

2D
3S )

j 51

~N21!/2

j !G~s1 j 2 1
2 !D . ~19!

b. N even. For N even, using Eq.~16!, Eq. ~B16! becomes
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I N,1
1 ~s,1!5N!2N/2U UG~s1 i 1 j 1 1

2 !

s12i
U

i 50, . . . ,~N24!/2,j 50, . . . ,~N22!/2

]

^xN22,x& ^xN22,x3&¯^xN22,xN21&

U . ~20!
s

revi-
his
Denotingn5(N22)/2, we replace the last columnC(n) by
a linear combination of columnsC( j ) (0< j <n21):

C8~n!5C~n!1 (
j 50

n21

~21!n2 j S n
j D G~s1n1 1

2 !

G~s1 j 1 1
2 !

C~ j !.

~21!

The i th element ofC8(n) (0< i<n21) is

C8~ i ,n!5
G~s1n1 1

2 !

s12i S (
j 50

n

~21!n2 j S n
j D G~s1 i 1 j 1 1

2 !

G~s1 j 1 1
2 !

D ,

~22!

which is zero, as the sum in Eq.~22! is equal to

di

dxi F (
j 50

n

~21! j S n
j D xs1 j 11/2G

x51

5
di

dxi @~12x!nxs11/2#x51 .

~23!

The sole nonzero element,C8(n,n), can be calculated from
the Gauss relation @25# (b2a)F(a,b;c;z)1aF(a
11,b;c;z)2bF(a,b11;c;z)50, and from a relation which
can, for instance, be proven by recurrence,

n!F~11n,b;c;z!5(
j 50

n

~21!n1 j S n
j DF~1,b1 j ;c;z!

3S )
k51

n

~b1 j 2k!D , ~24!

yielding

C8~n,n!5
G~s1n1 1

2 !

s12n
n!FS n11,s1n1 1

2 ;
s

2
1n11; 1

2 D .

~25!

From this, integral~20! is finally found to be (N52p)
@Re~S!.0#

I 2p,1
1 ~s,1!52~N1s21!/2

N!

~N/2!!
GS s

2D S )
j 51

N/2

j !G~s1 j 2 1
2 !D

3S F„s/2,~12s!/2;~s1N!/2; 1
2 …

G„~s1N!/2…
D , ~26!

a form which differs from the form of the Mellin transform
found for oddN @Eq. ~19!# because of the last factor.

2. Calculation of IN,s
À

„s,1… for the GOE (N even)

As I N,s
2 (s,1)5sNs1N(N21)/2I N,1

2 (s,1), we calculate
I N,1

2 (s,1), which is nonzero only for evenN,
I N,1
2 ~s,1!5E

RN)k51

N Fdxk sgn~xk!uxkus21 expS 2
xk

2

2 D G
3 )

1< i , j <N
uxi2xj u. ~27!

It suffices to replace exp@2V(x)# by sgn(x)exp@2V(x)# †Eq.
~A26! of @15#‡ in the calculations of Sec. II C 1 to expres
integral~27!. The inner product̂x2i ,x2 j 11& becomes@Re~S!
.0#

^x2i ,x2 j 11&522E
0

1`

dx x2 j 1s expS 2
x2

2 D
3E

x

1`

dy y2i 211s expS 2
y2

2 D
52

G~s1 i 1 j 1 1
2 !

s12 j 1 i

3FS 1,s1 i 1 j 1 1
2 ;

s

2
1 j 1 3

2 ; 1
2 D . ~28!

The calculation then proceeds along the same lines as p
ously, interchanging the role of rows and columns. T
yields

det@^x2i ,x2 j 11&# i , j 50, . . . ,~N22!/2

5~21!N/2FS N

2
,s1

N21

2
;
s1N11

2
; 1

2 D
3 )

j 50

N/221 S j !G~s1 j 1 1
2 !

s12 j 11
D ~29!

and finally (N52p) @Re~S!.0#

I 2p,1
2 ~s,1!5~21!N/22~N1s22!/2

N!

~N/2!!
GS s11

2 D
3S )

j 51

N/2

j !G~s1 j 2 1
2 !D

3FF„~s11!/2,12s/2;~s1N11!/2; 1
2 …

G„~s1N11!/2…
G . ~30!

3. Mellin transforms

To summarize, the Mellin transforms@Eq. ~3!# of the de-
terminant distributions are obtained from
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MN
~1!1~s!5sN~s21!H I N,1

1 ~s,1!

2I N,1
1 ~1,1!J , ~31!

using Eqs.~19! and ~26! for odd and evenN, respectively,
and from

M2p
~1!2~s!5sN~s21!H I N,1

2 ~s,1!

2I N,1
1 ~1,1!J , ~32!

using Eq.~30! for N52p while MN
(1)2(s) is zero for oddN.

For b50,1,2 and N52p11, the integral of Eq.~10!
~1 case! can be alternatively written as

I 2p11,s
1 ~s,b!52Ns/2pN/2s@N~s21!1Np#

3 )
m51

N S G~11bm/2!G~s/21bm
~b!!

G~11b/2!G~ 1
2 1bm

~b!!
D ~33!

with Np5N1bN(N21)/2 and

b1
~b!50, bm

~0!50, bm
~1!5

1

2 bm21

2 c1 1

4
, bm

~2!5 bm2 c ~34!

~bm
(2) from @15#! (m>2). Equation~33! reduces as expecte

to a Mehta integral†Eq. ~17.6.7!, p. 354 of@2#‡ for s51. The
determinant distributionP2p11

(1) (D) given by Eq.~9! is finally
deduced from Eqs.~31! and ~33! with parametersbm

(1) as its
Mellin transform is proportional to a product ofG functions
whose arguments are linear ins †see below Eq.~4! and also
Eq. ~3.4! of @15#‡. Although the origin of Eq.~33! is under-
stood only for some integer values ofb, the question of its
validity for any nonintegerb ranging between 0 and 2 i
naturally raised where the unknown parametersbj

(b) (b1
(b)

50) would be assumed to be explicitly independent ofN as
in Eq. ~34!. We display in Fig. 1 theb dependence of the
parametersck(b)5bk

(b)2b/2 (k52,3) which are obtained
from a combination of a numerical calculation ofI 3,1

1 (s,b)
and Eq.~33!.

FIG. 1. Parametersc2(b)5b2
(b)2b/2 and c3(b)5b3

(b)2b/2
calculated numerically fromI 3,1

1 (s,b) @Eq. ~10!# and from Eq.~33!.
4. Determinant distribution

A general expression for the determinant distribution h
not been found forP2p

(1)(D) but the latter is in theory
uniquely determined by an inversion of its Mellin transform
It is worth calculating exact distributions forN52 and 3, as
they may be of interest in relation to physical properties
volving random matrices or random second-rank tensor
2D or 3D. It is possible to derive an exact density forN
52 by different methods. The distribution of the determina
D5H11H222H12

2 of a 232 GOB matrixHi j might, for in-
stance, be obtained from a convolution of the distributi
P2

(0)(D) given below Eq.~6! and ax-square distribution. A
simpler calculation, sketched in Sec. IV, uses the distribut
of the determinant of the associated fixed-trace ensem
@27# to yield

P2
~1!~D !5

1

s2&
expS D

s2D , D<0,

P2
~1!~D !5

1

s2&
expS D

s2D @12erf~A2D/s2!#, D>0,

~35!

where erf(x) is the usual error function@21#. Its moments are
given in Appendix C@Eq. ~C6!#. Monte Carlo simulation
results@Fig. 2~a!# are in excellent agreement with Eq.~35!.

For N53, expressingG0,3
3,0(zu•) ~@20#, p. 98! gives the

determinant distribution as

FIG. 2. Determinant distributionsPN
(1)(D) from Monte Carlo

simulations with 108 matrices~s51! for ~a! N52 ~circles! and 3
~crosses! and ~b! N54 ~empty circles! and 5~solid circles!.
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P3
~1!~D !5

1

s3pAp
G0,3

3,0S D2

8s6U0,
1

4
,
3

4D
5

1

ps3 F ~A2p!0F2S ;
1

4
,
3

4
;2

D2

8s6D24GS 3

4D
3U D

2s3&
U1/2

0F2S ;
1

2
,
5

4
;2

D2

8s6D1
8

3
GS 1

4D
3U D

2s3&
U3/2

0F2S ;
3

2
,
7

4
;2

D2

8s6D G . ~36!

For numerical purposes, it is worth mentioning that the
terminant distributions considered in the present paper
be calculated using Monte Carlo simulations to generate
G0,N

N,0(zub1 ,...,bN) function, as it is proportional to the distri
bution of the product ofN independent gamma random va

ables @the j th variable has a densityf j (x)}xbj
(b)

exp(2x)#
@19,20#. From the known asymptotic behavior of Meijer’sG
functions @20#, P2p11

(1) (D) varies as uDu(N21)(N23)/4N

3exp(2NuDu2/N/2s2) for largeD while it is a constant what-
everN for small values ofD, asb1

(b)50 @20#, p. 145.
Some determinant distributionsPN

(1)(D) are shown in Fig.
2. The momentŝDm&N

(b) of the determinant distributions ar
simply obtained from the Mellin transforms:

^D2k&N
~b!52MN

~b!1~2k11!, ~37!

^D2k11&2p
~b!52M2p

~b!2~2k12! ~38!
m

c
-

a

-
n
e

(^D2k11&2p11
(b) 50). Explicit expressions for the moments o

the determinant distribution are given in Appendix C.

III. POTENTIAL STATISTIC

The moment generating functionEN
(b)(t) of the distribu-

tion gN
(b)(V) of V5 ln uDu, the negative of the potentialF at

the origin ~Sec. I!, is related to the Mellin transform of the
even part of the determinant distribution@Eq. ~3!# by

EN
~b!~ t !5E

2`

1`

eVtgN
~b!~V!dV

52E
0

`

DtPN
~b!1~D !dD52MN

~b!1~ t11!. ~39!

@utu,1 in Eqs.~40! and ~41!#. The moments are then calcu
lated from ^Vk& (b)5@dkEN

(b)(t)/dtk# t50 , while the cumu-
lantskk

(b) of orderk @25# are deduced from the derivatives o
the cumulant generating function ln@EN

(b)(t)# at t50, kk
(b)

5@dk ln@EN
(b)(t)#/dtk#t50 The central moments of order 2 and

are equal to the cumulants of the same order,mk
(b)5Š(V

2^V& (b))k
‹5kk

(b) (k52,3).
Equation~31! extended tobÞ1 and Eqs.~33! and ~34!

yield the following cumulant generating function, whic
holds whateverN for b50 @Eq. ~5! andb52 †Eq. ~2.18! of
@15#‡ and only forN odd,N52p11, for b51:

EN
~b!~ t !5~2s2!Nt/2)

m51

N S G~ t/21 1
2 1bm

~b!!

G~ 1
2 1bm

~b!!
D . ~40!

For N even,N52p, E2p
(1)(t) is obtained from Eq.~26!:
E2p
~1!~ t !52t/2sNtFS 11t

2
, 2

t

2
;
N111t

2
;
1

2D G„~11t !/2…G„~N11!/2…

G~ 1
2 !G„~N111t !/2…

)
m51

p S G~ t1m1 1
2 !

G~m1 1
2 !

D . ~41!
es

l-

the
In the diagonal case, the mean^V& (0) and the variancem2
(0)

are proportional toN as expected for a sum of iid rando

variables, being respectively equal to (N/2)@c( 1
2 )

1 ln(2s2)#, where c(z) is the psi function@21,25#, and
Np2/8 as deduced from Eq.~40!. In that case, the asymptoti
distribution of uDu is a log-normal distribution from the cen
tral limit theorem@26#.

In the Hermitian and real-symmetric cases, the me
^V& (b) is

^V&~b!5
N

2
ln~2s2!2db1S N21

2 D ln 21S1~p!1de

3F2
1

2
cS N11

2 D1db1F1~N!G , ~42!

whereS1(p)5 1
2 c( 1

2 )1S j 51
p c( j 1 1

2 ),db1 is 1 for b51 and
0 otherwise,de is 1 if N is even and 0 otherwise, and
n

Fk~N!5Fdk ln F„~11t !/2,2t/2;~N111t !/2; 1
2 …

dtk
G

t50

.

The asymptotic mean̂ V&`
(b)52N( 1

2 1 ln 2) is deduced
whateverN and b from ^ ln uDu&5N^ln ulu&, where the mean
^ln ulu& is calculated from the asymptotic density of stat
r`(l), which is a Wigner semi circle@1–3# of ‘‘radius’’ 1,
r`(l)5(2/p)A12l2 ~ulu<1!, when s2 is scaled so that
2Nbs251. The large-N mean obtained with the latter sca
ing up to terms of orderO(1/N) from Eq.~12! and Appendix
D is

^V&~b!52N~ 1
2 1 ln 2!1v ~b!1OS 1

ND . ~43!

wherev (1)5(ln2)/2 andv (2)50.
The eigenvalue scaling obviously has no influence on

values of central moments and of cumulants of lnuDu for k
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>2. Equations~19! and ~41! for b51 and Eq.~40! with the
parametersbm

(2)5@m/2# for b52 @15# yield the cumulants

kk
~b!5

1

2k c~k21!S 1

2D1ak
~b!S (

j 51

p

c~k21!~ j 1 1
2 !D

1deF2
1

2k c~k21!S N11

2 D1db1Fk~N!G ~44!

for k>2, with ak
(1)51, ak

(2)5212k, where the polygamma
functions are defined byc (k21)(z)5dk ln@G(z)#/dzk, @c(z)
5c (0)(z)# @21,25#. Results of Monte Carlo simulations pe
formed with real-symmetric matrices are in very good agr
ment with the calculated values~Table I!. The asymptotic
variances deduced from Eqs.~44! and ~D6! are

m2
~1!~`!5 logN, m2

~2!~`!5 1
2 logN. ~45!

Equation~D7! gives asymptotic cumulants of orderk>3 in-
dependent ofN:

kk
~1!~`!5

122k21

2k c~k21!~ 1
2 !2~k21!c~k22!~ 1

2 !,

kk
~2!~`!5

2~k21!

2k21 c~k22!~ 1
2 !. ~46!

The cumulants of orderk>3 of

UN5
ln@~2Ae!NuDu#

Am2
~b!~`!

52
F2N~ 1

2 1 ln 2!

Am2
~b!~`!

are asymptotically equal to 0. The asymptotic distribution
UN is thus a standard Gauss distribution for 2Nbs251 but
the convergence is slow~Fig. 3!. Baker and Forrester@9#
have shown that the potential statistic in circular ensemb
also satisfies a central limit theorem asN→` with variances
~1/b!ln N ~actually valid for general rationalb at least@9#!
that are identical with those found here@Eq. ~45!#. Repulsive
interactions between eigenvalues and the resulting rigidit
the eigenvalue distribution produce a change of the width
the asymptotic Gaussian from being proportional toN1/2 for
uncorrelated eigenvalues forb50 to proportional to (lnN)1/2

for correlated eigenvalues forb51,2.

IV. SUMMARY AND EXTENSION TO OTHER RME’S

To summarize, the probability distributionsP2p11
(b) (D) are

TABLE I. Comparison of some calculated moments and cum
lants @Eqs. ~42! and ~44!, b51# with those obtained from Monte
Carlo simulations with 53105 and 23105 real-symmetric matrices
for N560 (s251/120) andN5101 (s251/202), respectively.

N ^V& (1) m2
(1) k3

(1) k4
(1)

Simulation 60 271.242 5.118 23.53 8.0
Calculation 271.2449 5.1310 23.5259 7.8688
Simulation 101 2120.160 5.639 23.54 7.4
Calculation 2120.1629 5.6518 23.5390 7.8695
-

f

s

f
f

P2p11
~b! ~D !5K2p11

~b! G0,2p11
2p11,0

3S D2

~2s2!N U0,bj
~b!, j 52, . . . ,2p11D , ~47!

b1
~b!50, bj

~0!50, bj
~1!5

1

2 b j 21

2 c1 1

4
, bj

~2!5 b j

2c
~@15# for b52!, for j >2. As shown in@27#, the distributions
found for the Gaussian ensembles can be further use
derive the determinant distributions of fixed-trace ensemb
~FTE’s! of random matrices of the same symmetry. Rose
weig and Bronk~see @2# and references therein! defined
fixed-trace ensembles by the condition that tr(HN

1HN)
5const with no other constraint~HN

1 is the Hermitian con-
jugate ofHN!. The latter constant is taken here as 1 witho
loss of generality. The probability densitiesFN

(b)(R) ~b
50,1,2! of rescaled determinantsR of such FTE’s,

R5NN/2F )
k51

N

lkG , ~48!

for which FN
(b)(R)50 for uRu>1 and the determinant dens

ties of the associated Gaussian ensembles are shown
related by@27#

PN
~b!~D !5

2

G~Np/2!
* uDu1/N

` FN
~b!~D/r N!r Np2N21 exp~2r 2!dr

~49!

for s51/& in Eq. ~1! andNp given above Eq.~34!. Equa-
tion ~35! ~b51, N52!, for instance, is derived from Eq.~49!
with F2

(1)(R)51/2A2(11R) for uRu,1. Conversely, the dis-
tributionsF2p11

(b) (R) are obtained from Eqs.~47! and~49! as
single MeijerG functions@27# namely,

-

FIG. 3. Distribution f (u) of u5(lnuDu2^V&(1))/Am2
(1) ~^V& (1)

andm2
(1) are given in Table I! from Monte Carlo simulations with

53105 and 23105 real-symmetric matrices forN560 ~empty
circles! andN5101~crosses!, respectively, and standard Gauss d
tribution (1/A2p)exp(2u2 /2) ~solid line!.
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F2p11
~b! ~R!5D2p11

~b! G2p11,2p11
2p11,0

3S R2Ubp

2
1

~ j 21!

~2p11!
, j51, . . . ,2p11

0,bj
~b! , j 52, . . . ,2p11

D .

~50!

Results of Monte Carlo simulations of the distributions of t
determinant of such FTE’s forN<11, to be reported in@27#,
which are in excellent agreement with the theoretical dis
butions Eq.~50!, as well as the results reported in Table I f
b51 which agree with Eqs.~42! and ~44! provide supple-
mentary confirmation of Eq.~47!.

To conclude, the distributions of determinants of diag
nal, real-symmetric, and Hermitian@15# random matrices
from Gaussian ensembles have complicated forms in m
cases. They are, however, conveniently represented by
Mellin transforms, which are known exactly for any finiteN
for b50, 1, 2. The asymptotic Gaussian distributions fou
for the potential statistic of the log gases associated with
GOE and GUE have variances (1/b)ln N identical with those
of the corresponding circular ensembles@9# and fixed-trace
ensembles@27#.

APPENDIX A: bj
„2…

From Eqs.~3! and~4!, the Mellin transformMN
(2)1(s) for

s real positive is proportional to the normalization consta
ZN of the eigenvalue distributionP2(l1 ,...,lN) of the uni-
tarily invariant RME:

P2~HN!}udet~HN!us21 exp@2tr~HN
2 !# ~A1!

named the generalized Gaussian ensemble in@13,14#. ZN is
calculated with the classical method of orthogonal polyno
als @2#. The structure of the Vandermonde determinant
used to reexpress the eigenvalue distributionP2(l1 ,...,lN),

P2~l1 ,...,lN!

5
1

ZN
expF2S (

i 51

N

l i
2D G)

j 51

N

ul j us21 )
1< i , j <N

~l i2l j !
2

5
1

N!
det~ANAN

T !, ~A2!

as a determinant where the elements of the matrixAN depend
on the considered polynomials†see Eq.~5.2.10! of @2#‡.
The orthogonal polynomials here are generalized Herm
polynomials @22#, p. 156 Hn

(m)(x) with m5(s21)/2, for
which

E
2`

1`

Hn
~m!~x!Hm

~m!~x!uxu2m exp~2x2!dx5hndmn ~A3!

with @22#

hn522nbn2c!GS bn11

2 c1 s

2D . ~A4!
i-

-

st
eir

d
e

t

i-
s

te

The elements ofAN are thenhn
21/2Hn

(m)(x)exp(2x2/2). As
monic polynomials arePn

(m)(x)522nHn
(m)(x), the identity

between the normalization constants that appear in the
previous expressions forP2(l1 ,...,lN) @Eq. ~A2!# yieldsZn

as proportional to the product)n50
N21hn . The parametersb j /2c

( j 51, . . . ,N) which are obtained from Eq.~A4! for j 5n
11 are equal to thebj

(2) @15#.

APPENDIX B: I N
„V…

†Eq. „11…‡

The Vandermonde determinant can be written as

)
1< j , i<N

~xi2xj !5det~xj
i 21!1< i , j <N

5det@Pi 21~xj !#1< i , j <N , ~B1!

wherePi 21(xj ) is a monic polynomial of degreei 21, that
is, with a coefficient of the leading termxi 21 of 1. The
integral

I N
~V!5E

RN)k51

N

dxk exp@2V~xk!# )
1< i , j <N

uxi2xj u ~B2!

is calculated for oddN with the method of alternate variable
@2#, whose principle is to integrate first over odd variabl
x2k11 @k50, . . . (N21)/2#. The resulting integral can be
expressed in terms of functionsw i(x) defined as

w i~x!5E
2`

x

Pi~ t !exp@2V~ t !#dt. ~B3!

Integrating with respect tox1 ,x3 ,...,xN , we write

I N
~V!5N! E

2`,x2,x4,¯,xN21,1`
det@mi j # i , j 50, . . . ,N21

3 )
k51

~N21!/2

dx2k exp@2V~x2k!# ~B4!

with x052`, xN1151`, and

mi ,2k5Pi~x2k!, ~B5!

mi ,2k115w i~x2k12!2w i~x2k! ~B6!

for 0< i<N21 and 0<k<(N21)/2. All second terms
in the odd-numbered columns@right member of Eq.~B6!#
are eliminated by successive column additions, result
in



1534 PRE 62R. DELANNAY AND G. LE CAËR
I N
~V!5N! E

2`,x2,x4¯,xN21,1`
)
k51

~N21!/2

exp@2V~x2k!#dx2k

3detU w0~x2! P0~x2!¯w0~xN21! P0~xN21! w0~1`!

]

wN21~x2! PN21~x2!¯wN21~xN21! PN21~xN21! wN21~1`!
U ~B7!
en

e

dd

-

t

ec-
We denote asT(Pi) the linear application

T~Pi !5w i~1`!5E
2`

1`

Pi~ t !exp@2V~ t !#dt. ~B8!

An expansion of the determinant in Eq.~B7! with respect to
the last column yields a sum ofN integrals:

I N
~V!5N! (

k51

N

~21!k21T~Pk21!Mk21 ~B9!

with

Mk215E
2`,x2,x4,¯,xN21,1`

Dk21

3 )
n51

~N21!/2

dx2n exp@2V~x2n!#, ~B10!

whereDk21 is the minor obtained after deleting thekth row
and the last column of the full determinant in Eq.~B7!. Us-
ing the symmetry and restoring an integration over indep
dent variables makes it possible to express everyMk21 with
the help of a Pfaffian of a skew-symmetric (N21)3(N
21) matrix @2,23#. To obtain a final compact expression, w
define an inner product of functionsf andg as

^ f ,g&5 1
2 E

2`

1`

dxE
2`

x

dy@ f ~y!g~x!2 f ~x!g~y!#

3exp@2V~x!2V~y!#. ~B11!

The inner product is zero whenf andg are either both even
or both odd. If one function is even and the other one is o
then
-

,

^ f ,g&5E
2`

1`

dxE
2`

x

dy f~y!g~x!exp@2V~x!2V~y!#.

~B12!

We define next monic skew-orthogonal polynomialsRi(x)
@2,14,23,24#:

^Rm ,Rn&5r kZmn

with

Zmn5H 1 if m52k, n52k11

21 if m52k11, n52k ~k50,1,2, . . . !

0, otherwise.
~B13!

The polynomials Rm(x) are even whenm52k while
R2k11(x) can be chosen to be odd. WhenPm is chosen as
Pm(x)5Rm(x), the last line of the antisymmetric matrix as
sociated withMk21 is zero for k,N and thusMk2150.
From results proven in@2,14,23,24#, the elements of the las
line are indeed 2̂RN21 ,Rm& for 0<m<N21 (mÞk21),
which is zero from Eq.~B12!. The only nonzero minor is
thereforeMN21 :

MN215~det@gi j # i , j 50, . . . ,N22!1/2

with gi j 52^Ri ,Rj&52r kZi j , that is, gi j 50 except for
g2n,2n1152g2n11,2n52r n for n50, . . . ,(N23)/2. Conse-
quently,

I N
~V!5N!2 ~N21!/2T~RN21!S )

k50

~N23!/2

r kD 5N!2 ~N21!/2DT .

~B14!

Using linear combinations of rows and columns of the s
ond matrix in Eq.~B15!, we deduce for oddN
DT5U ^R0 ,R1& ^R0 ,R3&¯^R0 ,RN22& T~R0!

^R2 ,R1& ^R2 ,R3&¯^R2 ,RN22& T~R2!

]

^RN21 ,R1& ^RN21 ,R3&¯^RN21 ,RN22& T~RN21!

U5U ^x0,x1& ^x0,x3&¯^x0,xN22& T~x0!

^x2,x1& ^x2,x3&¯^x2,xN22& T~x2!

]

^xN21,x1& ^xN21,x3&¯^xN21 ,xN22& T~xN21!

U
5U ^P0 ,P1& ^P0 ,P3&¯^P0 ,PN22& T~P0!

^P2 ,P1& ^P2 ,P3&¯^P2 ,PN22& T~P2!

]

^PN21 ,P1& ^PN21 ,P3&¯^PN21 ,PN22& T~PN21!

U .

~B15!
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The Pm polynomials that appear in the last matrix are co
strained to be monic polynomials of degreem that are even
polynomials whenm52k and odd polynomials whenm
52k11. WhenN is even,I N

(V) @Eq. ~B2!# is @2,14,15,23#

I N
~V!5N!2N/2U ^P0 ,P1& ^P0 ,P3&¯^P0 ,PN21&

^P2 ,P1& ^P2 ,P3&¯^P2 ,PN21&

]

^PN22 ,P1& ^PN22 ,P3&¯^PN22 ,PN21&

U .

~B16!

with the same constraints as above onPm polynomials.

APPENDIX C: MOMENTS OF THE DETERMINANT
DISTRIBUTION PN

„1…
„D…

For b51, even moments (k>1) are found from Eqs.~19!,
~26!, ~30!, and~37! to be

^D2k&N52p11
~1! 5s2Nk

2kG~k1 1
2 !

Ap
)
j 51

2k S G~ j 1N/2!

G~ j 11/2! D ,

~C1!

^D2k&N52p
~1! 5s2Nk

2kG„~N11!/2…G~k1 1
2 !

G„k1~N11!/2…Ap

3FS k1 1
2 ,2k;k1

N11

2
; 1

2 D
3)

j 51

2k S G„j 1~N11!/2…

G~ j 1 1
2 !

D . ~C2!

Odd moments, which are nonzero only for evenN, are cal-
culated from Eqs.~26!, ~30!, and~38! (k>0):

^D2k11&N52p
~1! 5~21!N/2sN~2k11!3

2kG„~N11!/2…G~k1 3
2 !

G„k1~N13!/2…Ap

3FS k1 3
2 ,2k;k1

N13

2
; 1

2 D
3 )

j 51

2k11 S G„j 1~N11!/2…

G~ j 1 1
2 !

D . ~C3!

The variancesVN
(1)5^D2&N

(1)2(^D&N
(1))2 are calculated from

the previous moments:

VN52p11
~1! 5

4s2N~N12!

3p FGS N12

2 D G2

, ~C4!

VN52p
~1! 5

s2NN~2N15!

3p FGS N11

2 D G2

~C5!

Their ratio tends to 1 whenp→`. For N52, the moments
can be calculated directly from Eq.~35!, using lemma 6.1 of
@28#:
-
^Dm&2

~1!5~21!m
m!s2m

Ap
H (

n50

m

~21!n
G~n11/2!

n! J .

~C6!

That is,

^Dm&2
~1!'~21!m

m!s2m

A2

for large m. Moments of the determinant distribution a
given by Mehta and Normand@15# for the GUE case and

^D2k&N
~0!5~2s2!Nk

GN~k11/2!

pN/2 ~C7!

for b50 for anyN.

APPENDIX D: ASYMPTOTIC BEHAVIOR
OF Sk

„b…

„p… „pÄ bNÕ2c, bÄ1,2…

In addition to terms discussed below, the mean@Eq. ~42!#
and thekth order cumulant@Eq. ~44!# may include a sum
2(1/2k)c (k21)@(N11)/2#1db1Fk(N), where 2c (k21)@(N
11)/2#/2k is 2 1

2 ln(N/2)1O(1/N) for k51 and
@(21)k21(k22)!#/2Nk211O(1/Nk) for k>2 @25#, while

Fk~N!5Fdk ln F„~11t !/2,2t/2;~N111t !/2; 1
2 …

dtk
G

t50

is O(1/N) for largeN. The asymptotic behaviors of the mea
@Eq. ~42!# and the cumulants@Eq. ~44!, k>2# are then ob-
tained from that of

Sk
~b!~p!5

1

2k c~k21!~ 1
2 !1ak

~b!S (
j 51

p

c~k21!~ j 1 1
2 !D

~D1!

with ak
(1)51, ak

(2)5212k. For k51, c(x11)5c(x)
11/x @25# allows the deduction

(
j 51

p

c~ j 1 1
2 !5pc~ 1

2 !2p1~2p11!S (
m51

2p
1

m
2

1

2 (
m51

p
1

mD .

~D2!

From @21,25#,

(
m51

n
1

m
5C1 ln n1

1

2n
1OS 1

n2D ,

where C'0.577 21 is the Euler constant, and we dedu
finally that

S1
~b!~p!5

~2p11!

2
ln p2p1OS 1

pD . ~D3!

From @25#,

c~k21!~ j 1 1
2 !5~21!k~k21!!2kF (

m5 j

`
1

~2m11!kG ,

~D4!
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and we obtain

(
j 51

p

c~k21!~ j 1 1
2 !52 1

2 c~k21!~ 1
2 !1~21!k~k21!!2k21

3S (
m50

p
1

~2m11!k21D
1~21!k~k21!!2k21~2p11!

3S (
m5p11

`
1

~2m11!kD . ~D5!

The second term in the right-hand side of Eq.~D5! is ln p

2c(1
2)1O(1/p) for k52 and 2(k21)c (k22)( 1

2 )1O(1/p)
for k>3, while the contribution of the third term, which is o
the order of (21)k(k22)/pk22 for largep, can be neglected
in the expansion considered except fork52. Finally,
S2
~1!5 ln p111C12 ln 22

p2

8
1OS 1

pD ,

~D6!

S2
~2!5 1

2 ln p1
11C12 ln 2

2
1OS 1

pD ,

and

Sk
~1!~p!5

122k21

2k c~k21!~ 1
2 !2~k21!c~k22!~ 1

2 !1OS 1

pD ,

Sk
~2!~p!5

2~k21!

2k21 c~k22!~ 1
2 !1OS 1

pD ~D7!

for k>3.
s
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