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Damped stochastic system driven by colored noise:
Analytical solution by a path integral approach
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We consider the nonlinear non-Markovian stochastic process associated with the damped nonlinear dynami-
cal system driven by Ornstein-Uhlenbeck noise. An approximate Fokker-Planck-type equation governing the
above stochastic process is derived using the path-integral approach. The stationary probability density func-
tion (SPDH of the above process is then computed using the matrix continued fraction method. The SPDF
compares favorably with the corresponding digital simulation results obtained by us.

PACS numbd(s): 05.40—a

I. INTRODUCTION When the noise driving a SDE is &correlated white
noise, i.e.,(&(t)&(s))=2D5(t—s), whereD is the noise
Stochastic differential equatiofSDE’s), also known as  strength, the solution procezét) is a Markov process. Mar-
Langevin equations in physical literature, play an importantov processes are well described by Fokker-Planck equations
role in modeling a variety of stochastic phenomena occurringFPES [2]. However, noise encountered in reality has a non-
in physics, chemistry, engineering, biology, and medicinezero correlation time, and hence is called colored noise. Col-
[1-3]. In condensed-matter physics, many problems includgred noise is modeled quite well by the Ornstein-Uhlenbeck
ing superionic conductiofd], soliton dynamicq3], diffu-  (oy) process, which is a Gaussian Markovian prodeds.
sion of atoms at crystal surfacgs], phase-locked loop de- For this case, the two time correlation function &) is
vices [2], a driven Ge p.hotoc'onductcﬁﬁ], nematic'liquid given by (&(t)&(s))=(D/7)exp(=|t—s|/7), whereD is the
crystals[7], and superfluid heliunig] can be described by pgise strengthris the noise correlation time, and the angular
SDE's. Dye laser$9], ring-laser gyroscopefsl0], and opti-  prackets represent ensemble averaging. When the noise driv-
cal computing deviceElL1] are some of the examples in op- g the SDE is colored, the nature of the stochastic process
tical physics modeled by SDE'’s. Reaction-rate thefd]  pecomes non-Markovian. Standard Fokker-Planck tech-
and photochemistrj13] are two of the examples in chemis- nigues are not applicable for non-Markovian processes. The
try described by SDE's. In engineering, one encountergy,dy of nonlinear stochastic systems driven by colored noise
SDI_E’s while modeling Josephson junctioft3], electro_mc has been undertaken by a number of investigatforsa re-
oscillators[14], and nuclear reactorisl5]. The human im- e\, please see ReMB]). Most of the theoretical approaches
mune systenj16], genetic model$17], neuronal modeling  proposed so far consider the overdamped limit, and try to
[18], the motion of organisms like cells or bacterfaS] and  gescribe the non-Markov process using an approximate FPE.
transport phenomena in proteif20] are some of the bio-  sych Fokker-Planck approximations arise as a result of using
logical systems satisfactorily described by SDE's. ~ fynctional calculug22], cumulant summatiofi23], projec-
We consider the SDE describing the Brownian motion oftion operator techniqu§24], the matrix continued fraction
a particle of unit mass in a one-dimensional potertlék) method,(MCF) [2,25], and the path integrd26—29 tech-

described by the Langevin equation nique. In particular, the path integral method has proven to
be a good technique in the weak noise limit. The path inte-

= — yx— Ux) +E(Y) 1) gral method has yielded good results in the study of an over-

dx ' damped bistable potential driven by OU noise for important

statistical quantities like the mean first passage time and the
where x is the position of the Brownian particley is the  stationary probability density functiof8PDB [30]. For the
damping coefficient, and(t) is the noise. In Eq(1) over-  case of finite damping, the Langevin equation can be written
dots represent derivatives with respect to time. as a three-dimensional Markovian process. An analytical
treatment of this equation is extremely difficult because of its
following characteristics: (@) nonlinearity, (b) non-
*Department of Electronics and Communication Engineering, In-Markovicity, and (c) lack of detailed balance. Apart from
dian Institute of Technology, Guwahati 781001, India. Electronicsome analod31] and digital[32] simulation studies, there
address: chitra@ee.iitd.ernet.in has been very little analytical work dealing with the problem
"Electronic address: tgvenky@ee.iitm.ernet.in of a damped stochastic system driven by colored noise.
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Fronzoniet al. [33] used projector-operator technique to gpP(x, v,t) J
obtain an approximate, nonlinear Fokker-Planck-type equa—— =~ 7 P(X,»,) +U"(x) ——P(x,»,1)
tion for a colored noise driven damped bistable system.
D [t
—f ds
T Jo

Fronzoniet al. computed the SPDP(x), and compared the 2
t—s)| [~
xexr{—(T} f ) J DL&(t)PLE(D]S((1)

14
theoretical results with their digital and analog simulation +75[”P(X’V’t)]+

results. Recently, the authors of RdB4] considered a
Langevin equation driven by colored noise with an inertial
term, and derived the extremal action analytically using the
path integral method. The present paper proposes an approxi-

JdvoX

mate theoretical solution to the colored noise driven stochas- ox(t) d [D [t
. NP . : ) —X)8(v(t)—v) === |+ -=|— | ds
tic system with finite damping. We derive an approximate SE(s)| ave| T o

FPE for the above process using the path integral technique.
We also calculate the SPDF of the colored noise driven Xex;{— (t_s)“_f DLEHIPLED)]
damped stochastic system. T _

The paper is organized as follows: In Sec. Il, we derive an
approximate FPE using the path integral method. We also X S(x(t) = x)8(w(t) — v) ov(t)
derive effective diffusion coefficients associated with the 0&(s)
FPE using the steepest descent technique. In Sec. Ill, we use
the MCF method and derive a formula for calculating theln EdQ. (4), [_J represents the path integral over
SPDF. In order to validate our theoretical results, in Sec. IV&(t),D[£(t)] is the measure for path integration, and
we do a case study of a damped bistable potential driven b§f[£(t)] is the probability of occurrence df(t) realization.
colored noise. In our case study, we first numerically com- Our next step is to evaluate the response functions
pute the minimal action patfMAP), and then compute the X(1)/6&(s) and év(t)/ 6¢(s) in Eq. (4). We use the results
effective diffusion coefficients present in our approximatePresented by Ramirez-Piscina and Sancho in R&] for
FPE. Next the SPDF of theprocess is calculated and com- our purpose. These auth_ors c_onS|dered a mu!tlva_rlable Sys-
pared with that of corresponding digital simulation results.teM driven by an OU noise given by stochastic differential

. . . ion
Section V contains our conclusions. equations

- 4

0a(1) = v4(a(1) + G (A1) €,(1), 5

II. APPROXIMATE FOKKER-PLANCK EQUATION: where

PATH INTEGRAL METHOD
(£.(1))=0, (6a)

In this section we derive an approximate FPE governing
Eqg. (1) using the path integral technique. We start with theand
exact master equation for E() obtained by using the func- b
tional derivative techniqué22,35,38. The master equation _“n .
is [see Eq(3.1) of Ref.[33]] (€u(DE(9) Ty Our XN L S|/T")' (6b)

For Egs.(5) and(6), the response function matriX(t,s)

P(X,v,t) 9 with elementsR,,4(t,s) =[ 69,(t)/ 6§5(s)] was derived in
a; : = —{8x()=x) 8(u(1) = »)) (20 Ref.[37]to be
R(t,s)=T exp[ J ds(W-H) g(s), (7)

J J Jd
=—v— +U’'(x) — +y— . . . . L
Y ox PO D +UX) Jdv PX.».1) yav[vP(X,v,t)] whereT is the time-ordering operator amgdis a matrix with

elementsy,,,(q). W andH are matrices with elements

# [D [t (t—s)
- am{? JodseXF{— TK S(x(t) —x)8(w(t) .
2 WCY,BMV:aq_a 5,81/1 (8)
Ox(t) Jc |D [t (t—s) .
)5( (t) ) 5V(t)> (3) HaﬁMV:E 531/50'- (9)
) 8(0(1) — vy N |
oE) In order to use the above results of RE37], we first

convert Eq.(1) to two-dimensional equations:

The ensemble average represented by the angular brackets X=v, (103
() in Eq. (3) can be replaced by the equivalent path integral
notation[22] v=—U"(X)— yr+&(t). (10b)
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For our system, it can be shown that the response function t D t
matrix is —v)f ds exr{ J(r 1+ y)dr (15
OX(t) . o
0 5E(9) In order to do the path integration in Ed.5), we use the fact
R— _ (119  that J-DLEMIPLED]=/"FDIX()IPIX(t)]. The path
- 0 ov(t) probability P[ £(t)] for the OU process under consideration
SE(s) over the time interval0}) is given by[27]
Similarly, g, W, andH are given by =1 [t . 5
: PLemTxexd o [ dutew+Ew ). (6
0 0
9= : (11b)
= |0 1 Whenx(t) and &(t) are related through Edql), we have
0 1 S[x(1)]
= : 110 P[X(t)]“J[X(t)]eXD( - ) 17
: [—U"(x> ~y o D
0 0 when actiong x(t)] is given by
- :[o 0/ (119 t
SIx(t)]= }—J dt[{X+ yX+ U’ (X)}2+ 72{X+ yX
Keeping terms only up to first order in<s) in Eq. (7), it 0
can be shown that + U”(x)k}z]. (18)
0 (t—>s) i ) )
R(t,s)= , (12 J[x(t)] is the Jacobian of transformation from th@) real-
0 1-9(t-s) ization to thex(t) realization over the same time interval
(0,1).
0 expjtds—l In the limit D—0, P[x(t)] given in Eq.(17) reaches a
s maximum when actior§ x(t)] is minimum. Thus, in the
~ t . 13 limit D— 0, the major contribution to the path integral arises
0 expf —vds around the MAP which minimizes the actiof x(t)] in
s reachingx(t) =x from x(0). The condition for minimizing
Now, comparing Eqs(11a and(13), we have the action is
o x(1)]
x(1) - (19
5§(s expf ds—1 (149 SX(t)
and For § x(t)] given by Eq.(18), the condition given in Eq.
(19) yields the fourth order nonlinear ordinary differential
equation iny [34]:
—expf (14b
55(5) U12_y272+ 2Urry2+y2(y72+ 2yy/r)
Substituting Eqs(14) into Eq. (4), we obtain =72 —y2(y?y' 2+ 2y%yy"+ 2yyU" —U"?)
JP X, ,t J J +2 2 2 //U//+ /ZU//+2 /U///_l_ 2U////)
—(atv )=—vaP(x,v,t)+U'(x)ﬁ—P(x,v,t) vy Uy R
14 +y2(9y2y712+yr4+ l6yy12yrr+ 12y2yrym+2y3ymr)}.

+ y%[vP(x,v,t)] (20

The MAP is the solution of Eq.20) with suitable boundary
conditions. In Eq(20), y represent and dashes represent
DLEDIPLE)18(x(1) derivatives with respect tg.
Let us now consider the two terms

—X)5(V(t)_”)£dsgexr{ Lt_ Tldr} f;dsgex;{ Lt— 7 dr expf:dr—l}

t
X expLdr —1} and

&&X

2
+%j_ f D&Y JPLE(L)]S(X(t) —x)d(w(t) f;dsgexr{—ﬁ(rl—i- y)dr}
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in Eq. (15), and invoke the steepest-descent approximation §p(x,v,t) J J
[26], which is valid in the limitD—0. According to this T TV P(X,V,t)+£
approximation, we evaluate the above terms along the MAP

P
yv+ a—X{U(X)

and take these terms out of the path integral. On performing 9?

the remaining path integral in Eq15), they simply yield +D1(X)} P(X,2,1)+Da(X) -5 P(x,1,0).
P(x,v,t). Therefore, we propose the effective diffusion co-

efficients in the smalD limit as (24)

t Now let us consider a damped stochastic system driven by
expf dr—-1 (218 white Gaussian noise. Such a system is described by the
s two-dimensional equations

t D t
fds—exp{f — 7 dr
0 T s
t D t
fds—exp{—J (7~ 1+ y)dr
0 T s

where the above two terms are evaluated along the MAP. w¢here
now go ahead and simplify expressii) as follows.

Let z(s) and w(r) represent the values of along the (&(t))=0 (269
MAP at timess andr respectively. Lety(z) andy(w) rep-

and
X=v, (258

, (21b p=—U"(X)— yr+&(1), (25b

resent the velocity variablgalong the MAP, defined by Eq. and

(20) at the spatial pointz and w, respectively. Using the

relationsy(z) =dz(s)/ds and y(w)=dw(r)/dr in expres- (&(1)é(s))=2D4(t—s). (26b)
sions(21), we change the time variablssandr into space

variablesz and w, respectively. Now the diffusion coeffi-  The FPE describing the system given by E2p) reads

cients given by expressioiig1a and(21b) can be written as  [2]

b _Jx(t> dz D J’X . dw x dw 1 JP(Xx,v,t) d d d
1(x)= x<o>_y(2) 7ex . T _y(w) exp z_y(W) T TV P(x,v,t)+ 7 yv+ 5U(x) P(x,v,1)
(229 2
and +yvg, 52 P(x,v,t), (27
D,(x)= Jx(t)ﬂ Eex _ JX(TlJr),)d_W , where v, =D/y= kT is the thermal velocity. We com-
x0Y(2) T z y(w) pare the expressions given by E4284) and (27), and find

(22 that they are analogous. The teftd(x)+D,(x)} in Eq.

(24) is analogous to the terd(x) in Eq. (27). The term

D,(x) in EqQ. (24) is analogous to the termvfh in Eq. (27).
Risken[2] applied the MCF method to the FREQ. (27)]

to derive the SPDF analytically as follows. The SPDF in

respectively.
Substituting these termi3,(x) andD,(x) given by EQs.
(229 and(22b) into Eq.(15), we obtain

IP(x, 1) P P position is related to the first expansion coefficient of the
A "(X) — Brink s hi hy th h
- Vax P(x,v,t)+U’(X) > P(x,v,t) rinkman’s hierarchy throug
e P(x)=exf —sU(X)/ v]Co(X). (28)

J
+ 7% vP(X,v,t)+ Toox D1(X)P(x,v,t)

Brinkman'’s hierarchy for the coefficien&,(x,t) (C,=0 for

92 n<0) is given by the set of equations
+ WDZ(X) P(x,v,t). (23
aCp, «
This is our effective Fokker-Planck equatiéBFPE with gt —nBCy-1-nyCy=Vn+1DChiq, (29

effective diffusion coefficientd(x) and D,(x) given by
Egs. (229 and (22h), wherey(z) and y(w) represent the \where
velocity variabley along the MAP, defined by E@20) at the
pointsz andw, respectively. 9 dU(x)
D= Vi T € T dx Vin (30

Ill. STATIONARY PROBABILITY DENSITY FUNCTION

In this section we calculate the SPDF for damped stochasand
tic system driven by OU noisfEq. (10)]. We start with our
approximate Fokker-Planck-type equation given by 8), A i _ dU(x)
o ) D= vy (1—-¢) (3D
and rewrite it as follows: IX
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In the stationary state, a general solution of &9) is easily
obtained for the case where the probability currenk idi-
rection integrated over the velocities vanishes, i&.=0.
This solution is given by

DC,=0, (32

Co(x)~ex — (1—&)U(x)/ ], (33

and C,=0 for n=1. Substituting Eq.33) into Eg. (28),
Risken obtained
P(x)=Nexg —U(x)/v&]. (34)

Using the analogy between our EFPE and &7), and fol-

DAMPED STOCHASTIC SYSTEM DRIVEN BY COLORED. ..
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U (;v)

A 4

lowing exactly the above-mentioned steps of Risken, we can

derive the SPDF for our EFPE. For our EFAE ), D, and
D become

D(x)
P(x)=exg —e{U(x)+Dy(x)} 5 Co(x),
(39
(Dz(x))llza d{U(X)+D1(X)}/ (Dz(x) vz
D= ——e ,
Y JX dx Y
(36)
. D 1/2 J
D:( 2%) (Ao
d{U(X)+D1(X)}/ (Dz(x))m
X , (37)
dx v

FIG. 1. The bistable potential.

With this approximation our stationary probability density
function can be obtained by substituting E¢0) into Eq.
(35) as

F{ /Dz(X)}
P(x)=Nexg —{U(x)+D(x)} 5| (41
where
% -1
N:H exp[—{U(x)JrDl(x)}/ Dzix)}dx]

(42

is the normalization constant.
With regard to our approximatiopdD,(x)/dx~0], we

which are obtained by substituting the corresponding analofound in our numerical computation d,(x) and D,(x)

gous terms in Egqs28), (30), and (31). For our EFPE, Eq.
(32) becomes

DZ(X) 1/23
( Y ) 54‘(1_8)
1/2
><d{U(x>+Dl<x>}»/(Dz<x>) }CO:O_
dx y
(38)
Solving for Cy, we have
d
U0 +D1(0}
Incoz—y(l—s)f D,(x) dx. (39

Evaluation of the integral in Eq39) is computationally for-

over the region—2<x<2 (please see Sec. )\that D,(x)
indeed varies slowly witkx as compared t®4(x), thus sup-
porting our above approximation. Therefore, we propose Eq.
(41) as the approximate SPDF for the solution process of
one-dimensional damped stochastic system driven by OU
noise under the condition thf#D ,(x)/dx=~0].

IV. CASE STUDY: BISTABLE POTENTIAL

In order to validate our above theory, we take up the case
study of damped bistable system driven by OU noise. The
bistable potential shown in Fig. 1 is given by

U(X)=— 5+ —.

2 43

x=—1 andx=+1 are the two minima of the bistable po-
tential.

bidding. However, it is observed thatllfy(x) happens to be g4 the case of bistable potential, our approximate FPE be-

a slowly varying function ok, we can takéD,(x) out of the

integral and evaluate the rest of the integral. That effectively

means that under the conditioiD,(x)/dx~0, we obtain,
from Eq. (39),

Da(x)

Co(X)NeXF{_(1_8){U(X)+D1(X)}/ Y

(40

comes Eq(23), with

U’ (x)=—x+x5. (44)

A. Numerical computation of MAP

In order to compute the effective diffusion coefficients
D,(x) andD,(x) given by Eqs(22), we have to first evalu-
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theoretical —-
simulation ----

0.025 |~

(a) -

0.015 -

P{x)

0.005 -

0.025 T T

theoretical —
simulation ----

()

0.015

P(x}

0.005

FIG. 2. (@) The SPDF of our theoretical results computed using (d) (solid lineg is compared with our digital simulation results
(dashed lingsfor D=0.2, y=3.5, andr=0.2. (b) The SPDF of our theoretical results computed using (&d). (solid line9 is compared
with our digital simulation result&dashed linesfor D= 0.3, y= 3.5, andr=0.2.(c) The SPDF of our theoretical results computed using Eq.
(41) (solid lines is compared with our digital simulation resulidashed linesfor D=0.45, y=3.5, andr=0.2.

ate the velocityy(x) along the MAP. In order to obtain the t—. For the case of bistable potential we then haye
MAP, we need to solve the fourth order, nonlinear, ordinary—«~)=x, x(t=0)=+ 1 for 0sx<c, andx(t=0)= —1 for
differential equation given by Eqg20) numerically with suit- —o<x<0.

able boundary conditions. The MAP is that path which mini-  Numerical solution of Eq(20) requires specifying four
mizes the actiong x(t)] involved in reaching the point boundary conditions. Two of these boundary conditions are
x(t)=x from x(0). It is valid to assume the Brownian par- y(x=—1)=0 andy(x=0)=0, and they follow from the
ticle to be at rest at the stable poifto whose basin of at- condition that the Brownian particle starts and finishes at
traction x belongs for a long time, before an optimal fluc- rest. The remaining two boundary conditions are specified as
tuation takes it tox[38]. Sincex(0) is a stable point, the the values of the derivatives at the end points, y&(x=
MAP becomes time-translational invariant. Therefore we let—1) andy’(x=0) [34]. We obtain these boundary condi-
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0.018 T T

T T

theoretical ——
simulation ---- °

0.016 }-
()

0.014 |

0,012 -

P(x}

0.008 |-

0.006 -

0.004

0.002

FIG. 2. (Continued.

tions by linearizing the sixth order nonlinear ordinary differ-y at x=—1.01, we takey(x=—1.01)=—y(x=—0.99).
ential equation irx(t), given by Eq.(19). The linearization This is due to the symmetry of the solution near the mini-
is done around the minimum and the maximum points of thenum of the bistable potential, as the bistable potential is
bistable potential. This lengthy procedure of evaluating thealmost parabolic at the minimum point. The magnitudes of
boundary conditions is deferred to the Appendix A. At they’ y” andy” atx=—1.01 are also assumed to be the same
end of the procedure described in the Appendix A, we obtairyg their corresponding magnitudesxat —0.99. The sign of
the boundary conditiony(x=—1)=0, y(x=0)=0, y’(X  y atx=—1.01 is taken to be negative gs<0 for —o<x
=—1)=N\g, andy’(x=0)=X\,, where\, is that eigenvalue ~_1 The signs ofy’, y”, andy” at x=—1.01 are held

which E real, positlive anhq Eag the Ismalles’g magncijtur?e: af:‘gositive, which is the simplest assumption made to keep the
Az Is that eigenvalue which is real, negative and has t ign of y negative throughout the region2<x<-1. As

smallest magnitude. such the MAP calculation is mathematically nonuniform at

The fourth order nonlinear ordinary differential equation . o
given by Eq.(20) with four boundary conditions specified at the pointsx=—1 and+1. As a result the peaks of the prob-

the starting and the ending points is known as a two poin bility distribution in our figL_Jres show r_10tches and _bumps.
boundary value problem. We solve the two point boundary’V€ thus solve Eq20) numerically, and find the MAP in the
value problem given by Eq20) using the relaxation method "€9i0n —2=<x=0, enabling us to calculate the diffusion co-
[39]. Good initial guesses are the secret of efficient relax£fficientsDy(x) andD(x) over this whole region.

ation methods. No initial guess for the MAP of an under-

damped colored noise driven bistable system is availdble B. SPDF

our knowledgée Therefore we make use of the MAP for an
overdamped colored noise driven bistable system in th
small 7 limit given by Eq. (15) in Ref. [30] for our initial
guess. Keeping terms up to the orderdin Eq. (15) of Ref.

The diffusion coefficient®(x) andD,(x) calculated in
Sec. IVA are used to compute the SPDF given by @&4).
We compute the SPDP(x) for x<0 for various values of
[30], we have,y=U’+272U'2U". We use thisy as the D, % and_q- using Eq.(41). SPDF’s in the rangg>0 are
initial guess in our numerical procedure for the calculation ofObta'ned _|mmed|ately from the symmetﬂ?(—_x) =P(x),
the MAP[Eq. (20)]. thu; obtainingP(x) for —2=<x<2. Fo_r comparing our the-
For finding the MAP in the region of from x=—1 to oretical results, we also pgrform a digital simulation fc_)r the
—2, we treat the fourth order, nonlinear, ordinary differentialS8me sets oD, y, and 7 using the second order algorithm
equation given by Eq(20) as an initial value problem. We developed by Fox40], and adapted by ugFor details,
solve Eq.(20) by applying fourth order Runge-Kutta method Please see Reff32]) for an OU noise driven damped bistable
[39]. We cannot initialize our numerical computation proce-System. In order to obtain the normalized SPDF given by Eqg.
dure atx=—1, since the values of and all its higher de- (41), we have to calculate the normalization constdigiven
rivatives are zero at this point. This makes the initial value ofoy Eq. (42). SinceD,(x) and D,(x) have been computed
the function given by Eq(20) mathematically indeterminate through our numerical procedure only over the limited range
atx=—1. So we take the starting point:at —1.01, which —2<x=<2, we are unable to compul¢ In order to account
is very close to the minimum= — 1. For the initial value of for the unknown normalization constant, the peak of the un-
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FIG. 3. (a) The SPDF of our
theoretical results computed using
Eq. (42) (solid lineg is compared
with our digital simulation results
(dashed lines for D=0.3, vy
=5.0, andr=0.2. (b) The SPDF
of our theoretical results com-
puted using Eq(41) (solid lineg
is compared with our digital simu-
lation results(dashed linesfor D
=0.3, y=5.5, andr=0.2.

normalized theoretical SPDF is made to coincide with themalizing constant It is seen from Figs. @)—2(c) that the

lation.
In Figs. 2—4, the value of the SPDF(x), calculated

peak of the normalized SPDF obtained through digital sSimu-SPDF curve becomes less peaked with increaBirag fixed

v and 7. This behavior of the SPDF curve is in qualitative

agreement with the conclusions drawn from digital simula-

using our approximate FPE as well as through digital simution. In Figs. 2b), 3(a), and 3b), it is observed that with
increasingy at fixedD and 7, the SPDF curve becomes more

lation, is plotted against for various values oD, y, and .
In Figs. 2a)—2(c), the value of our SPDRP(x) is plotted
againstx for various values ob with fixed v and . In Figs.
3(a) and 3b), we plotP(x) againstx for various values ofy
by fixing D and 7. In Figs. 4a) and 4hb), we plot P(x)
againstx for different values ofr, keepingD and vy fixed.

ably well with the digital simulation result$ut for the nor-

peaked, establishing complete agreement with the inference

drawn from the digital simulation results. In Figgap 4(a),

and 4b), we note that the peak of the SPDF curve increases

with increasingr at fixedD and vy, showing exactly the same

behavior as in the case of digital simulation results. It is thus

Figures 2—4 show that our SPDF curves coincide favorseen that the SPDF obtained through our approximate FPE is
in good agreement with the corresponding digital simulation
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x (dashed lines for D=0.2, vy
=3.5, andr=0.4. (b) The SPDF
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result. done for largerr (which are not reported hereve note that

With regard to the effectiveness of our theoretical predic-our theoretical predictions are better only wheis small.
tion with a change in the parameters, we can draw the fol-
lowing conclusions. From Figs(&-2(c), it can be seen that V. CONCLUSIONS

as D—0 our theory follows our digital simulation more _ _ _
closely. This can be inferred from the fact that the theoretical This paper has concentrated on developing an analytical

SPDF coincides better with the digitally simulated SPDF atsolution to the problem of damped stochastic system driven
x=0 for smallerD, keeping in mind that the two SPDFs are by colored noise. We briefly summarize the procedure
made to coincide at the peaks for the sake of normalizatioradopted by us. We derive our EFPE starting with an exact
From Figs. 2b), 3(a), and 3b), we note that our theoretical master equation for the probability density in position and
predictions are not affected appreciably with a changeg.in velocity space obtained by using the functional derivative
From Figs. 2a), 4(a), and 4b), and from a comparison of technique. In the limiD— 0, the major contribution to the

SPDF obtained through digital simulation with our theory path integrals occurring in the EFPE arises around the MAP,
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which minimizes the action of the Brownian particle in , 2 y2

reaching the maximum of the potential. Using the MAP, the X*'=—U"X+ ;zU U= %= 2U"x"? —U"U"%?~U"%%
effective diffusion coefficient® ;(x) and D,(x) associated

with the EFPE are derived. We find that our EFPE is analo- 1 1

gous to the FPE describing a damped stochastic system +—2X'U+ U5+ y2XY + yU"™ %3+ 3yU" k&
driven by Gaussian white noise. This analogy is used along

with the MCF method 2] in obtaining the formula for the —U""x*—6U"" x%%—3U"%%— 4U"" XX (A1)
SPDF. :

Our proposed theory is validated by taking up the casévherex, %, X, x'*, x“, andx"' denote first, second, third,
study of damped bistable system driven by OU noise. Thdourth, fifth, and SIXth order derivatives afwith respect to
MAP is computed by solving a fourth order, nonlinear, ordi- time.
nary differential equation using a numerical method impos- BY letting
ing suitable boundary conditions. The boundary conditions _
are obtained by linearizing a sixth order, nonlinear, ordinary “* ™
differential equation. Effective diffusion coefficieni;(x)
andD,(x) are calculated in the range2<x<2 using the Eq. (A1) can be reduced to a set of six first-order differential
MAP. The SPDF is then computed using our theoretical fOl’-equations given below:
mula for various values dD, y, andr.

Xo=X, Xzg=¥X, X4=X, Xg=X7?, Xg=x,
(A2)

For the purpose of comparing our theoretical results, we X1=Xo=f1(X1,X2,X3,X4,Xs5,Xs),
perform a digital simulation of the damped bistable system
driven by OU noise using Fox’s second order algorithm. It is Xo=X3= f2(X1,X2,X3,X4,X5,X6),
observed that our theoretical results for the SPDF agree fa- )
vorably with our corresponding digital simulation results. X3=X4=F3(X1,X2,X3,X4.Xs5,Xg),
Although our formula for the effective diffusion coeffi- )
cients associated with the EFPE is valid for general values of X4 =X5=F4(X1,%X2,%3,%4,X5,Xg),
parameter®, vy, and 7, we could validate the formula only .
over a limited range of parameters for the following reasons: X5=Xe=f5(X1,X2,%X3,X4,X5,Xg),

(@ In our numerical computation of the MAP, we have to 1 5

choose only such values Q_ﬁor which the rate constar_)t Kg=-—5U"%+ 5 U'U"— ’y_z-)-(_zunxiv_unum)-(Z_ U”"2x
becomes real and nonoscillatomefer to Eq.(A12)]. This T T

limits the range ofy for which our numerical procedure can

be applied(b) Further, our numerical method for the calcu- + ! x'”+ ! 5 U X2+ 210+ y U™ 3+ 35U KK
lation of the MAP shows a diverging behavior for very small 7

as well as very large values af (c) Moreover, our theory of T RPN T r D S

the EFPE is valid only in the limiD— 0. Because of these VP BUT XX = 3UTX = 4UTXX

three restrictions, we could vary our paramet@rsy, and r =fg(Xq,X5,X3,X4,X5,Xg), (A3)

effectively only within a limited range. Therefore, we could

not compare our theory with digital simulations over a wider ~The above equations can be written as the state equation
range of parameters. However within its limited range our .

theory compares favorably with our digital simulation re- X=1(X), (A4)

sults.
where

— T
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her during the latter part of this research work. Equation(A4) can be linearized for small variations about
an equilibrium pointX,. The derivatives of all the state vari-
ables are zero at the equilibrium poidy. Expanding Eg.
APPENDIX (A4) into a Taylor series, and neglecting terms of second and

In this Appendix we obtain the boundary conditions higher orders, for théth state equation we obtain

y'(x=—1) andy’(x=0) necessary for solving the MAP n
given by Eg.(20). The derivativesy’'(x=—1) andy’(x =f.(X, )+Z
=0) are evaluated from the sixth order, nonlinear ordinary i=
differential equation irx(t) given by the extremal condition

S x(t)]/6x(t)=0 [Eq. (19)] for the actionS x(t)] given Recognizing that at the equilibrium poirit(X,) =0, and
by Eq. (18). Equations(18) and (19) yield the following  defining the variation about the equilibrium point&s=x;
sixth order, nonlinear ordinary differential equationxt): —Xjo, We obtaing; =X;

of; (x>

(Xj=Xjo0)- (A7)

X=Xg
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The linearized state equation can be written as

%= > OO 5 (A8)
P

|
1 OX; _
I Ix=xq

The above linearized component equation given in Eq.

(A8) can be written as the vector matrix equation

X=AX, (A9)
where
[of, of, afy ]
Xy Xy Xp
gf, ot i,
A= &Xl (9X2 &Xn
ot oty o,
Xy Xy Xp

All the partial derivatives in matriA are evaluated at the

equilibrium stateX,.
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A, O 0 0 0]
0 », 0 0 0 O
0 0 A O 0 O
L=l0 0 0 x, 0 0
0 0 0 0 \s O
(0 0 0 0 0 X

)~(0 is the initial state atkk=—1. From Eq.(Al1l), we can
finally obtain a general solution for of the form

6
X—(— 1)=Zl a; exp\t)(i=1,....6),

[34], with rate constants

Nt

2

+<(72—4)—%/m)1/2

2

)\i:i

(A12)

Applying the above linearizing procedure to our nonlinear

equation given by EqA1), with the equilibrium point taken

at the minimum of the bistable potentia+ —1, we obtain
the state equation
X=AX, (A10)

where

o O O O
o O O -
o O -, O
o » O O
= O O O
O O O O

o o 0 0 0 1
ofe ot ofg afg ofg dfe
| OX1 Xy X3 Xs X5 X

Matrix A has six distinct eigen values ..., Ag. Now, the
solution of Eq.(A10) is given by
X(t)=erMXo=Me- "M ~1X,, (A11)

whereM is the diagonalizing or modal matrj¥1], andL is
a diagonal matrix given by

The condition for the solution to vanish for- —o and
be nonoscillatory demands that the solution has only those
terms for which); is positive and real. Furthermore, terms
with \; having the smallest positive real part, say, will
dominate the solution asymptotically. Ther—(—1)
~expqt) which implies y=x—y=N,[x—(—1)]. This
gives the boundary conditiop’ (x=—1)=\;.

Similarly, linearizing Eq.(19) for x near 0 gives rise to a
solution of the form 68-x=3%_, a; exp(\it) (i=1,...,6), with
rate constants

> > 1/2
7\i=t£, N (yo+2)+yJy +4 7
T 2
212)— yyi+ 4\
N (y )27 Y . (A13)

Following similar reasoning as explained above, for a
well-behaved solution we find that (x=0)=X\,, whereh,
is that eigenvalue which is real, negative, and has the small-
est magnitude. Thus the boundary conditiopx=—1)
=0,y(x=0)=0,y'(x=—1), andy’(x=0) are obtained as
mentioned above.

[1]N. G. Van Kampen,Stochastic Processes in Physics and

Chemistry(North-Holland, Amsterdam, 1981

42, 703(1990; P. Jung and P. Hanggi, Adv. Chem. Ph§8,
239(1999; F. Marchesoni, Phys. Rev. Lef®7, 787 (1996.

[2] H. Risken,The Fokker-Planck Equation—Methods of Solution [4] W. Dieterich, P. Fulde, and I. Peschel, Adv. Phg9, 527

and ApplicationdSpringer-Verlag, Berlin, 1984

[3] Noise in Nonlinear Dynamical Systeedited by F. Moss and
P. V. E. McClintock(Cambridge University Press, Cambridge,
1989, Vols. I, 1I, and Ill; P. Hanggi, P. Jung, and F.
Marchesoni, J. Stat. Phys4, 1367(1989; H. Risken, G. Deb-
nath, F. Moss, Th. Leiber, and F. Marchesoni, Phys. Rev. A

(1980.

[5] R. Ferrando, R. Spadacini, and G. E. Tommei, Phys. Rev. B
45, 444 (1992.

[6] E. G. Gwinn and R. M. Westervelt, Phys. Rev. Lé&#, 1613
(1985, and references therein; S. W. Teitsworth and R. M.
Westervelt,ibid. 56, 516 (1986.



1520 CHITRALEKHA MAHANTA AND T. G. VENKATESH PRE 62

[7] S. Kai, in Noise in Nonlinear Dynamical SystenfRef. [3]) [25] P. Jung and P. Hanggi, Phys. Rev. Létt, 11 (1988.

Vol. Ill. [26] A. J. Bray and A. J. McKane, Phys. Rev. Le2, 493(1989);
[8] M. Schumaker and W. Horsthemke, J. Stat. P4. 1189 A. J. McKane, H. C. Luckock, and A. J. Bray, Phys. Rev. A
(1989. 41, 644(1990; A. J. Bray, A. J. McKane, and T. J. Newman,
[9] R. Graham, M. Hohnerbach, and A. Schenzle, Phys. Rev. Lett. ibid. 41, 657 (1990; H. C. Luckock and A. J. McKanabid.
48, 1396(1982; F. T. Arecchi, R. Meucci, G. Puccioni, and J. 42, 1982(1990; K. M. Rattray and A. J. McKane, J. Phys. A
Tredicce,bid. 49, 1217(1982; N. B. Abraham, L. A. Lugiato, 24, 4375(1991).
and L. M. Narducci, Phys. Toda39(1), S53(1986. [27] L. Pesquera, M. A. Rodriguez, and E. Santos, Phys. Ré#,
[10] W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sand- 287 (1983; Horacio S. Wio, P. Colet, M. San Miguel, L.
ers, W. Schleich, and M. O. Scully, Rev. Mod. Ph$3, 61 Pesquera, and M. A. Rodriguez, Phys. Revi077312(1989.
(1985, and references therein. [28] P. Hanggi, Z. Phys. B: Condens. Matf&s, 275(1989; M. 1.
[11] Y. M. Golubev and M. I. Kolobov, Phys. Rev. Leff9, 399 Dykman, Phys. Rev. A2, 2020(1990.
(1997. [29] J. F. Luciani and A. D. Verga, J. Stat. Ph¥€), 567 (1988.
[12] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. PI8%&.  [30] T. G. Venkatesh and L. M. Patnaik, Phys. Rev4& 2402
251 (1990. (1993; Phys. Rev. M6, R7355(1992; Phys. Rev. 7, 1589
[13] A. Nitzan and J. Ross, J. Chem. Ph$8, 241 (1973. (1993.
[14] S. Kabashima, S. Kogure, T. Kawakubo, and T. Okada, J[31] F. Marchesoni, E. Menichella-Saetta, M. Pochini, and S. San-
Appl. Phys.50, 6296(1979. tucci, Phys. Rev. A37, 3058(1988; Phys. Lett. A130, 467
[15] Noise and Nonlinear Phenomena in Nuclear Systesdged (1988; F. Marchesonijbid. 237, 126(1998; L. Gammaitoni,
by J. L. Munoz-Cobo and F. C. Difilipp@lenum, New York, E. Menichella-Saetta, F. Marchesoni, and G. Presilla, Phys.
1989. Rev. A40, 2105(1989; Rev. Mod. Phys70, 223(1998.
[16] R. P. Garay and R. Lefever, J. Theor. Bi@B, 417 (1978. [32] Chitralekha Mahanta and T. G. Venkatesh, Phys. ReB3E
[17] M. Kimura and T. Ohta,Theoretical Aspects of Population 4141(1998.
Genetics(Princeton University Press, Princeton, 1991 [33] L. Fronzoni, P. Grigolini, P. Hanggi, F. Moss, R. Mannella,
[18] W. C. Schieve, A. R. Bulsara, and G. M. Davis, Phys. Rev. A and P. V. E. McClintock, Phys. Rev. 33, 3320(1986.
43, 2613(1992). [34] T. J. Newman, A. J. Bray, and A. J. McKane, J. Stat. PB@s.
[19] W. Alt, J. Math. Biol. 9, 147 (1980; BioSystems34, 11 357(1990.

(1985; M. Schienbein and H. Gruler, Bull. Math. Biok5, [35] P. Hanggi, Z. Phys. B: Condens. Matt&t, 407 (1978.
585(1993; R. Dickinson and R. T. Tranquillo, J. Math. Biol. [36] Stochastic Processes Applied to Physaxited by L. Pesquera

31, 563(1993. and M. Rodriguez(World Scientific, Singapore, 1985pp.

[20] H. Frauenfelder and P. G. Wolynes, Scie2&9, 337 (1985; 69-95.

D. L. Stein, Proc. Natl. Acad. Sci. US82, 3670(1985. [37] L. Ramirez-Piscina and J. M. Sancho, Phys. Re\87A4469

[21] W. Horsthemke and R. LefeveNoise-Induced Transitions, (1988.

Theory and Applications in Physics, Chemistry, and Biology[38] M. I. Dykman, Phys. Rev. A2, 2020(1990; A. Foster and A.
(Springer-Verlag, Berlin, 1984 S. Mikhailov, Phys. Lett. AL26, 459 (1988.

[22] E. A. Novikov, Zh. Eksp. Teor. Fiz7, 30 (1964 [Sov. Phys.  [39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
JETP 20, 1290(1965]; J. M. Sancho, M. San Miguel, S. L. Flannery,Numerical Recipes in C, the Art of Scientific Com-
Katz, and J. D. Gunton, Phys. Rev.2§, 1589(1982; R. F. puting 2nd ed. (Cambridge University Press, Cambridge,
Fox, ibid. 33, 467 (1986); 34, 4525(1986. 1997.

[23] N. G. Van Kampen, PhysicdJtrech) 74, 215 (1974. [40] R. F. Fox, Phys. Rev. 43, 2649(1991).

[24] P. Grigolini, Phys. Lett. AL19 157(1986; P. Grigoliniand F.  [41] Francis B. HildebrandVethods of Applied Mathematic&nd
Marchesoni, Physica A21, 269(1983. ed. (Prentice-Hall of India, New Delhi, 1968



