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Power spectrum and detrended fluctuation analysis: Application to daily temperatures
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The variability measures of fluctuation analy@g¥\) and detrended fluctuation analy§i3FA) are expressed
in terms of the power spectral density and of the autocovariance of a given process. The diagnostic potential of
these methods is tested on several model power spectral densities. In particular we find that both FA and DFA
reveal an algebraic singularity of the power spectral density at small frequencies corresponding to an algebraic
decay of the autocovariance. A scaling behavior of the power spectral density in an intermediate frequency
regime is better reflected by DFA than by FA. We apply FA and DFA to ambient temperature data from the
20th century with the primary goal to resolve the controversy in literature whether the low frequency behavior
of the corresponding power spectral densities are better described by a power law or a stretched exponential.
As a third possible model we suggest a Weibull distribution. However, it turns out that neither FA nor DFA
can reliably distinguish between the proposed models.

PACS numbes): 02.50.Wp, 05.40-a, 05.45.Tp, 92.60.Ry

[. INTRODUCTION [6,7] and financial datd8]. Recently, these methods have
been used to study meteorological dgte®—17. In Ref.[9]

Time series emerging from complex systems are typicallydaily noon temperatures of several meteorological stations
governed by an interplay of random and deterministicwere analyzed by means of DFA. The resulting scaling of the
mechanisms. The characteristic times of such systems majariability implies that the correlation decays as a power law,
vary over a large range. As a consequence one often ob=t"“ with exponenia=0.7. This exponent of about 2/3 was
serves a nonexponential decay of correlations of whictlso confirmed to characterize daily maximum temperatures
stretched exponential and algebraic decay are two example§. & range of times between ten days and at least 25 years
A precise classification of the decay of correlations is of(4,10l. In Ref.[11] a monthly global mean temperature se-
major importance for the analysis of various natural, technifies was analyzed with DFA. Before DFA was applied the
cal, and economic systems. The direct estimate of the corrglata were preprocessed by means of a singular value decom-
lation function of a time series is known to be limited to position in order to remove a possible nonlinear trend. Since
rather small time lags, and also the determination of thdhis kind of filtering does not act on a predetermined range of
power spectrum is hampered by large statistical uncertainti§equencies it might also modify the low frequency behavior.
if one goes to those low frequencies that reflect the long timdt is therefore not clear to what extent the scaling exponent of
behavior of the system. 0.4 in Ref.[11] is influenced by the data processing.

More recently, methods have been suggested to cope with A main goal of the present paper is to give the general
this problem[1—3], and to reliably gain insight into the cor- relationships between the different measures of variability
relation structure of a time series. These methods are bas&da(S), Fora(S) and both the power spectral density and
on the idea of building a running sum over a given timethe autocovariance of the underlying process. This allows us
scale. This corresponds to the construction of a random walte identify corresponding features in the FA and DFA mea-
that has the values of the original time series as incrementsures of variability, the power spectral density and the cor-
Different quantities characterizing random walks constructedelation function.
in this way have been suggested to describe the variability of In an application of the various methods to daily meteo-
the original time series. In the so-called fluctuation analysigological data we will show to what extent fluctuation analy-
(FA) [1] the average spreads of the random walk during timesis can complement the classical power spectral analysis.
intervals of lengths are used to define a variabilifyzA(S).

In the detrended fluctuation analysiBFA) [3] the mean Il. METHODS

square deviation from an optimal linear approximation of the
random walk during time intervals of lengthis introduced

as a measure of variabilityea(S). Further measures have  For a time seriesx;=x(iAt), i=1,... N, which is
been defined using different wavelet transforms of the ransampled from a stationary signg(t) at equidistant times$

dom walk[4]. In all these methods one searches for a poweriAt, the power spectral densi§(w) can be calculated by
law describing the particular fluctuation measure as a funca standard nonparametric technique. The time series is di-
tion of the scale variable from which one infers a scaling vided intoK equally long segments overlapping by one-half
behavior of the power spectral density, and the covariancef their lengthM. For each segment the periodogram is ob-
function of the original time series. tained by applying a Welch window and using a fast Fourier

First applications of FA and DFA were made in investi- transform[13]. The periodograms of all segments are aver-
gations of DNA sequencdd—3,5. Other topics to which aged, reducing the error of the spectral estimate by a factor
FA and DFA were applied are cardiac rhythm fluctuationsof about K/11.

A. Power spectrum analysis
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10° g DFA is to transform the decaying autocovariance into an
increasing variability measure, which is less prone to statis-
tical errors.

B. Fluctuation and detrended fluctuation analysis

Fluctuation and detrended fluctuation analysis are recent

Autocovariance

104k ] methodd 1,3] used to detect possible long-range correlations
£ 1 A ] in time series. Five variants of fluctuation analysis are de-

10°® 3 o 1 ﬂ scribed in Ref[10]. In all variants, in a first step, a running

of - ] n sum of the observed variable, i=1, ... N, is calculated
107 £.0.0005 Lt
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-7 vl vl s ek
10 10" 102 10 10* )’(n)=i2l Xi, (2.3

Lag t (days)

wheren=1,... N. This sum has been called a landscEgle

or profile [10] of the variablex and it can be viewed as a
random walk with incrementg;. We next discuss various
01)wlw;) 2 for =, as a function of frequency. The middle variability measures that are based on the so defined random
frequency range extends over two orders of magnitude fegm Wal!(' . . . o
=27/2000 to w;=27/20. Scales on both axes are logarithmic. (1) In fluctuation analysigFA), this random walk is di-

There are empty gaps whe® 7) is negative. No scaling behavior Vided into nonoverlapping,segm.e_nts of lengthrhe differ-
is apparent in the middle range of 26-<2000. The inset shows €nces of the random walk’s positions at the endpoints of the

the C(7) in a linear plot. segments

The power spectral densif(w) is the Fourier transform Ayi(s)=yk(s+1)—-y(k-1)(s+1)+1) (24
of the autocovariance&(7) = ([x(t+7) = )IX() =(X)])  are computed fok=1, ...[N/(s+1)], where[x] denotes

FIG. 1. AutocovarianceC(7) of a stationary process with a
piecewise algebraic power spectral densiB{w)=1 for w
<wg, S(w)=(wlwy) %% for we<w<w; and S(w)=(wq/

of the signal, the largest integer smaller than The variability Fga(S)
1 (e over the time scale is determined as a root mean square
C(r):zf doS(w)cog wT). (2.1  difference
0 1 [N/(s+1)]-1
Here 7 is a time lag and the angular brackets denote the — FZa(S)= 1 20 Ayy(s)?=Ay(s)?,

stationary ensemble average. The normalization of the power 2.5
spectral density is chosen such that the total power is con- :

tained in the positive frequencies. If the autocovarianceyvhere the bar denotes the average over all segnidhtén
shows a scaling behavior for times larger thanone also  the limit N—« for a stationary ergodic procesgt), the

finds a scaling behavior of the power spectrum in the corretime average converges to the ensemble average of the sec-
sponding frequency region<2m/7,, and vice versa, i.e., ond moment of the increment of the random walk over a
segment of lengtls:

. . . . . FEA(S)=(AY(5)?). (2.6
For a stationary time series the autocovariance at time lag
=0 is finite and consequently the integral of the powerln Ref.[1] the centered second moment of the differences
spectral density over all frequencies, i.e., the total power alsdy(s) is used. This corresponds to a small constant shift of
is finite. This restricts the small frequency exponent to Othe variability which has minor influence on a possible scal-
<B<1. If the long time exponent also takes a value®  ing.
<1 the two exponents are related to each othergsyl (i) In detrended fluctuation analysiBFA) [3], the linear
— a. For autocovariances decaying faster thahthe power regressions;/k,s(n)=mkn+bk of the random walk are per-
spectral density approaches a constant value in the limit formed on all segmentsof lengths and are subtracted from
—0, i.e.,, B=0. A possible scaling of the power spectral the random walk on the corresponding segment. The slope
density,S(w) ~ ™~ ? at large frequencies is restricted to posi- m, and the intercepb, follow from minimizing the mean

tive scaling exponentg by stationarity. _ ~ square deviation betweer(n) andy,(n) on the segmerk.
A scaling regime on a finite interval of frequencies can inThe detrended variabilitf 5 (S) is defined as the mini-

principle be identified by means of the Scaling of the pOWermum deviation averaged over all segments:
spectral density, while the autocovariance does in most cases

C(~7 % S(w)~w F (2.2

not show the corresponding algebraic behavior because it is 1 k(s+1)

generally obscured by a band of low frequency oscillations, F2ea(S)= — [y(n)—Yy(n)]?

see Fig. 1. Moreover, for large time lags the autocovariance St 1 n—(k-1jls+1)+1

becomes small and at the same time the statistical errors s+l

increase. Hence, the feature one is most interested in literally S (Ty(M) =y1(m1?), 2.7

disappears in the noise. The basic idea both of FA and of Ts+1 n=1
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where the bar denotes the average over the segments, and 008371 T T T T T T T T ]
where in the second line, ergodicity xft) is assumed. This . 05T T T 1 1
guantity measures the variability of the original signal at E 0.4k i
scales that are smaller than the segment leagth - '

(i) In Ref. [4] three further methods based on wavelet 0.02 0.3r 7
transforms are suggested for the characterization of the vari- . F \ 0.0k -
ability. For the data investigated in Ré4] all methods yield S I ]
very similar variabilities up to overall factors. We applied : 01r =9 ]
the wavelet methods to ambient temperature data and also 001
found them to yield qualitatively the same results as the H

simple FA and DFA methods. Therefore, we will only dis-
cuss FA and DFA in the following.

0 10 20.30 40 56)\/ 60 70 80 90 100

0

Ill. COMPARISON OF FLUCTUATION ANALYSIS
AND POWER SPECTRUM FIG. 2. The frequency filtersga(w) andrpga(w) for FA (dot-

ted line and for DFA (full line), respectively, given by Eq$3.5),

Both variability measuredF,:A(s)_ and FDFA_(S) can be (3.13, respectively. The inset shows the same functions for small
related to the power spectral density, or, equivalently, to thg,es of the dimensionless frequenay

autocovariance of the considered time series. Several model

power spectral densities, which show the relevant features of ] ) o
the observed temperature spectra as described in Sec. REtS as a filter on the power spectral density on a logarithmic
below, will be used to determine and discuss the correspondt€duency scale. The filter fU”Ct'mzA(W) is shown in Fig.

ing variability measures. To simplify the resulting equations,2- For white noise, i.e C(t—t")=o"5(t—t’), the squared

a continuously sampled time series is considered in the folvariability increases linearly is:

lowing. Corrections due to discreteness are shown to be of
relevance only for segments that are shorter than approxi-
mately 20 sampling times. Corresponding results are given in
Appendix A.

F2,(s)=0?s. (3.6

_ _ For an algebraically decaying autocovariar€ér)~+ ¢,
A. Fluctuation analysis 7>1,>0, one finds a variability measure that asymptotically
For the sake of simplicity we assume that the stationaryncreases with a power laiE2 5(s) ~s%~“ for 0<a<1 and
time serie(t) has zero meafx(t))=0. The random walk FEA(s)~s for «>1. A power spectral density with an alge-

with x(t)dt as infinitesimal increment is given by braic behavior at low frequencieS(w)~ » ™~ #, also leads to
t a power lawF2,(s)~s?"1, in accordance with the relation

y(t)=f dt'x(t"). (3.1) ,8=1—g for the sca;ing egponents.with<0.q, B<1. Thg
0 fluctuation measur&g,(s) is rather insensitive to the high

frequency behavior of the power spectral density and does
Accordingly, the distance covered by the random walk on anot resolve different power laws in the high frequency re-
segment of lengtls becomes: gime. Moreover, if the lag becomes too short, the discrete-
ness of the time series leads to an increase of the variability
compared to the continuum approximation; see also the dis-
cussion of finite sampling time effects in Sec. Il B. Finally
we note that the variability measure based on fluctuation
and the mean value of the Squared Variabi(m can be analySiS does not properly resolve an intermediate Scaling
written as regime of the power spectral density extending over, say,

two orders of magnitude in frequency, see Fig. 3.

S

MY (9=Y(so+9)-y(s= [ dixn, (32

So

S
FEu(s)=(ai(5) =2 dris-nC(. (33
0 B. Detrended fluctuation analysis

Expressing the autocovariance in terms of the power spec- I detrended fluctuation analysis the Ii_near regression
tral density, see Eq2.1), one finds: Ys,.s(t) =M(So,S)t+Dby(so,S), te[sy,Sot+s] is calculated
by a least-square fit for each segment of lergythhe expec-

s [ W . SS9 )

FﬁA(s)z ;f de(E) Fea(W), (3.4 tation value of the squared variabilit2.7) can be written as

0 1 (sots Spt+s
FRra(s) = _f dtlf dtx(y(t1)y(t2))Ks, s(t1,t2),
where SJsy o
(3.7
1-cogw)
"ralW) w? 39 where the kernel is defined by
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103 E R | T T T 11T LBLRARLLL \YIII};/O.S 1-—u U*y y
E 63" Q(U):ZJ dYJ dtlf dt,Koa(ty,t)
2 I~ g i il 7/0-5 0 0 O
8 2 2 451
F =1—5—u+2u —zuwtgu (3.11)
z210'F E
T.EU i ] and in terms of the power spectral densSw) by
— [ E- T v LELALL)::
< 0 3 1 4
£ 10 10F L ) S (= w
1 1r 4 FDFA(S):ZJO dw 5 MNora(Ww), (3.12
107 01k 4 3
, » l 10‘011 |I1|||n1|0 |I||||||T0: Where
0- L1l L1 IESE BRI 11113l i
10° 10" 102 10® 10* 10° 1
Lag s (days) rora(W) = fo ducoguw)q(u). .13

FIG. 3. Variability measuresga(s) (upper gray curveand ' o ]
Fora(s) (lower gray curv for a piecewise algebraic power spec- Using the explicit form ofg(u) (3.11) we find:
tral densityS(w) as defined in the caption of Fig. 1. The middle

frequency range showing scaling of the power spectral density can ropa(W)=[w?*—8w?— 24— 4w? cogw)
be well retrieved as an intermediate scaling regimé& gfA(s) for ) 6
lags approximately ranging betwesrs 30 ands=1500. The esti- +24 cogw) + 24w sin(w) Jw >, (3.14

mated scaling exponent 0.63 agrees well with its theoretical value

(1+0.25)/2=0.625. For lags larger thas~6000 the detrended Figure 2 compares the filter functions of FA and DFA. Both
fluctuation variability scales with an exponent of 0.5 properly re-are positive functions. The most apparent difference between
flecting the constant power spectral density at low frequencies. Thec,(w) and rpea(W) are the oscillations inga(w) while
increase ofF4(s) with a power 1.5 at small lags is also in quan- ry-,(w) consists of a single hump. More important is the
titative agreement with the high frequency behavior of the specfact thatr-,(w) has a maximum av=0 whereas pra(S)

trum. The variabilityF pra(s) scales with an exponent 0.5 for large vanishes there. As for the fluctuation analysis the squared
lags down tos~1000 and then turns over into a scaling behavior yetrended variability measure increases linearly veitfor

with exponent 0.63 and falls off below=7 in a steeper way. \yhjte noise. A power spectral density that diverges algebra-
Hence, FA does not reflect the behavior of the power spectral deqéally asw vanishesS(w)fvw’ﬁ results in a scaling behav-

sity in a simple, direct way. Black solid lines refer to exact scaling. 2 _Jl+B . .
laws with the indicated exponents. The results for discrete time are Of F5ra(s)~s™~ for larges. In this respect we find the

shown in the inset as open circles together with the continuous timgame result as from fluctuation analysis. If the power spectral

results (solid lineg. Again the upper curve refers to FA and the den§|;y algebraically de(_:ay.s' at large frequenmS(sw)
lower one to DFA. ~w"*, the detrended variability measure increases at small

values ofs according to the power Ia\h'f%FA(s)~s”B, pro-
vided thatB<3. A power spectral density that decays faster
(t,+ ) than S(w)~ w ~° yields F3A(s)~s* for small values of.
This result only holds in the continuum limit. § becomes
smaller than approximately the 20-fold sampling time, the
(3.9 continuum approximation gives too small results. In the inset
of Fig. 3 the exact result of the discrete theory, which is
sketched in Appendix A, is compared with the continuum
It is symmetric int; andt,, and is stationary and scales in @pproximation(3.12.
the following sense: In contrast to the variability measure of fluctuation analy-
sis the detrended variabilifyp4(S) does reflect an interme-
(tl tz) diate scaling of the power spectral density and allows one to

12 S
Ksy.s(tita)=a(ty—ty) — 3 Lila=| Sot 5

SZ
2
Sg+SoS+ 5

+
3

1 . : .

Ksp.s(t1tSo,tat50) =Kos(ty,tz) = —Koa| == retrieve the corresponding scaling exponent where
' ’ S 'S S

39 F2ea(s)~stth  for s,<s<s,

Inserting(3.1) and assuming stationarity of the signdt),

the variability becomes independent sf. It is given in & S(w)~w B for 2_7T<w<2_77_
terms of the autocovariand®(r) by S2 S1
(3.15
1
FEFA(S)=52f duC(su)q(u), (3.10 For an example, see Fig. 3. The frequency range
0

[27/s,,27w/s,] has to extend over at least two orders of
magnitude in order that an intermediate scaling regime is
with well defined.
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C. Finite size effects

From the practical point of view it is important to know to
which extent the finiteness of data influences the results of
FA and DFA. These finite size effects have been neglected in
Egs. (2.5, (2.7) by assuming that for a given lag the
weighted sum over the corresponding segments does always
coincide with the time average over these segments, i.e., that
the time average over the segments converges sufficiently
fast. This assumption amounts to the self-averaging of the
fluctuation measureBZ(s) andF3:A(S). It is certainly jus-
tified for scaless<N but becomes questionable if the con-
sidered lag approaches the total length of the signal.

Analytic results for theN dependence of the fluctuation
measures are difficult to obtain. We therefore performed nu-
merical simulations of time series with given power spectral
densities and compared the resulting fluctuation measures
with the N— limit as given by Eqs(3.4), (3.5), and(3.12,
(3.14). As power spectral densiti€f{ ) we chose a piece-
wise power law model, a Weibull distribution and a stretched
exponential, which will be shown below to equally well de-
scribe the daily ambient temperatures. Using the Wiener-
Khinchin theorem, we first construct a series f2=2%
frequency-dependent amplitudgX w))|€'?', 1=1, ... N/2,
with independent random phases. Upon a fast Fourier
transform one obtains a stationary time series of lergth
having the prescribed power spectral density. Figure 4 shows
the results for the DFA measure for synthetic data series of
different lengths and different spectral densities. For
=215 comparable with the lengths of the temperature series,
up to even the largest scales N/3, the fluctuation measure
of the synthetic time series shows only small random devia-
tions from the theoretical result for an infinite series. As one

expects, the finite size deviations become smaller for smaller _ 1001 ' 100 102 ;03 10
scaless. For a 16 times longer time series finite size effects Lag s (days)
are almost invisible for as<10". Accordingly the scatter is FIG. 4. Detrended fluctuation measures for synthetic time series

. _ 11 . . . .

increased foN=2"" but still allows one to identify a linear of gifferent lengthsN as functions of the scale paramesem panel
scaling regime in the case of th_e_ piecewise linear powery) the power spectral density of the time series is given by the
spectral model. Concerning the finite size effects, the flucpiecewise linear modef4.2) with wy,=0.17, B;=0.25, andg,
tuation analysis behaves very similarly and is therefore not=2. In panel(b) the power spectral density is a stretched exponen-

shown here. tial (4.1) with parameterso,=0.17 and y=0.65, and in pane(c)
the power spectral density is a Weibull distributigh3) with w
IV. APPLICATION TO CLIMATE DATA =0.147r and »=0.9. Each panel shows the results for different

lengths of the time series. The resulting curves are shifted relative
Near-surface temperature at most locations on the Eartfyy each other by constant factors. The curves refer to time series of
shows considerable variations consisting of a strong diurna length ofN=2%, 25 2! from top to bottom. The gray lines
and of an annual cycle with amplitudes of up to several tenshow the asymptotiti— = results given by Eqg3.12, (3.14 for
of degrees. In a long-term average over several decadete respective power spectral densities. Note that there is an excel-
these cycles are very regular, whereas on a day-to-day bagent agreement even for the largest possible values Bhe devia-
large deviations from the mean behavior may occur. Thes#ions for smalls are due to the continuum approximation used in
short-term deviations from the mean temperature behavioi8.14. Only for the piecewise linear model a linear scaling regime
are governed by the synoptic weather conditions, the type ofan be identified. This is visible even for the shortest time series. As
airmass, and surface properties near the given location. A& guide of the eye, the broken straight line indicates the expected
the relevant physical processes are well understood, numefcaling behavior irta), while in (b) and(c) the broken straight lines
cal weather models can in general reliably predict theséePresent the expected asymptotic behavior.
short-term deviations several days ahead. Much less is
known about temperature fluctuations on time scales bemeans of the power spectral density. A summary of the cli-
tween a month and decades. mate spectrum from time scales of one hour up to the age of
To improve the understanding of climate and weather orthe Earth is presented ifiL4]. For periods less than one
these time scales, in a first step the correlation structure ahonth the spectral density decreases with increasing fre-
temperature data can be analyzed to detect possible longuency. However, the resolution of the data does not allow
range correlations. This can be done in a standard way bys to determine the type of spectral decay. In [RES] daily
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mean temperatures of a 30-year period were analyzed and
their spectrum found to follow a stretched exponential, or
exponential powef16] distribution

Ssd ) =Sy exd — (w/ wo)”] 4.1

with three parameter§,, wg, and y. The exponent was
found to bey~0.54[15].

In Ref. [17] the asymptotic behavior of the power spec-
trum of 11 years’ daily temperatures is investigated. For this ,
purpose averages over large numbers of stations were per- -20 -15 -10 -5 0 5 10 15
formed. For over 1000 continental stations the average Temperature anomaly (deg C)
power spectral density has been fitted by a power law

~ B wi = i
S(w)~w " with an exponen, =0.37 in the low frequency tures for Zuich. The full line shows the Gaussian distribution with

limit and an gxponen182=1.37 describing the high fre- the mean value and variance estimated from the data.
guency behavior. The crossover between the two regimes Is

near the frequency corresponding to one month. The average
power spectral density of 100 maritime stations scales in the Diurnal temperature data from the midlatitudes have a
whole frequency regime with the exponesi=0.63[17]. pronounced annual cycle. Thus, the power spectrum of the
raw data has a strong peak at a frequency corresponding to
one year. This annual peak will shadow many of the features
of nearby frequency bands and obscure a possible scaling
Long time series of instrumental daily temperature valuedehavior. Therefore, the annual cycle is removed by subtract-
from Central Europe were analyzed[it8] for possible long- ing the mean annual cycle from the data. This mean annual
term trends. The same homogenized data are used for tleycle is determined by calculating for each day of the year
present analyses. Daily mean temperatoletained as mean the average over all years of the time series, see Fig. 5. After
of three temperature readings at fixed timedaily mini-  removal of the mean annual cycle, time series of temperature
mum, and daily maximum temperatures were available from
four low-altitude stations, Basel-Binningen, iizh-SMA,
Bern-Liebefeld, and Neuckel, and from three mountain sta- 1000
tions, Sonnblick, Satis, and Zugspitze, all three located at
an altitude higher than 2500 m. Details of the station loca-
tions are given in Table | of18]. Zugspitze data are avail-
able from 1901 through 1992, with 106 days missing from
May 1945 on. These missing values were replaced by the
mean annual cycle giving time series of a length of 33603
days. Sonnblick data are available from 1887 through 1993,
with missing data at a few isolated periods of at most five 1000
days length. These gaps were filled by linear interpolation

Frequency (%)
o =<2 N W »d O O N @
1

T T T T T T T T T T T

FIG. 6. Histogram of the anomalies of the mean daily tempera-

A. Data
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resulting in time series of 39 050 days. For the Swiss stations = : 1+ 3
data from 1901 through 1997 are used, giving time series .8 10 F 3F 3
with a length of 35429 days without any gaps. 3 i 1t :
S 10 3
% F F T_max 1F T_max
r I T AT M STIYY EATARRRTIT MR
25 £ 1000 ——rrmr——rm— Ty T T
F E ! I i E J ' E
20 [ g . 1E g ]
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-5 Coov bt b b o e lanaals
0 50 100 150 200 250 300 350 FIG. 7. Power spectral densities for different temperature series
Day of year from Zurich and Satis. The high frequency behavior is well de-

scribed by a power law. A straight line with indicated slope is given
FIG. 5. Annual cycles of the maximum, mean, and minimumto help the eye. At low frequencies a scaling assumption apparently
daily temperatures for Zich. describes the data less good.



156 PETER TALKNER AND RUDOLF O. WEBER PRE 62

anomalies are obtained, which will be used in the further 10%
analyses. Figure 6 shows a histogram of theicumean

temperature anomalies, which is quite well described by a

Gaussian distribution with a standard deviation of 3.7 °C. 108
The other temperature series give similar anomaly histo-

grams with standard deviations ranging from 3.2 to 4.7 °C.

T T T T T T T T

T T 77T

T T T

0
B. Power spectrum of daily temperatures "E
w

T T T
Lol

The power spectral densities of the temperature anomalies
are calculated as described in Sec. Il. The power spectral 10
densities for frequencies higher tham/200 are obtained as
the averaged periodigrams of 68 blocks each of length 1024
d. For lower frequencies the average is performed over 16 10°
blocks of length 4096 d. The power spectra of the two sta-
tions, Zurich and Satis, representing low altitude and moun-
tain stations, respectively, are shown in Fig. 7. The spectra of £G. 8. variability Fr(s) for daily temperatures from Zich
minimum, maximum, and mean temperatures aftadecay  (upper group of curveésand Satis (lower group of curvesas a
at large frequencies a® 2 as well as those of the other function of the time lags. The dotted lines correspond to maximum
mountain stations. The same high frequency dependence temperatures, the broken line to minimum and the solid line to
also found for the mean values of the other Swiss low-mean temperatures. All curves relating tov8sare multiplied by a
altitude stations and stations in HungdrQ]. This corre- factor of 8 such that they are separated from the respective curves
sponds to a random-walk-like behavior of the temperature o@f Zurich
short time scales and in continuous time would correspond to

a decay of the autocovariance with a finite slopeta0.  The parameters chosen for the different stations and tempera-
Minimum and maximum temperatures atrih and the  re series are collected in Table I. A similar model has been
other Swiss low altitude stations also approach the h'ghe%tuggested in Ref17] with 8,=0.37 andB,=1.37 being in
frequency in good approximation with a power low, how- . agreement with our findings for low-altitude stations.

feveré_ asw T[he corr?_spor?dmg behav_ltcr)wr of the COffE|6;tl|F|)(l’l In Ref.[20] a three-year record of 3-h ambient temperatures
unction in continuous ime 1S -a cusp with a square-root-like,, analyzed. The high frequency exponent 1.78 is close to
singularity att=0. In discrete time these types of behavior

cannot aiways be distinguished ours, whereas the low frequency expongpt=0.72 is con-

' siderably larger than what we find; see Table I. The discrep-
ancy may partly be caused by the shorter time series used in
[20] but also by the fact that the annual cycle was not re-

The variabilitiesF (s) of the daily temperatures are cal- moved from the data.
culated by means of Eq2.5 for Zurich and Satis and
shown in Fig. 8. There are only minor differences between

ol

1 1 lllllll 1 1 IIIIIII 1 1 Illllll 1 L1 1il)l
10° 10! 102 103 104
Lag s (days)

C. FA and DFA of daily temperatures

Zirich and Satis and between maximum, minimum, and 10%g T T
mean temperatures. The differences are more pronounced for E
larger lagss for both stations and are larger for @ch than 1025_
Santis. In all cases the maximum temperatures show the larg- s
est variability, minimum and mean temperature variabilities 10' 3
are alway very close to each other. A clear scaling behavior D C
is hard to identify in any of the displayed curves. The corre- = 10%F
sponding curves for the variabilitypea(S) of the detrended i -
fluctuation analysis as given by E@.7), show even smaller 107F
deviations between the three types of temperatures. There- F
fore we show in Fig. 9 results only for the maximumn8a 102F
temperature. F
10_3 FERIRTITT B RS R TTIT SR R ATTT| B R
D. Comparison 10° 10’ 10 10° 10*

. _ . Lag s (days)
For a better comparison we consider three different mod-

els that we formulate in terms of the power spectral density. FiG. 9. The three black curves represent the variabilities
The first one is a plecewise power law model, which reads Foea(s) resulting from the piecewise power lawpper curvg, the
stretched exponentialmiddle curve, and the Weibull (lowest

(ﬂ) P for w<w curve power spectral densities with parameters obtained from
Wy 0 maximum temperatures of Bis, see also Fig. 10 below. The upper
5p|(w) =Sy -8 (4.2 and lower curves are multiplied by factors of 10 and L,0respec-
(ﬂ) for wo=w. tively for better visibility. The gray curves show the results of DFA
o for the maximum temperatures of 18&s.
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TABLE I. Parameters of the power law modet.2) for the TABLE Ill. Parameters of the Weibull modé#.3) for the spec-
spectral density for the stations Sonnbli&0), Santis (SA), Zug- tral density for the same stations as in Table I.
spitze (ZU), Basel-Binningen(BA), Zirich SMA (ZH), Bern-

Liebefeld (BE), and Neuchil (NE). The parameteg, equals 2 Minimum Maximum Mean
except for the minimum and maximum temperature at the stations temperature temperature temperature
BA, ZH, BE, and NE, whergs,=1.5. S wg v S wy v Sy wy v

Minimum Maximum Mean SO 232 046 093 205 043 093 209 046 0.93
temperature temperature temperature SA 237 0.44 092 215 048 0.85 223 0.46 0.90

S w B S @ B S w0 B ZU 220 0.47 092 207 048 090 204 048 0091

BA 155 041 0.85 247 043 085 200 0.36 0.90

SO 147 034 019 133 031 020 136 033 02074 4146 039 088 228 049 083 193 0.38 0.90
SA 147 033 022 129 039 028 139 035 023 g 117 (046 080 227 044 088 174 0.38 0.88
ZU 135 036 022 129 037 023 127 037 022 \g 97 048 076 195 043 082 158 0.37 0.86
BA 115 023 025 177 025 026 122 028 0.24

ZH 105 0.22 0.22 164 0.29 0.28 119 0.29 0.24
BE 86 0.27 0.31 163 0.26 0.23 107 0.29 0.25 other. Most of them are larger than the valuexof 2/3 given

NE 72 027 035 141 0.25 0.28 97 0.29 0.28 in [4]. The stretched exponential model with a positive ex-

ponent y<1 leads to the autocovariance exponent 1

+ v and, hence, is even larger than one. Again, from the data
The second model is defined by a stretched exponentiahese different types of behavior cannot be distinguished be-

power spectral density as given in Eg.1). The parameter cause of their finite lengths, see Fig. 11. In Table IV the

values that fit the data best are given in Table Il. Finally, wevalues of the exponenis for different stations and different

compare with a power spectral density that is given by aemperature types are compared as they result from fits of the

Weibull distribution: three model power spectral densities and from the data by
_ 1 ) means of DFA.
Swe=So(@/ )"~ exp — (w/wg)"]. (4.3 Finally, within the time scales of lags for which the DFA

The parameterS,, o, and » of this model are given in variability can be reliably estimat'ed, onlyl the piecgwise

Table 1Il. A com[:;arisoé)n of these models with the poWerpower law model shows a well defined gcal|ng behawo_r for

spectral density for the ‘Bfis maximum temperatures is large lagss. Both the stretched exponential and the Weibull
I . model show a slight curvature up to the largest observable

shown in Fig. 10. All three models fit the data reasonablyIags The comparison with the data is shown in Fig. 9. It is

well. The discontinuity of the slope at the merging point of '” d for all th dels of which th .h d i

the different power laws it5,(w) and a too steep decay of equally good for all three models of which the stretched ex

! Pl SR ._ ponential shows the most pronounced, but still rather small,

Swe(w) at high frequencies present the main visible dev'a'deviations for large lags

tions of the model spectra from the data. The stretched ex- '

ponential model qualitatively differs from the other two

models in that it approaches a constant value of the power V. SUMMARY

spectral density at zero frequency, while the other two mod- \We have investigated the question of whether FA or DFA

els diverge there. However, the comparison of the spectrajo provide insight in the long time behavior that goes be-

densities does not reveal this difference because of the finite

amount of observations. 103
For all three models, the autocovariances decay according E 3
to an algebraic lawt,” “. For the piecewise power law model of 1
the exponent isa=1—p,, and for the Weibull modek 10°¢ 3
=v. In the present cases the resulting exponentse posi- > - 1
tive and smaller than one and roughly coincide with each 2 qolk o
[ £ E
TABLE II. Parameters of the stretched exponential madel) % C ]
for the spectral density for the same stations as in Table I. ,§ 10° 3 E
Minimum Maximum Mean c% 4 - :
temperature temperature temperature 10 E E
So ®o Y So @o Y So o Y i ]
10-2 Lol IIIIIII L llllllll | 5% | I|IIIII Lol Ay tial

Sg 30; 0.23 0771 5526 0.128 0.7;3 29; 0.;%0 0.7;3 10 103 102 10 10°

S 331 0.29 oO. 0.18 057 354 0.25 0.6 Frequency ( 1/day )

ZU 320 0.29 0.71 325 0.27 0.67 307 0.28 0.69

BA 306 0.16 059 515 015 056 310 0.20 0.68 F|IG. 10. Piecewise power law, stretched exponential, and
ZH 245 020 0.65 527 0.15 0.53 294 0.22 0.69 Weibull power spectral densitigblack lines, from top to bottom,

BE 336 0.10 0.48 409 0.20 0.61 291 0.19 0.61 compared to the estimated spectra for thetS8amaximum tempera-
NE 372 0.06 0.41 487 0.11 051 302 0.15 0.59 tures(gray lines. Spectra are stretched relative to each other by
factors of 10 for better visibility.
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strong virtue of the detrended fluctuation analysis. We also
investigated the finite size effects for fluctuation analysis
with very similar results as for the DFA.

For stationary time series, which do not decay according
to a power law, FA and DFA do not seem to represent par-
ticularly convenient instruments to identify or distinguish
concrete models.

For the ambient temperature time series of the 20th cen-
tury it is not possible to distinguish by means of DFA be-
tween models that are compatible with the observed power
spectral densities. Yet the different models lead to signifi-
cantly different scaling behavior of the autocovariance de-
| L cay. Though it is not possible to identify a definite optimal
10° 10! 102 model by means of FA or DFA, these methods unambigu-

Lag 1 (days) ously show long time correlations of the temperature fluctua-
tions that extend up to the longest observable time lags.

FIG. 11. Autocovariances resulting from the piecewise powenyjjthout these correlations the FA and DFA fluctuation mea-
law (broken ling, stretched exponentigbolid line), and Weibull (%ures would scale with the exponent 0.5 at large lags. Our

100 T T T T T T Ty

T T T T TN

107"

Autocovariance

T T VT

1073

(dotted ling power spectral densities, each with the parameters o nalysis has shown that one third of the total length of the

the Satis maximum temperatures as shown in Fig. 10 compared. . . .
ime series represents a conservative estimate for the largest

with the autocovariance directly estimated from the daiints. .
The error bars are estimated according to i2g] and indicate the observable lag. Hence, the temperature fluctuations are cor-

statistical uncertainty. For time lags larger than 100 the error barkelated up to at least 30 years. These long time effects are
become larger than the estimated values of the autocovariance. Most likely caused by the ocean dynamics, which interacts
with that of the atmosphere. ,
yond the possibilities of spectral analysis. An important ad- The FA Vaf'ab"'ty m_easu_reFFA(s) coincides with the
vantage of FA and DFA lies in the fact that, for a stationary.StrUCtL?re function as defined in the theory of turbule[r?:ﬂ,
process, the variability measur&éA(s) and F%FA(S) are if oni|r|1terp1[_et|3the mtegrgted prcheggi;) as the velocity Off
self-averaging, i.e. the estimate of the variability measure& tlurﬂl: ent fie dme;suret a: a |;<e tpomthln sgace. So da_r,
from finite time series, as given by E@®.5) in case of FA, only f € secon t;or ers rlgc ure lunc 'Oln as eelr& '“tl)se n
converge in the limit of infinite time series towards the en-.FA' ! '.:FA(S) shows scaling at arge lags I wou €

2 interesting to also ask about the behavior of the higher order
semble average dfg,(s). One can show that for a process functiong? — (A Py F derlvi
with decaying autocovariance the variance of the Squareatructu.re unction FA(S_) ] ( yso'(s) >j oran u.n erying
variability measuré2.5) determined from a finite time series Gaussian process a trivial scaling will result, i.B5a(S)
of lengthN converges to zero d¢~ Y2 The same also holds ~[F#a(s)]”*~sP??% whereas non-Gaussian processes wil
for DFA. Therefore no extra averaging procedures are necgive rise to intermittency corrections, i.d=2,~s‘, where
essary for FA and DFA as they have to be performed in{,#p{,/2. Since we could not identify an unambiguous
spectral analysis. This renders FA and DFA a more systenscaling regime in the temperature time series we did not
atic procedure in contrast to spectral analysis, which is somepursue this direction further.
thing of an art. However, one must not forget that for time We have always assumed that the underlying proxéss
series of finite lengths the variability at large legmay still  is stationary or, at most has a linear trend that is automati-
have large statistical uncertainties. We have illustrated theseally removed by DFA. If this is not the case, one can still
finite size effects with a few examples of synthetic time se-calculate variability measures of finite time series. They will
ries with prescribed power spectral densities. In all cases wexplicitly depend on the initial instant of tinig at which the
find surprisingly small finite size effects. This is certainly a series begins and on the lengdilof the series. In general one

TABLE 1V. Scaling exponents of the autocovariance detay for the power law(PL) spectrum, the
stretched exponentidSE) spectrum, the WeibullWE) spectrum, and as obtained by DFA. Data from the
same stations as in Table | are used.

Minimum temperature Maximum temperature Mean temperature
PL SE WE DFA PL SE WE DFA PL SE WE DFA

sO o081 177 093 074 08 173 093 072 080 173 093 0.68
SA 078 174 092 072 072 157 08 064 077 167 090 0.66
ZU 078 171 092 068 077 167 09 068 078 169 091 0.68
BA 075 159 08 068 074 156 085 062 076 168 090 0.72
Z/H 078 165 088 074 072 153 083 066 076 169 090 0.72
BE 069 148 080 070 077 161 088 066 075 161 088 0.66
NE 065 141 076 066 072 151 082 066 072 159 086 0.64
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cannot expect a convergence of the variabilities as a function For a discretely sampled time series the expres&2or)

of N, i.e., one cannot expect self-averaging. But even if theof the detrended fluctuation analysis yields after some alge-
variability measures converged in the limlt—« the result-  bra:
ing functions represent averages over different inequivalent
parts of the time series. The resulting average behavior of the
variability may be atypical when compared with the true
variability of the time series taken during any particular time
interval. where the filter functiorg,(u) is defined by

1 |
ForalAD =777 2 ai(WC(UADAL,  (AS)
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APPENDIX: THE DISCRETE CASE 2(|2+2| _3)

In the case of a discretely sampled time serigs T T)At (A6)
=x(nAt) one finds from Eq(2.5 for the variability mea-
sure of fluctuation analysis the expression As a function ofu the filter has its maximum ai=0, be-

comes zero at approximately=0.2, shows a minimum
nearu=0.4, and again is zero at=1. Expressing the auto-
covariance by the spectral density one finds for the variabil-

ity

|
FéA(m):u;l (I-|u))C(uAt) (A2 (A1)

The autocovarianceC(uAt)=(x,, X,) Of the stationary, 1 (n
discrete process, can be expressed in terms of the power F2 . (IAt)= 2_f dorPA(w)S(w), (A7)
spectral densitys(w) ™

1 (= where
C(uAt)=—f dw coq wuAt)S(w). (A2)
2mJo |
rPFA w)—i E cog wuAt)q(u). (A8)
Consequently one finds for the variability ! +1i=o
, 1(m The explicit expression of the filter °(w) is rather in-
FFA(IAt):EjO dor(0)S(w), (A3)  volved and will not be given here. As a function af,
FD(w) is zero atw=0, increases quadratically and reaches
where a maximum that moves closer towar@ds- 0 with increasing

I, and, at the same time increases. Between the maximum
andwAt= 7 one observes a monotomc decrease,&f(w)

FA _ _ 2
(“’)_uzl (I-Jul)cod wuAt)(At) At wAt=7 the frequency filterr[°(s«) apparently ap-
proaches 1/4 from below in the |IrTiI'E—>OO
_ 1-coqwsAt) A2 (Ad) In the limit of largel the filter functiong,(u) scales ac-

cording toq,(u)=1%q(u/l)+0O(l 1), whereq(u) is given
by (3.11) and the sum can be approximated by an integral
For large values ofl and small frequencies the filter  with the final result of the continuum limit as given in Eq.

~ 1—coq wAt)

FA(w) approaches the continuum limit, see E8.4). (3.10.
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