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Power spectrum and detrended fluctuation analysis: Application to daily temperatures

Peter Talkner and Rudolf O. Weber
General Energy Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland

~Received 13 January 2000; revised manuscript received 21 March 2000!

The variability measures of fluctuation analysis~FA! and detrended fluctuation analysis~DFA! are expressed
in terms of the power spectral density and of the autocovariance of a given process. The diagnostic potential of
these methods is tested on several model power spectral densities. In particular we find that both FA and DFA
reveal an algebraic singularity of the power spectral density at small frequencies corresponding to an algebraic
decay of the autocovariance. A scaling behavior of the power spectral density in an intermediate frequency
regime is better reflected by DFA than by FA. We apply FA and DFA to ambient temperature data from the
20th century with the primary goal to resolve the controversy in literature whether the low frequency behavior
of the corresponding power spectral densities are better described by a power law or a stretched exponential.
As a third possible model we suggest a Weibull distribution. However, it turns out that neither FA nor DFA
can reliably distinguish between the proposed models.

PACS number~s!: 02.50.Wp, 05.40.2a, 05.45.Tp, 92.60.Ry
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I. INTRODUCTION

Time series emerging from complex systems are typic
governed by an interplay of random and determinis
mechanisms. The characteristic times of such systems
vary over a large range. As a consequence one often
serves a nonexponential decay of correlations of wh
stretched exponential and algebraic decay are two exam
A precise classification of the decay of correlations is
major importance for the analysis of various natural, tech
cal, and economic systems. The direct estimate of the co
lation function of a time series is known to be limited
rather small time lags, and also the determination of
power spectrum is hampered by large statistical uncertain
if one goes to those low frequencies that reflect the long t
behavior of the system.

More recently, methods have been suggested to cope
this problem@1–3#, and to reliably gain insight into the cor
relation structure of a time series. These methods are b
on the idea of building a running sum over a given tim
scale. This corresponds to the construction of a random w
that has the values of the original time series as increme
Different quantities characterizing random walks construc
in this way have been suggested to describe the variabilit
the original time series. In the so-called fluctuation analy
~FA! @1# the average spreads of the random walk during ti
intervals of lengthss are used to define a variabilityFFA(s).
In the detrended fluctuation analysis~DFA! @3# the mean
square deviation from an optimal linear approximation of
random walk during time intervals of lengths is introduced
as a measure of variabilityFDFA(s). Further measures hav
been defined using different wavelet transforms of the r
dom walk@4#. In all these methods one searches for a pow
law describing the particular fluctuation measure as a fu
tion of the scale variables from which one infers a scaling
behavior of the power spectral density, and the covaria
function of the original time series.

First applications of FA and DFA were made in inves
gations of DNA sequences@1–3,5#. Other topics to which
FA and DFA were applied are cardiac rhythm fluctuatio
PRE 621063-651X/2000/62~1!/150~11!/$15.00
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@6,7# and financial data@8#. Recently, these methods hav
been used to study meteorological data@4,9–12#. In Ref. @9#
daily noon temperatures of several meteorological stati
were analyzed by means of DFA. The resulting scaling of
variability implies that the correlation decays as a power la
;t2a with exponenta50.7. This exponent of about 2/3 wa
also confirmed to characterize daily maximum temperatu
in a range of times between ten days and at least 25 y
@4,10#. In Ref. @11# a monthly global mean temperature s
ries was analyzed with DFA. Before DFA was applied t
data were preprocessed by means of a singular value de
position in order to remove a possible nonlinear trend. Si
this kind of filtering does not act on a predetermined range
frequencies it might also modify the low frequency behavi
It is therefore not clear to what extent the scaling exponen
0.4 in Ref.@11# is influenced by the data processing.

A main goal of the present paper is to give the gene
relationships between the different measures of variab
FFA(s), FDFA(s) and both the power spectral density a
the autocovariance of the underlying process. This allows
to identify corresponding features in the FA and DFA me
sures of variability, the power spectral density and the c
relation function.

In an application of the various methods to daily mete
rological data we will show to what extent fluctuation ana
sis can complement the classical power spectral analysis

II. METHODS

A. Power spectrum analysis

For a time seriesxi5x( iDt), i 51, . . . ,N, which is
sampled from a stationary signalx(t) at equidistant timest
5 iDt, the power spectral densityS(v) can be calculated by
a standard nonparametric technique. The time series is
vided intoK equally long segments overlapping by one-h
of their lengthM. For each segment the periodogram is o
tained by applying a Welch window and using a fast Four
transform@13#. The periodograms of all segments are av
aged, reducing the error of the spectral estimate by a fa
of about 9K/11.
150 ©2000 The American Physical Society
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PRE 62 151POWER SPECTRUM AND DETRENDED FLUCTUATION . . .
The power spectral densityS(v) is the Fourier transform
of the autocovarianceC(t)5^@x(t1t)2^x&#@x(t)2^x&#&
of the signal,

C~t!5
1

2pE0

`

dvS~v!cos~vt!. ~2.1!

Here t is a time lag and the angular brackets denote
stationary ensemble average. The normalization of the po
spectral density is chosen such that the total power is c
tained in the positive frequencies. If the autocovarian
shows a scaling behavior for times larger thant1 one also
finds a scaling behavior of the power spectrum in the co
sponding frequency regionv,2p/t1, and vice versa, i.e.,

C~t!;t2a ⇔ S~v!;v2b. ~2.2!

For a stationary time series the autocovariance at time
t50 is finite and consequently the integral of the pow
spectral density over all frequencies, i.e., the total power a
is finite. This restricts the small frequency exponent to
,b,1. If the long time exponent also takes a value 0,a
,1 the two exponents are related to each other byb51
2a. For autocovariances decaying faster thant21 the power
spectral density approaches a constant value in the limv
→0, i.e., b50. A possible scaling of the power spectr
density,S(v);v2b at large frequencies is restricted to po
tive scaling exponentsb by stationarity.

A scaling regime on a finite interval of frequencies can
principle be identified by means of the scaling of the pow
spectral density, while the autocovariance does in most c
not show the corresponding algebraic behavior because
generally obscured by a band of low frequency oscillatio
see Fig. 1. Moreover, for large time lags the autocovaria
becomes small and at the same time the statistical er
increase. Hence, the feature one is most interested in lite
disappears in the noise. The basic idea both of FA and

FIG. 1. AutocovarianceC(t) of a stationary process with
piecewise algebraic power spectral densityS(v)51 for v
,v0 , S(v)5(v/v0)20.25 for v0<v,v1 and S(v)5(v0 /
v1)0.25(v/v1)22 for v>v1 as a function of frequency. The middl
frequency range extends over two orders of magnitude fromv0

52p/2000 to v152p/20. Scales on both axes are logarithm
There are empty gaps whereC(t) is negative. No scaling behavio
is apparent in the middle range of 20,t,2000. The inset shows
the C(t) in a linear plot.
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DFA is to transform the decaying autocovariance into
increasing variability measure, which is less prone to sta
tical errors.

B. Fluctuation and detrended fluctuation analysis

Fluctuation and detrended fluctuation analysis are rec
methods@1,3# used to detect possible long-range correlatio
in time series. Five variants of fluctuation analysis are
scribed in Ref.@10#. In all variants, in a first step, a runnin
sum of the observed variablexi , i 51, . . . ,N, is calculated

y~n!5(
i 51

n

xi , ~2.3!

wheren51, . . . ,N. This sum has been called a landscape@9#
or profile @10# of the variablex and it can be viewed as
random walk with incrementsxi . We next discuss various
variability measures that are based on the so defined ran
walk.

~i! In fluctuation analysis~FA!, this random walk is di-
vided into nonoverlapping segments of lengths. The differ-
ences of the random walk’s positions at the endpoints of
segments

Dyk~s!5y„k~s11!…2y„~k21!~s11!11… ~2.4!

are computed fork51, . . .@N/„s11…#, where @x# denotes
the largest integer smaller thanx. The variability FFA(s)
over the time scales is determined as a root mean squa
difference

FFA
2 ~s!5F N

s11G21

(
k50

@N/~s11!] 21

Dyk~s!2[Dy~s!2,

~2.5!

where the bar denotes the average over all segments@4#. In
the limit N→` for a stationary ergodic processx(t), the
time average converges to the ensemble average of the
ond moment of the increment of the random walk ove
segment of lengths:

FFA
2 ~s!5^Dy~s!2&. ~2.6!

In Ref. @1# the centered second moment of the differenc
Dy(s) is used. This corresponds to a small constant shif
the variability which has minor influence on a possible sc
ing.

~ii ! In detrended fluctuation analysis~DFA! @3#, the linear
regressionsỹk,s(n)5mkn1bk of the random walk are per
formed on all segmentsk of lengths and are subtracted from
the random walk on the corresponding segment. The sl
mk and the interceptbk follow from minimizing the mean
square deviation betweeny(n) and ỹk(n) on the segmentk.
The detrended variabilityFDFA(s) is defined as the mini-
mum deviation averaged over all segments:

FDFA
2 ~s!5

1

s11 (
n5(k21)(s11)11

k(s11)

@y~n!2 ỹk~n!#2

5
1

s11 (
n51

s11

^@y~n!2 ỹ1~n!#2&, ~2.7!
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152 PRE 62PETER TALKNER AND RUDOLF O. WEBER
where the bar denotes the average over the segments
where in the second line, ergodicity ofx(t) is assumed. This
quantity measures the variability of the original signal
scales that are smaller than the segment lengths.

~iii ! In Ref. @4# three further methods based on wave
transforms are suggested for the characterization of the v
ability. For the data investigated in Ref.@4# all methods yield
very similar variabilities up to overall factors. We applie
the wavelet methods to ambient temperature data and
found them to yield qualitatively the same results as
simple FA and DFA methods. Therefore, we will only di
cuss FA and DFA in the following.

III. COMPARISON OF FLUCTUATION ANALYSIS
AND POWER SPECTRUM

Both variability measuresFFA(s) and FDFA(s) can be
related to the power spectral density, or, equivalently, to
autocovariance of the considered time series. Several m
power spectral densities, which show the relevant feature
the observed temperature spectra as described in Sec
below, will be used to determine and discuss the correspo
ing variability measures. To simplify the resulting equatio
a continuously sampled time series is considered in the
lowing. Corrections due to discreteness are shown to b
relevance only for segments that are shorter than appr
mately 20 sampling times. Corresponding results are give
Appendix A.

A. Fluctuation analysis

For the sake of simplicity we assume that the station
time seriesx(t) has zero mean̂x(t)&50. The random walk
with x(t)dt as infinitesimal increment is given by

y~ t !5E
0

t

dt8x~ t8!. ~3.1!

Accordingly, the distance covered by the random walk o
segment of lengths becomes:

Dys0
~s!5y~s01s!2y~s0!5E

s0

s01s

dtx~ t !, ~3.2!

and the mean value of the squared variability~2.5! can be
written as

FFA
2 ~s!5^Dys0

2 ~s!&52E
0

s

dt~s2t!C~t!. ~3.3!

Expressing the autocovariance in terms of the power sp
tral density, see Eq.~2.1!, one finds:

FFA
2 ~s!5

s

pE0

`

dwSS w

s D r FA~w!, ~3.4!

where

r FA~w!5
12cos~w!

w2
~3.5!
and
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acts as a filter on the power spectral density on a logarith
frequency scale. The filter functionr FA(w) is shown in Fig.
2. For white noise, i.e.,C(t2t8)5s2d(t2t8), the squared
variability increases linearly ins:

FFA
2 ~s!5s2s. ~3.6!

For an algebraically decaying autocovarianceC(t);t2a,
t.t0.0, one finds a variability measure that asymptotica
increases with a power law:FFA

2 (s);s22a for 0,a,1 and
FFA

2 (s);s for a.1. A power spectral density with an alge
braic behavior at low frequencies,S(v);v2b, also leads to
a power lawFFA

2 (s);sb11, in accordance with the relation
b512a for the scaling exponents with 0,a, b,1. The
fluctuation measureFFA

2 (s) is rather insensitive to the high
frequency behavior of the power spectral density and d
not resolve different power laws in the high frequency
gime. Moreover, if the lags becomes too short, the discret
ness of the time series leads to an increase of the variab
compared to the continuum approximation; see also the
cussion of finite sampling time effects in Sec. III B. Final
we note that the variability measure based on fluctuat
analysis does not properly resolve an intermediate sca
regime of the power spectral density extending over, s
two orders of magnitude in frequency, see Fig. 3.

B. Detrended fluctuation analysis

In detrended fluctuation analysis the linear regress
ỹs0 ,s(t)5m(s0 ,s)t1bk(s0 ,s), tP@s0 ,s01s# is calculated
by a least-square fit for each segment of lengths. The expec-
tation value of the squared variability~2.7! can be written as

FDFA
2 ~s!5

1

sEs0

s01s

dt1E
s0

s01s

dt2^y~ t1!y~ t2!&Ks0 ,s~ t1 ,t2!,

~3.7!

where the kernel is defined by

FIG. 2. The frequency filtersr FA(w) andr DFA(w) for FA ~dot-
ted line! and for DFA ~full line!, respectively, given by Eqs.~3.5!,
~3.13!, respectively. The inset shows the same functions for sm
values of the dimensionless frequencyw.
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PRE 62 153POWER SPECTRUM AND DETRENDED FLUCTUATION . . .
Ks0 ,s~ t1 ,t2!5d~ t12t2!2
12

s3 F t1t22S s01
s

2D ~ t11t2!

1S s0
21s0s1

s2

3 D G . ~3.8!

It is symmetric int1 and t2, and is stationary and scales
the following sense:

Ks0 ,s~ t11s0 ,t21s0!5K0,s~ t1 ,t2!5
1

s
K0,1S t1

s
,
t2

s D .

~3.9!

Inserting~3.1! and assuming stationarity of the signalx(t),
the variability becomes independent ofs0. It is given in
terms of the autocovarianceC(t) by

FDFA
2 ~s!5s2E

0

1

duC~su!q~u!, ~3.10!

with

FIG. 3. Variability measuresFFA(s) ~upper gray curve! and
FDFA(s) ~lower gray curve! for a piecewise algebraic power spe
tral densityS(v) as defined in the caption of Fig. 1. The midd
frequency range showing scaling of the power spectral density
be well retrieved as an intermediate scaling regime ofFDFA(s) for
lags approximately ranging betweens530 ands51500. The esti-
mated scaling exponent 0.63 agrees well with its theoretical va
(110.25)/250.625. For lags larger thans'6000 the detrended
fluctuation variability scales with an exponent of 0.5 properly
flecting the constant power spectral density at low frequencies.
increase ofFFA(s) with a power 1.5 at small lags is also in qua
titative agreement with the high frequency behavior of the sp
trum. The variabilityFDFA(s) scales with an exponent 0.5 for larg
lags down tos'1000 and then turns over into a scaling behav
with exponent 0.63 and falls off belows57 in a steeper way.
Hence, FA does not reflect the behavior of the power spectral
sity in a simple, direct way. Black solid lines refer to exact scal
laws with the indicated exponents. The results for discrete time
shown in the inset as open circles together with the continuous
results ~solid lines!. Again the upper curve refers to FA and th
lower one to DFA.
q~u!52E
0

12u

dyE
0

u2y

dt1E
0

y

dt2K0,1~ t1 ,t2!

5
2

15
2u12u22

4

3
u31

1

5
u5 ~3.11!

and in terms of the power spectral densityS(v) by

FDFA
2 ~s!5

s

2pE0

`

dwSS w

s D r DFA~w!, ~3.12!

where

r DFA~w!5E
0

1

du cos~uw!q~u!. ~3.13!

Using the explicit form ofq(u) ~3.11! we find:

r DFA~w!5@w428w222424w2 cos~w!

124 cos~w!124w sin~w!#w26. ~3.14!

Figure 2 compares the filter functions of FA and DFA. Bo
are positive functions. The most apparent difference betw
r FA(w) and r DFA(w) are the oscillations inr FA(w) while
r DFA(w) consists of a single hump. More important is th
fact thatr FA(w) has a maximum atw50 whereasr DFA(s)
vanishes there. As for the fluctuation analysis the squa
detrended variability measure increases linearly withs for
white noise. A power spectral density that diverges algeb
ically asv vanishes,S(v);v2b, results in a scaling behav
ior of FDFA

2 (s);s11b for larges. In this respect we find the
same result as from fluctuation analysis. If the power spec
density algebraically decays at large frequencies,S(v)
;v2b, the detrended variability measure increases at sm
values ofs according to the power lawFDFA

2 (s);s11b, pro-
vided thatb,3. A power spectral density that decays fas
than S(v);v23 yields FDFA

2 (s);s4 for small values ofs.
This result only holds in the continuum limit. Ifs becomes
smaller than approximately the 20-fold sampling time, t
continuum approximation gives too small results. In the in
of Fig. 3 the exact result of the discrete theory, which
sketched in Appendix A, is compared with the continuu
approximation~3.12!.

In contrast to the variability measure of fluctuation ana
sis the detrended variabilityFDFA(s) does reflect an interme
diate scaling of the power spectral density and allows one
retrieve the corresponding scaling exponent where

FDFA
2 ~s!;s11b for s1,s,s2

⇔ S~v!;v2b for
2p

s2
,v,

2p

s1
.

~3.15!

For an example, see Fig. 3. The frequency ran
@2p/s2 ,2p/s1# has to extend over at least two orders
magnitude in order that an intermediate scaling regime
well defined.
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154 PRE 62PETER TALKNER AND RUDOLF O. WEBER
C. Finite size effects

From the practical point of view it is important to know t
which extent the finiteness of data influences the result
FA and DFA. These finite size effects have been neglecte
Eqs. ~2.5!, ~2.7! by assuming that for a given lags the
weighted sum over the corresponding segments does alw
coincide with the time average over these segments, i.e.,
the time average over the segments converges sufficie
fast. This assumption amounts to the self-averaging of
fluctuation measuresFFA

2 (s) andFDFA
2 (s). It is certainly jus-

tified for scaless!N but becomes questionable if the co
sidered lag approaches the total length of the signal.

Analytic results for theN dependence of the fluctuatio
measures are difficult to obtain. We therefore performed
merical simulations of time series with given power spec
densities and compared the resulting fluctuation meas
with theN→` limit as given by Eqs.~3.4!, ~3.5!, and~3.12!,
~3.14!. As power spectral densitiesS(v) we chose a piece
wise power law model, a Weibull distribution and a stretch
exponential, which will be shown below to equally well d
scribe the daily ambient temperatures. Using the Wien
Khinchin theorem, we first construct a series ofN/252k

frequency-dependent amplitudesuS(v l)ueiw l, l 51, . . . ,N/2,
with independent random phasesw l . Upon a fast Fourier
transform one obtains a stationary time series of lengthN
having the prescribed power spectral density. Figure 4 sh
the results for the DFA measure for synthetic data serie
different lengths and different spectral densities. ForN
5215, comparable with the lengths of the temperature ser
up to even the largest scaless'N/3, the fluctuation measur
of the synthetic time series shows only small random de
tions from the theoretical result for an infinite series. As o
expects, the finite size deviations become smaller for sma
scaless. For a 16 times longer time series finite size effe
are almost invisible for alls<104. Accordingly the scatter is
increased forN5211 but still allows one to identify a linea
scaling regime in the case of the piecewise linear po
spectral model. Concerning the finite size effects, the fl
tuation analysis behaves very similarly and is therefore
shown here.

IV. APPLICATION TO CLIMATE DATA

Near-surface temperature at most locations on the E
shows considerable variations consisting of a strong diu
and of an annual cycle with amplitudes of up to several t
of degrees. In a long-term average over several deca
these cycles are very regular, whereas on a day-to-day b
large deviations from the mean behavior may occur. Th
short-term deviations from the mean temperature beha
are governed by the synoptic weather conditions, the typ
airmass, and surface properties near the given location
the relevant physical processes are well understood, num
cal weather models can in general reliably predict th
short-term deviations several days ahead. Much les
known about temperature fluctuations on time scales
tween a month and decades.

To improve the understanding of climate and weather
these time scales, in a first step the correlation structur
temperature data can be analyzed to detect possible l
range correlations. This can be done in a standard way
of
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means of the power spectral density. A summary of the
mate spectrum from time scales of one hour up to the ag
the Earth is presented in@14#. For periods less than on
month the spectral density decreases with increasing
quency. However, the resolution of the data does not al
us to determine the type of spectral decay. In Ref.@15# daily

FIG. 4. Detrended fluctuation measures for synthetic time se
of different lengthsN as functions of the scale parameters. In panel
~a! the power spectral density of the time series is given by
piecewise linear model~4.2! with v050.1p, b150.25, andb2

52. In panel~b! the power spectral density is a stretched expon
tial ~4.1! with parametersv050.1p andg50.65, and in panel~c!
the power spectral density is a Weibull distribution~4.3! with v0

50.14p and n50.9. Each panel shows the results for differe
lengths of the time series. The resulting curves are shifted rela
to each other by constant factors. The curves refer to time serie
a length ofN5219, 215, 211 from top to bottom. The gray lines
show the asymptoticN→` results given by Eqs.~3.12!, ~3.14! for
the respective power spectral densities. Note that there is an e
lent agreement even for the largest possible values ofs. The devia-
tions for smalls are due to the continuum approximation used
~3.14!. Only for the piecewise linear model a linear scaling regim
can be identified. This is visible even for the shortest time series
a guide of the eye, the broken straight line indicates the expe
scaling behavior in~a!, while in ~b! and~c! the broken straight lines
represent the expected asymptotic behavior.
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PRE 62 155POWER SPECTRUM AND DETRENDED FLUCTUATION . . .
mean temperatures of a 30-year period were analyzed
their spectrum found to follow a stretched exponential,
exponential power@16# distribution

Sse~v!5S0 exp@2~v/v0!g# ~4.1!

with three parametersS0 , v0, and g. The exponent was
found to beg'0.54 @15#.

In Ref. @17# the asymptotic behavior of the power spe
trum of 11 years’ daily temperatures is investigated. For t
purpose averages over large numbers of stations were
formed. For over 1000 continental stations the aver
power spectral density has been fitted by a power
S(v);v2b with an exponentb150.37 in the low frequency
limit and an exponentb251.37 describing the high fre
quency behavior. The crossover between the two regime
near the frequency corresponding to one month. The ave
power spectral density of 100 maritime stations scales in
whole frequency regime with the exponentb50.63 @17#.

A. Data

Long time series of instrumental daily temperature valu
from Central Europe were analyzed in@18# for possible long-
term trends. The same homogenized data are used fo
present analyses. Daily mean temperature~obtained as mean
of three temperature readings at fixed times!, daily mini-
mum, and daily maximum temperatures were available fr
four low-altitude stations, Basel-Binningen, Zu¨rich-SMA,
Bern-Liebefeld, and Neuchaˆtel, and from three mountain sta
tions, Sonnblick, Sa¨ntis, and Zugspitze, all three located
an altitude higher than 2500 m. Details of the station lo
tions are given in Table I of@18#. Zugspitze data are avail
able from 1901 through 1992, with 106 days missing fro
May 1945 on. These missing values were replaced by
mean annual cycle giving time series of a length of 33 6
days. Sonnblick data are available from 1887 through 19
with missing data at a few isolated periods of at most fi
days length. These gaps were filled by linear interpolat
resulting in time series of 39 050 days. For the Swiss stati
data from 1901 through 1997 are used, giving time se
with a length of 35 429 days without any gaps.

FIG. 5. Annual cycles of the maximum, mean, and minimu
daily temperatures for Zu¨rich.
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Diurnal temperature data from the midlatitudes have
pronounced annual cycle. Thus, the power spectrum of
raw data has a strong peak at a frequency correspondin
one year. This annual peak will shadow many of the featu
of nearby frequency bands and obscure a possible sca
behavior. Therefore, the annual cycle is removed by subtr
ing the mean annual cycle from the data. This mean ann
cycle is determined by calculating for each day of the y
the average over all years of the time series, see Fig. 5. A
removal of the mean annual cycle, time series of tempera

FIG. 6. Histogram of the anomalies of the mean daily tempe
tures for Zürich. The full line shows the Gaussian distribution wi
the mean value and variance estimated from the data.

FIG. 7. Power spectral densities for different temperature se
from Zürich and Sa¨ntis. The high frequency behavior is well de
scribed by a power law. A straight line with indicated slope is giv
to help the eye. At low frequencies a scaling assumption appare
describes the data less good.
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anomalies are obtained, which will be used in the furth
analyses. Figure 6 shows a histogram of the Zu¨rich mean
temperature anomalies, which is quite well described b
Gaussian distribution with a standard deviation of 3.7 °
The other temperature series give similar anomaly his
grams with standard deviations ranging from 3.2 to 4.7 °

B. Power spectrum of daily temperatures

The power spectral densities of the temperature anoma
are calculated as described in Sec. II. The power spe
densities for frequencies higher than 2p/100 are obtained a
the averaged periodigrams of 68 blocks each of length 1
d. For lower frequencies the average is performed over
blocks of length 4096 d. The power spectra of the two s
tions, Zürich and Sa¨ntis, representing low altitude and mou
tain stations, respectively, are shown in Fig. 7. The spectr
minimum, maximum, and mean temperatures of Sa¨ntis decay
at large frequencies asv22 as well as those of the othe
mountain stations. The same high frequency dependenc
also found for the mean values of the other Swiss lo
altitude stations and stations in Hungary@19#. This corre-
sponds to a random-walk-like behavior of the temperature
short time scales and in continuous time would correspon
a decay of the autocovariance with a finite slope att50.
Minimum and maximum temperatures at Zu¨rich and the
other Swiss low altitude stations also approach the high
frequency in good approximation with a power low, how
ever, asv21.5. The corresponding behavior of the correlati
function in continuous time is a cusp with a square-root-l
singularity att50. In discrete time these types of behavi
cannot always be distinguished.

C. FA and DFA of daily temperatures

The variabilitiesFFA(s) of the daily temperatures are ca
culated by means of Eq.~2.5! for Zürich and Sa¨ntis and
shown in Fig. 8. There are only minor differences betwe
Zürich and Sa¨ntis and between maximum, minimum, an
mean temperatures. The differences are more pronounce
larger lagss for both stations and are larger for Zu¨rich than
Säntis. In all cases the maximum temperatures show the l
est variability, minimum and mean temperature variabilit
are alway very close to each other. A clear scaling beha
is hard to identify in any of the displayed curves. The cor
sponding curves for the variabilityFDFA(s) of the detrended
fluctuation analysis as given by Eq.~2.7!, show even smaller
deviations between the three types of temperatures. Th
fore we show in Fig. 9 results only for the maximum Sa¨ntis
temperature.

D. Comparison

For a better comparison we consider three different m
els that we formulate in terms of the power spectral dens
The first one is a piecewise power law model, which rea

Spl~v!5S0H S v

v0
D 2b1

for v,v0

S v

v0
D 2b2

for v0>v.

~4.2!
r

a
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The parameters chosen for the different stations and temp
ture series are collected in Table I. A similar model has be
suggested in Ref.@17# with b150.37 andb251.37 being in
rough agreement with our findings for low-altitude station
In Ref. @20# a three-year record of 3-h ambient temperatu
was analyzed. The high frequency exponent 1.78 is clos
ours, whereas the low frequency exponentb150.72 is con-
siderably larger than what we find; see Table I. The discr
ancy may partly be caused by the shorter time series use
@20# but also by the fact that the annual cycle was not
moved from the data.

FIG. 8. Variability FFA(s) for daily temperatures from Zu¨rich
~upper group of curves! and Sa¨ntis ~lower group of curves! as a
function of the time lags. The dotted lines correspond to maximu
temperatures, the broken line to minimum and the solid line
mean temperatures. All curves relating to Sa¨ntis are multiplied by a
factor of 8 such that they are separated from the respective cu
of Zürich

FIG. 9. The three black curves represent the variabilit
FDFA(s) resulting from the piecewise power law~upper curve!, the
stretched exponential~middle curve!, and the Weibull ~lowest
curve! power spectral densities with parameters obtained fr
maximum temperatures of Sa¨ntis, see also Fig. 10 below. The upp
and lower curves are multiplied by factors of 10 and 1021, respec-
tively for better visibility. The gray curves show the results of DF
for the maximum temperatures of Sa¨ntis.
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The second model is defined by a stretched expone
power spectral density as given in Eq.~4.1!. The parameter
values that fit the data best are given in Table II. Finally,
compare with a power spectral density that is given b
Weibull distribution:

SWe5S0~v/v0!n21 exp@2~v/v0!n#. ~4.3!

The parametersS0 , v0, and n of this model are given in
Table III. A comparison of these models with the pow
spectral density for the Sa¨ntis maximum temperatures i
shown in Fig. 10. All three models fit the data reasona
well. The discontinuity of the slope at the merging point
the different power laws inSpl(v) and a too steep decay o
SWe(v) at high frequencies present the main visible dev
tions of the model spectra from the data. The stretched
ponential model qualitatively differs from the other tw
models in that it approaches a constant value of the po
spectral density at zero frequency, while the other two m
els diverge there. However, the comparison of the spec
densities does not reveal this difference because of the fi
amount of observations.

For all three models, the autocovariances decay accor
to an algebraic law,t2a. For the piecewise power law mode
the exponent isa512b2, and for the Weibull modela
5n. In the present cases the resulting exponentsa are posi-
tive and smaller than one and roughly coincide with ea

TABLE II. Parameters of the stretched exponential model~4.1!
for the spectral density for the same stations as in Table I.

Minimum
temperature

Maximum
temperature

Mean
temperature

S0 v0 g S0 v0 g S0 v0 g

SO 307 0.33 0.77 286 0.28 0.73 291 0.30 0.7
SA 331 0.29 0.74 442 0.18 0.57 354 0.25 0.6
ZU 320 0.29 0.71 325 0.27 0.67 307 0.28 0.6
BA 306 0.16 0.59 515 0.15 0.56 310 0.20 0.6
ZH 245 0.20 0.65 527 0.15 0.53 294 0.22 0.6
BE 336 0.10 0.48 409 0.20 0.61 291 0.19 0.6
NE 372 0.06 0.41 487 0.11 0.51 302 0.15 0.5

TABLE I. Parameters of the power law model~4.2! for the
spectral density for the stations Sonnblick~SO!, Säntis ~SA!, Zug-
spitze ~ZU!, Basel-Binningen~BA!, Zürich SMA ~ZH!, Bern-
Liebefeld ~BE!, and Neuchaˆtel ~NE!. The parameterb2 equals 2
except for the minimum and maximum temperature at the stat
BA, ZH, BE, and NE, whereb251.5.

Minimum
temperature

Maximum
temperature

Mean
temperature

S0 v0 b1 S0 v0 b1 S0 v0 b1

SO 147 0.34 0.19 133 0.31 0.20 136 0.33 0.2
SA 147 0.33 0.22 129 0.39 0.28 139 0.35 0.2
ZU 135 0.36 0.22 129 0.37 0.23 127 0.37 0.2
BA 115 0.23 0.25 177 0.25 0.26 122 0.28 0.2
ZH 105 0.22 0.22 164 0.29 0.28 119 0.29 0.2
BE 86 0.27 0.31 163 0.26 0.23 107 0.29 0.2
NE 72 0.27 0.35 141 0.25 0.28 97 0.29 0.2
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other. Most of them are larger than the value ofa52/3 given
in @4#. The stretched exponential model with a positive e
ponent g,1 leads to the autocovariance exponenta51
1g and, hence, is even larger than one. Again, from the d
these different types of behavior cannot be distinguished
cause of their finite lengths, see Fig. 11. In Table IV t
values of the exponentsa for different stations and differen
temperature types are compared as they result from fits o
three model power spectral densities and from the data
means of DFA.

Finally, within the time scales of lags for which the DF
variability can be reliably estimated, only the piecewi
power law model shows a well defined scaling behavior
large lagss. Both the stretched exponential and the Weib
model show a slight curvature up to the largest observa
lags. The comparison with the data is shown in Fig. 9. It
equally good for all three models of which the stretched
ponential shows the most pronounced, but still rather sm
deviations for large lags.

V. SUMMARY

We have investigated the question of whether FA or D
do provide insight in the long time behavior that goes b

TABLE III. Parameters of the Weibull model~4.3! for the spec-
tral density for the same stations as in Table I.

Minimum
temperature

Maximum
temperature

Mean
temperature

S0 v0 n S0 v0 n S0 v0 n

SO 232 0.46 0.93 205 0.43 0.93 209 0.46 0.9
SA 237 0.44 0.92 215 0.48 0.85 223 0.46 0.9
ZU 220 0.47 0.92 207 0.48 0.90 204 0.48 0.9
BA 155 0.41 0.85 247 0.43 0.85 200 0.36 0.9
ZH 146 0.39 0.88 228 0.49 0.83 193 0.38 0.9
BE 117 0.46 0.80 227 0.44 0.88 174 0.38 0.8
NE 97 0.48 0.76 195 0.43 0.82 158 0.37 0.8

FIG. 10. Piecewise power law, stretched exponential, a
Weibull power spectral densities~black lines!, from top to bottom,
compared to the estimated spectra for the Sa¨ntis maximum tempera-
tures ~gray lines!. Spectra are stretched relative to each other
factors of 10 for better visibility.
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yond the possibilities of spectral analysis. An important a
vantage of FA and DFA lies in the fact that, for a stationa
process, the variability measuresFFA

2 (s) and FDFA
2 (s) are

self-averaging, i.e. the estimate of the variability measu
from finite time series, as given by Eq.~2.5! in case of FA,
converge in the limit of infinite time series towards the e
semble average ofFFA

2 (s). One can show that for a proces
with decaying autocovariance the variance of the squa
variability measure~2.5! determined from a finite time serie
of lengthN converges to zero asN21/2. The same also hold
for DFA. Therefore no extra averaging procedures are n
essary for FA and DFA as they have to be performed
spectral analysis. This renders FA and DFA a more syst
atic procedure in contrast to spectral analysis, which is so
thing of an art. However, one must not forget that for tim
series of finite lengths the variability at large lagss may still
have large statistical uncertainties. We have illustrated th
finite size effects with a few examples of synthetic time
ries with prescribed power spectral densities. In all cases
find surprisingly small finite size effects. This is certainly

FIG. 11. Autocovariances resulting from the piecewise pow
law ~broken line!, stretched exponential~solid line!, and Weibull
~dotted line! power spectral densities, each with the parameter
the Säntis maximum temperatures as shown in Fig. 10 compa
with the autocovariance directly estimated from the data~points!.
The error bars are estimated according to Ref.@22# and indicate the
statistical uncertainty. For time lags larger than 100 the error b
become larger than the estimated values of the autocovariance
-

s

-

d

c-
n

-
e-

se
-
e

strong virtue of the detrended fluctuation analysis. We a
investigated the finite size effects for fluctuation analy
with very similar results as for the DFA.

For stationary time series, which do not decay accord
to a power law, FA and DFA do not seem to represent p
ticularly convenient instruments to identify or distinguis
concrete models.

For the ambient temperature time series of the 20th c
tury it is not possible to distinguish by means of DFA b
tween models that are compatible with the observed po
spectral densities. Yet the different models lead to sign
cantly different scaling behavior of the autocovariance
cay. Though it is not possible to identify a definite optim
model by means of FA or DFA, these methods unambi
ously show long time correlations of the temperature fluct
tions that extend up to the longest observable time la
Without these correlations the FA and DFA fluctuation me
sures would scale with the exponent 0.5 at large lags.
analysis has shown that one third of the total length of
time series represents a conservative estimate for the la
observable lag. Hence, the temperature fluctuations are
related up to at least 30 years. These long time effects
most likely caused by the ocean dynamics, which intera
with that of the atmosphere.

The FA variability measureFFA
2 (s) coincides with the

structure function as defined in the theory of turbulence@21#,
if one interprets the integrated processy(t) as the velocity of
a turbulent field measured at a fixed point in space. So
only the second-order structure function has been use
FA. If FFA(s) shows scaling at large lagss it would be
interesting to also ask about the behavior of the higher or
structure functionsFFA

p (s)5^uDys0
(s)up&. For an underlying

Gaussian process a trivial scaling will result, i.e.,FFA
p (s)

;@FFA
2 (s)#p/2;spz2/2, whereas non-Gaussian processes w

give rise to intermittency corrections, i.e.,FFA
p ;szp, where

zpÞpz2/2. Since we could not identify an unambiguou
scaling regime in the temperature time series we did
pursue this direction further.

We have always assumed that the underlying processx(t)
is stationary or, at most has a linear trend that is autom
cally removed by DFA. If this is not the case, one can s
calculate variability measures of finite time series. They w
explicitly depend on the initial instant of timet0 at which the
series begins and on the lengthN of the series. In general on

r

f
d
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68
66
68
2

72
66
64
TABLE IV. Scaling exponents of the autocovariance decayt2a for the power law~PL! spectrum, the
stretched exponential~SE! spectrum, the Weibull~WE! spectrum, and as obtained by DFA. Data from t
same stations as in Table I are used.

Minimum temperature Maximum temperature Mean temperature
PL SE WE DFA PL SE WE DFA PL SE WE DFA

SO 0.81 1.77 0.93 0.74 0.80 1.73 0.93 0.72 0.80 1.73 0.93 0.
SA 0.78 1.74 0.92 0.72 0.72 1.57 0.85 0.64 0.77 1.67 0.90 0.
ZU 0.78 1.71 0.92 0.68 0.77 1.67 0.90 0.68 0.78 1.69 0.91 0.
BA 0.75 1.59 0.85 0.68 0.74 1.56 0.85 0.62 0.76 1.68 0.90 0.7
ZH 0.78 1.65 0.88 0.74 0.72 1.53 0.83 0.66 0.76 1.69 0.90 0.
BE 0.69 1.48 0.80 0.70 0.77 1.61 0.88 0.66 0.75 1.61 0.88 0.
NE 0.65 1.41 0.76 0.66 0.72 1.51 0.82 0.66 0.72 1.59 0.86 0.
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cannot expect a convergence of the variabilities as a func
of N, i.e., one cannot expect self-averaging. But even if
variability measures converged in the limitN→` the result-
ing functions represent averages over different inequiva
parts of the time series. The resulting average behavior o
variability may be atypical when compared with the tr
variability of the time series taken during any particular tim
interval.
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APPENDIX: THE DISCRETE CASE

In the case of a discretely sampled time seriesxn
5x(nDt) one finds from Eq.~2.5! for the variability mea-
sure of fluctuation analysis the expression

FFA
2 ~ lDt !5 (

u52 l

l

~ l 2uuu!C~uDt !~Dt !2. ~A1!

The autocovarianceC(uDt)5^xk1uxk& of the stationary,
discrete process,xk , can be expressed in terms of the pow
spectral densityS(v)

C~uDt !5
1

2pE0

p

dv cos~vuDt !S~v!. ~A2!

Consequently one finds for the variability

FFA
2 ~ lDt !5

1

2pE0

p

dvr l
FA~v!S~v!, ~A3!

where

r l
FA~v!5 (

u52 l

l

~ l 2uuu!cos~vuDt !~Dt !2

5
12cos~vsDt !

12cos~vDt !
~Dt !2. ~A4!

For large values ofl and small frequenciesv the filter
r l

FA(v) approaches the continuum limit, see Eq.~3.4!.
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For a discretely sampled time series the expression~2.7!
of the detrended fluctuation analysis yields after some a
bra:

FDFA
2 ~ lDt !5

1

11 l (
u50

l

ql~u!C~uDt !Dt, ~A5!

where the filter functionql(u) is defined by

ql~u!5
l 212l 23

15
du,0Dt1~12du,0!

3S 1

5l ~ l 11!~ l 12!
u52

4l 218l 13

3l ~ l 11!~ l 12!
u3

12u22
15l 4160l 3155l 2210l 212

15l ~ l 11!~ l 12!
u

1
2~ l 212l 23!

15 DDt. ~A6!

As a function ofu the filter has its maximum atu50, be-
comes zero at approximatelyu50.2l , shows a minimum
nearu50.4l , and again is zero atu5 l . Expressing the auto
covariance by the spectral density one finds for the varia
ity

FDFA
2 ~ lDt !5

1

2pE0

p

dvr l
DFA~v!S~v!, ~A7!

where

r l
DFA~v!5

1

l 11 (
u50

l

cos~vuDt !ql~u!. ~A8!

The explicit expression of the filterr l
FD(v) is rather in-

volved and will not be given here. As a function ofv,
r l

FD(v) is zero atv50, increases quadratically and reach
a maximum that moves closer towardsv50 with increasing
l, and, at the same time increases. Between the maxim
andvDt5p one observes a monotonic decrease ofr l

FD(v).
At vDt5p the frequency filterr l

FD(p) apparently ap-
proaches 1/4 from below in the limitl→`.

In the limit of large l the filter functionql(u) scales ac-
cording to ql(u)5 l 2q(u/ l )1O( l 21), whereq(u) is given
by ~3.11! and the sum can be approximated by an integ
with the final result of the continuum limit as given in Eq
~3.10!.
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