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Numerical verification of bona fide stochastic resonance
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The notion of stochastic resonance as an input/output synchronization mechanism is reestablished quantita-
tively, based on accurate numerical simulation of a simple two-state model, namely, the Schmitt trigger. The
corresponding phenomenological criterion known as bona fide stochastic resonance is thus proven applicable
throughout the entire range of the input parameters. Claims to the contrary are briefly discussed.

PACS numbd(s): 05.40—a

I. INTRODUCTION tilted minima is neglectef4]). (b) For weaklydriven devices
Agym/D<1, the switch-time distribution peaks become
Stochastic resonan¢BR) is an intriguing phenomenon of hardly detectable, so that a synchronization condition would
nonlinear physics, where an optimal amount of noise has thmake no sense. This is not the SR regime best investigated
capability of enhancing the rate of synchronous switches beexperimentally in the current literatui®,7]; nevertheless,
tween the local minimaty,,, of a bistable system driven by the limit of vanishingly small input amplitudes may have a
a weak periodic modulatiofor forcing signal with period bearing on the SR phenomenology in that it embodies the
T, and amplituded, [1]. Stochastic resonance rests upon aapproximations leading to the linear response theory for the
noise controlled synchronization mechanism which can bgrocess under study].
vividly illustrated in terms of switch-time distributions. The  In order to sort out the ensuing controversy we planned an
most convenient choice is provided by the distributionextensive simulation project aimed at gathering high statis-
N,(T) of the residence times, commonly defined as the timdics residence time distributions for the archetypal two-state
intervals between any two subsequent switchesgposite ~ model, namely, the symmetric Schmitt trigg&ec. 1). Pre-
directions[see Fig. 1a)]. Since the modulation favors the liminary results for the strongly driven reginfand details of
switching events by perturbing the symmetry of the systempur simulation codewere published in Ref§4] and[5]. In
N,(T) peaks afclose to T,=(n—1/2)T, with n=1,2,...; the present paper we focus on the case of a weakly driven
the input/output synchronization sets in when the first pealtrigger where criticism(b) seems to be more serious. This
of Ny(T) (at T/2) dominates the remaining peaks and thework should be regarded as a numerical experiment, whose
exponential random-switch background; each distributioroutcome provides a benchmark for further analytic studies.
peak exhibits its own maximum for a certain value of theFor the time being, we conclude that numerical simulation
noise strength given by the phenomenological condiigjn  does vindicate the notion of bona fide SR; moreover, the
synchronization conditioril) can be implemented quantita-
Tomo(D)=1, (1)  tively more effectively than originally present¢a].

where uo(D) is the Kramers escape rate out of one stable Il. THE SCHMITT TRIGGER
minimum, D denotes the noise strength, amthbels theN;
peak centered &f,. Equation(1) for n=1 corresponds to ~ The symmetric Schmitt triggeST) provides the simplest
the optimal synchronizatiofor SR condition, which can be €xample of a bistable system exhibiting 883. Our numeri-
attained on varying eithe® or D. Such a characterization of cal investigation was limited to such a two-state model, al-
the SR phenomenon is often referred to as bona fidg2kR though the conclusions discussed below are of wider appli-
It should be noticed that in the more popular spectral reprecation to the theory of SR. As a major advantage with
sentation[1], no SR condition sets in as a function of the respect to the continuous bistable systems studied in the ear-
forcing frequency, the only control parameter being the noisdier literature[1], the output of a ST is entirely controlled by
strength. This difference makes the notion of bona fide SRhe switching mechanism, whereas in a continuous bistable
particu|ar|y attractive to experimenta"sts_ system interwell and intrawell dynamics are hard to unravel.
Recently, the interpretation of SR as a bona fide reso- Typically, the ST[8,9] input consists of two components,
nance has been questiong8] on two accounts(a) For ~ Whose amplitudes greatly depend on the experimental cir-
stronglydriven device®\yy,,/D>1 the peak resonance con- cumstances(i) a noisy signal with zero mean and finite cor-
dition (1) would be inaccurate; as a consequence, doubts afé&lation time; (ii) one or more embedded periodic signals
cast on the validity of the underlying resonant synchronizaWwith arbitrary wave forms. Let us consider for simplicity
tion argument, mostly motivated by an approximate analysigput signalsx(t) of the form
of the escape process in a periodically tilted bistable poten-
tial (where theA, dependence of the escape rates between X(t)=&(t) +Agsin(Qt+ ¢), 2
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6/b=0.40 T\/; b
To(b)=——= e“T1+d(x)]%dx, 4
o/b=034 o(b) 1+ 0(D) )= [ (x)] (4)

5/b=0.29

with ®(x) = (2/\/m) [ e~ Zdx andb=b/\252. As the noise
intensities are smally<b, Eq. (4) may be approximated to
To(b) =727 (a/b)exp®?25?). Note that in this limit
<Ty(b).

In the adiabatic limit Agb/?) QTo(b)<1 [10], the am-
plitude (y) of the periodic component of the trigger output
reads

Ny(T)

6/b=0.16

Agb Mo
(y)= ym( 5
o

0.15 0.20 0.25 0.30 035 with wo=2/To(b). This leads to the popular spectral charac-
T ' ' ' terization of SR[1], where the system response exhibits a
maximum only as a function of the noise intensityat fixed

Q).

Vil < e, e The synchronization mechanism underlying the SR phe-
/o Va \'\ Q nomenon has been investigated extensively in the opposite

®
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oo /’ \ N regime of strongly drivendevices[1] only; for a ST this
\ \ corresponds to choosingr(b)?<A,/b<1 [6,7]. On look-

ing at the residence time distributions of Figa)l it is ap-
parent that the strength,, of the nth N, peak,
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with 0<a<1/4 [2], exhibits SR behavior as a function of
FIG. 1. (a) Normalized residence time distributioi (T) (ar- both o (at fixed Q) andQ (at fixed ¢). The o and Q de-
bitrary unit9 for () 7=1.25%x 1072, Ay/b=0.5, and different val- pendence OPl is shown in Fig. lb) Here, the(negligibly
ues of o/b. (b) Peak strength$; and P, versuso/b (at 7 gma)) exponential random-switch background has been first
ol ) i sty oo 027 o 325312 lown up by aking he lgarthm ofn residence e di
‘ n tribution and then subtracted by means of a standard linear

explicitly in Eq. (6). Time and signal scales'=2x10"° s andb - . - Lo .
— 200 (arbitrary units. The choice of thas/b axis origin and the fitting algorithm; thesubtracteddistribution is denoted by

orientation of the logarithmi€) = axis are motivated by purely ty- N1(T). Note that our background subtraction procedure has
pographical reasons. been carried out in the presence of modulation, although in

the weakly driven regime the background does not depend
happreciably on the modulation amplitufig].

In view of the scales chosen for’b andQ 7 in Fig. 1(b),
the time constant matching conditigh) implied by SR as
well as the existence of a maximum synchronization distri-
butionN4(T) in Fig. 1(a) are apparent. Therefore, as detailed
(£(t)€(0))=cg2e I, (3)  in [4], for a strongly driven subthreshold ST the scheme of
bona fide SR is sound both qualitatively and quantitatively—
i.e., the criticisms of Refl3] do not apply.

where &(t) is a zero-mean stationary Gaussian noise wit
intensity (i.e., standard deviatiorno, strengthD = ¢, and
autocorrelation function

Throughout this worké(t) is assumed to be short-time cor-
related in comparison with the modulation, that s7<1
(steady-state limjt The trigger output rests in state as
long as the inpuk(t) is smaller than a threshold vallbe As The input/output synchronization effect in a weakly
x(t) crossed the trigger switchegalmos} instantaneously driven ST is, of course, much harder to quantify. In Fig. 2
into state+ and remains there as long a&ét)>—b. The the residence time distributids, (T) is plotted for two small
trigger output is a dichotomic signal with valuesy,; inthe  values of the input amplitud&, and fixed noise intensity-.
following yy, is set to 1 for convenience. Of course, thelt is apparent that th&l, peak structure tends to merge into
modulation of the input signal2) drives a periodic output the random-switch background, to the point that for the
componenty(t)) with periodTo=2x/). smallest amplitude we managed to simulaig/b=0.025,

In theweakly driverregimeA,/b<<(o/b)2<1 the trigger  the fraction of synchronous switches amounts to a few per-
switches from ther to the= state are noise-assisted randomcent of the sample. In order to appreciate the magnitude of
events that occur with time constaits (Ay) =To(b), where  the synchronization effect, we verified first that the random-
To(b) is the spontaneous switch tinié] switch background closely fits an exponential cutFay. 2,

Ill. SIMULATION RESULTS
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FIG. 2. Residence time distributior’$;(T) for Agb/a?=1.0
(top), 0.3 (bottom. Other simulation parameter values are as in Fig.  FIG. 3. Curves ofP, versusa/b for different values ofA,/b
1. Inset: subtracted distributidd; (T); the area enclosed under the and Q7= 1.25x 10" 2. Other simulation parameter values are as in
numerical curve corresponds ®8,. The solid lines represent the Fig. 1. Note that each value ¢, has been computed from the
fitted exponential curves of our subtraction procedure. corresponding switch-time distribution after subtraction.

. shift toward lowera/b values with decreasing), as ex-
top panel and then we subtractgd it froM(T) so as to pected. However, the peak values Bf(o/b) decrease
extract the residual peak structukg(T) (Fig. 2, insel; fi-  monotonically withQ—of course,P,;<1 for any choice of
nally, the first peak strengtR; was computed according to & and (). This trend confirms the spectral representation re-
our definition (6). For this subtraction procedure to make sylt that the synchronization effect underlying SR is most
sense, one not only requires very high statisfmsr N1(T)  pronounced at vanishingly low forcing frequendié (ii) In

distributions were computed over samples of up t8 8  the upper inset of Fig. 4, is plotted versus) for the
corded switchels but also stipulates the exponential separa-

bility of peaks from backgroundin our numerical experi- QT
ment such a property was checked on a run-by-run pasis 0.5 — ; . . . 001

The dependence @1, on the noise intensity is plotted in
Fig. 3 for three values of the forcing amplitude. A few im-
portant properties of the synchronization mechanism in the o4
weakly driven regimeA,b/a?<1 can easily be pointed out
by inspection(i) after background subtraction, all curves of
P, versusc/b attain a distinct maximum, even for vanish- 037
ingly small values ofA,/b; (ii) within the accuracy of our !
numerics, the position of the SR maxima is rather insensitive
to the value ofA,/b; (iii) the maxima of the curveB, (o)
dependjuadraticallyon A, [as suggested also by E¢40) of
Ref.[3]]. Propertiedi) and(ii) suggest that the synchroniza- ol ‘ . , ‘
tion based definition of SR is consistently applicable, at least ~—~ 02¢ 02 02 03 032 001 0.02
in principle, no matter how small the input amplitude. The o/b {r
observation that the SR value of the noise intensity tends to FIG. 4. Curves oP, versusa/b for different values of) » and

a unique limit for Ag/b—0 is compatible with the linear 5 /h—0.1. Other simulation parameter values are as in Fig. 1. Ver-

response theory description of the SR phenomégpemaps  ica| arrows denote the optimal value @fb according to condition

more familiar to the reader from the spectral representation) on increasing) = from the left to the right. Upper inset: peak

of Eg. (5)]. strengthP; versusQ 7. Lower inset: escape timés, versusQ. In
The dependence d?; on the input frequencyl, plotted  poth insets the noise intensity'b was set to 0.2%estimated posi-

in Fig. 4, reveals a few further properties of the SR synchrotion of theP; peaks in Fig. 3 The magnitude of the statistical error

nization mechanism(i) The peaks of the curveB,(a/b) falls within the data-point thickness.

02
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(constant o/b value corresponding to the maxima Bf;
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(1) As pointed out in Ref[3], the N; peak strength®,

versusa/b in Fig. 3. As the maximum of this curve shifts do grow vanishingly small foA,/b<1. However, the sub-
toward lower frequencies, it is clear that under the conditionsraction of the exponential background allowed us to show

of Fig. 3 the synchronization rul@) is not exact. However,
our simulation shows that conditiofl) works better and
better as thé?,(a/b) peaks shift toward lowes/b values,
namely, at low frequenciesiii) In the lower inset of Fig. 4
we plottedT.. /T, versusQ r for the same simulation pa-
rameter values as in the upper ingtte definition ofT-. is
given in Sec. l]. As the strengthP, versus() attains its
maximum, the ratiol . /T, approaches 1/2, as required b

Eq. (2).

The results of Fig. 4 lead to a better assessment of th

synchronization conditior{l). In contrast to Ref[3] (see

Sec. IVE therg we find that the notion of bona fide SR
applies reasonably well throughout the parameter valu
range explored numerically in the current literature. The syn

y

that P, (and also the remaining,) decreases quadratically
with Ag/b. It should be noticed that this is precisely the
same difficulty we are confronted with in spectral represen-
tation. There one must compute the subtracted power spec-
tral density of the outpuy(t) at the forcing frequency; the
strength of thes-like spectral spike corresponding to the
periodic output componerly/(t)) [see Eq(5)], turns out to
be quadratic iMy/b [1]. The applicability of the bona fide
gR criterion to everyday laboratory practice is confirmed by
recent experimental reports algbl].

(2) We chose to simulate SR in a modulated ST because

this problem is numerically more tractable than the continu-
ous bhistable process addressed in R&f. This corresponds

chronization rule(l) is strictly obeyed at low frequencies, to filtering out the unimportant details of the intrawell dy-

namely, when thé?;(o/b) peaks pile up in the low noise
intensity domain and the quantitfb/o? tends to grow
larger than unity(strongly driven device§4]). For practical
uses, we notice that conditidi) works better to locate the
maxima of P; versus() (at fixed o/b), than vice versa.
Finally, it should be pointed out that E¢37) of Ref. [3]
fails, too, to reproduce this complicated dependende,afn
o and(). [For the ST of Eqs(3) and(4) Choi et al. would
have concluded tha®P,; was a function ofe and 8 alone,
with a=Agb/o? and B= uy/Q.]

IV. DISCUSSION

namics so that high statistics switch-time distributions be-
come accessible by means of a personal computer. We be-
lieve that such a simplification does not affect the validity of
our conclusions. The output of a continuous bistable process
can anyway be fed through a two-state filter, thus producing
a stochastic signal that is hardly distinguishable from the
output of a subthreshold ST.

(3) To our knowledge, there are no existing theories that
account for the de-synchronization mechanism that occurs at
high noise intensities. For instance, on increasiiily above
the relevant SR value, the switch phase distributions develop
a doubly peaked profile, being now dominated by in-phase
and 7 out-of-phase switch events. This numerical observa-

The results of the foregoing section clearly support thetion, reported in Ref[5], calls for an even more systematic
notion of bona fide SR. We make now a few concludingtheory of the residence time distributions in the presence of a

remarks.

periodic modulation.

[1] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev.

Mod. Phys.70, 223(1998.

[2] L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys. Rev.

Lett. 74, 1052(1995.
[3] M. H. Choi, R. F. Fox, and P. Jung, Phys. Rev5E 6335
(1998.

[4] F. Marchesoni, F. Apostolico, L. Gammaitoni, and S. Santucci,

Phys. Rev. B58, 7079(1998; F. Marchesoni, F. Apostolico,
and S. Santuccibpid. 59, 3958(1999.

[5] F. Marchesoni, F. Apostolico, and S. Santucci, Phys. Lett. A

248 332(1998.

[6] S. Fauve and F. Heslot, Phys. Le#7A, 5 (1983; B. Mc-
Namara and K. Wiesenfeld, Phys. Rev.38, 4854(1989.
[7] A. Lontgin, A. R. Bulsara, and P. Moss, Phys. Rev. L6,
656 (1991); T. Zhou, F. Moss, and P. Jung, Phys. Rev42,

3161(1990.

[8] V. I. Melnikov, Phys. Rev. E48, 2481(1993.
[9] J. Millman, Microelectronics (McGraw-Hill,
1983.

[10] For theadiabatic conditionthe starting point is represented by
the ansatz,p(x,t) = — up(x,t) for the time relaxation of the
process probability densitg(x,t); hence,p(x,t)=e™ *p(x).
Suppose now that a time perturbation is added that leaves the
structure of the problem eigenvalues unchanged, i.e., such that
{mn}—{mn(t)}. This may happen only under the condition
that |u/wm?/<1, so that ap(x,t)=—(u+ut)p(x,t)=
— n(t)exd — u(1—uw/ pAtp(X)=—u®)p(xt). The restriction
aB<1 is implicit also in Eq.(37) of Ref.[3], where, to make
contact with the parameters of the present problem,
=Agb/o? and B= o /().

[11] G. Giacomelli, F. Marin, and I. Rabbiosi, Phys. Rev. L&®,
675(1999.

New York,



