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Nutrient chemotaxis suppression of a diffusive instability in bacterial colony dynamics
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Bacteria grown on a semisolid agar surface have been observed to form branching patterns as the colony
envelope propagates outward. The fundamental cause of this instability relates to the need for limited nutrient
to diffuse towards the colony. Here, we investigate the effect on this instability of allowing the bacteria to
move chemotactically in response to the nutrient gradient. Our results show that this additional effect has a
tendency to suppress the instability. Our calculations are done within the context of a simple “cutoff” model
of colony dynamics, but presumably remain valid for more complex and hence more realistic approaches.

PACS numbe(s): 87.10+e

When bacteria are grown on a semisolid agar surface, u=DV2u+ ynu®(u—e),
their resultant colonies have been observed to form a variety
of spatial patterns, depending on bacterial species and envi- dm=V?p—nuBd(u—e), (&N

ronmental conditiongnutrient levels, agar hardness, tem-

peraturg. These include spots and ringsSalmonella typh- Where ©(x) is the Heaviside step function (1 ¥>0, 0
imurium [1] and Escherichia coli[2]; branched colonies, Otherwise. In this model, bacterigwith density u) swim
chiral structures, and vortices Bacillus subtilisand related ~ a@round(diffuse), eat nutrientgwith concentrations, which
species[3—6]; and terraced rings ifProteus mirabilis[7], also diffusey and reproduce. The cutoff in the reaction at

Vibrio parahaemolyticu§8], andBacillus subtilis[9]. Here small bacterial density arises via consideration of the dis-
we focus on one of the ’patterns sacillus subti.lis and' creteness of individual bacteria and is responsible for the

Paenibacillus dendritiformi&10], in which an initially round existence of a diffusive instability. This latter fact, that there

. . . . is a critical diffusion constant that goes to zero in the limit
two-dimensional (2D) colony develops a disorderd, tip- ; )
™ . €—0 (the model without a cutoff was explained at length
splitting structure as it expands.

in Ref.[15]. Roughly, the effective width of the interface,

: . o . . \eMYefined as the distance one must go to reach the dstaift-
formation process is a diffusive, Mullins-Sekerka instability. ing from densities of Q1)], scales as+ D In ¢); this must be

Systems yvith this i'nstab'ility often generate petterns that arg 4ller than they-field diffusion length (1#) for there to be
characterized by fingerlike projections growing out of the,p jngtanility. Since the velocity goes to a finite limit as

propagating front. A variety of systems have been observe 0. this predictD ...~ — 1/In €. in agreement with the cal-
to exhibit these diffusive instabilities; examples include 2D . .. P erit «nag

electrochemical deposition between a center and a surroun
ing electrode and 2D Hele-Shaw cells of air injection into a

gulated results.
" To include nutrient chemotaxis, we modify this model to

glycerol layer[11-13. It has therefore been important to Au=DV2u—V[&(u,n)V 7]+ ynud(u—-e),
generate models of the bacterial system that exhibit this in-
stability. Surprisingly, the simplest two-component reaction- an=V2n—nud(u—e). 2)

diffusion system that one might use, namely, the diffusive
Fisher equation10], does not suffice for this purpose. One Here we have introduced a new bacterial flux term propor-
must therefore include either a metastable reaction @4y  tional to nutrient density gradiefit », with a coefficient de-
a cutoff due to finite particle numbgt5], or nonlinear bac- pendent on bacterial densityand nutrient density;. A typi-
terial diffusion[16,17). These models are compared and con-cal choice foré is the receptor law,
trasted in Ref[10].

Ben-Jacob and co-workers have suggeste819 that _
several aspects of the observed patterns can only be under- &, n)_go(K'f- 77)2”’ &)
stood if one includes the chemotactic capabilities of the bac-
teria. Motivated by this, we study here the effect that nutrienwhereK is the receptor dissociation constant of the receptor;
chemotaxis, namely, bacterial swimming towards food, haghis arises from using the gradient of the number of bound
on the diffusive instability. We will show that inclusion of receptors as the relevant biological signal.
this term tends to suppress the instability. Our calculations The basic idea is to find uniformly propagating front so-
are done with the Kessler-Levine cutoff approfth] briefly  lutions for this system and then find the resulting stability
reviewed below, but should apply independently of the presspectrum. The calculation proceeds as follows. First, we ob-
cise diffusive model. tain asymptotic expressions in the two cages —o«, x—

Our starting point is the Kessler-Levine equations +oo, for the steady-state profiles. Given these expressions,
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we can numerically integrate these unperturbed equations in- u(x,y,t)=ul(x—ot)+ ¢U(X—vt)eiqy+“’t,
ward from each of the boundaries toward a central matching _
point. We choose this point to be the place where the bacte- n(x,y,t)=7%(x—vt)+ z,/;n(x—vt)e'qy“”t. 9

rial density equalse and denote it ax=x.. Demanding . _ . _ .
continuity of u®, 7° and their first derivatives fixes the free The linearized equations for the perturbation amplitudes are
parameters in the aforementioned asymptotic solution. With o " 0 o 0

the unperturbed solutions in hand, we can numerically inte-(® P4 ¥u=v i+ DY+ y(n T uTd,) O (U —€)

grate the equations for the perturbation solutighs ¢, _ 0 07014 g0, 0ny £O 012y _
again starting from the boundaries and matching in the Yulbuur S ey ) Uy
middle. This system is solvable only if the assumed growth X (= %97+ £ 0%+ £, u% % + £ 9%?)
rate w is properly fixed. Thus, we can determine the growth L0 o) oo o o )0
ratew as a function of perturbation wave numtegrthereby —iéun (U 28, ) — 6

finding the stability spectrum. 5 S 0 o o
We first obtain the values of the unperturbed solutions (@t )¢, =vi + ¢, — (7 ¢+ U"¢,)O(U"—€).

and their derivatives at the right boundary— +«). The (10

gg\r:]eggmg equation in the frame moving with velocitybe- The first line on the right-hand side of thg, equation and
the entirey,, equation are the same as those used in the

O=ovU’ +ypu®(u—e)+DU"—(EU' 7' +& 5'2+En"), Kessler-Levine analysis; the remaining lines consist of new
7 terms associated with chemotaxis. We append to these equa-
O=vy' +7"—ypud(u—e), (4 tions the additional boundary conditions thét(x) and

#,(X) both —0 asx— * .

whereé,=d,é(u, n), £,=9,£(uU,n), andé(u, n) is as given We proceed to find the asymptotic form of the solutions to

in Eq. 3. In thex— +o0 limit, imposingu—0 and »—1  these equations. The calculations are straightforward but te-

reduces Eg. 4 to dious. For large negative these linear equations have the
solution

O=vu’'+DU”",
Py (X) = A ek 4 A ek,
0=v7n'+7", ©) )
, , (X)=C,e7, 11
with solutions ¥ !
u(x)=0+B,e” W/D)x=xJ, Wi
1% 1% 2 2
p(x)=1— 8, ** %I, (6) ki==5+V|3] tlo+a"+(1+8)],

The unspecified parameteﬁ Qnd 6, are to be dgf[ermined v 7 wiDd

later from the matching conditions. These conditions enable Ky=— —— \/(_) q ,

us to integrate Eq. 4 and find the values of the unperturbed 2D 2D D

solutions and their derivatives at the matching poipt A

similar analysis at large negativeleads to w—vk;+D(g?—k})

Ci=A; 72 (12
1+ 6,)+€&(u=1+6,,7=0 —k
=14 65 864 NI+ 8+ & 2.1=0)(a*~KJ)
For large positivex, we have
7(X)=Be",
lllu:Ase*k?,(X*XE),
where
=Age Kl 13
5 _ S3k(v +Dk) Vu=ha (13
2 (14 8)) — E(U=1+ 65, 7=0)k*’ where now
v 0\ 2 v \/ v \? w+Dg?
=27V g) T ®) =257 Vlzo) "o -
Then, the basic equation can be integrated forward to the v v)? )
matching point. Furthermore, we choose the origin of our ki=5+ V| 3] +(o+a). (14

coordinates such that,=0. Four continuity conditions plus

u(0)=e€ vyield five conditions for the five unknowns Now that we have the values of the perturbation profiles

(v,01,0,,03,B1). Due to an overall conservation law, 1 #,, ¢, and their derivatives at both boundaries, we can

+ d,=1, and this serves as a test of the numerical rootnumerically integrate from both boundaries to the matching

finding procedure. point x,=0 (again, defined to be the origin of our coordi-
Next, we perform a similar analysis for an assumed pernate$. Again, four continuity conditiongsee below plus an

turbation ¢, (x), ,(x), where overall normalization condition yields five conditions for the
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FIG. 1. Sample growth rate plots for perturbations to steady-state propagating front solutions. Plotted lilef® arease with a
cutoff-induced instability D= % e=10"2, £,=0) and(right) a stable case{= % e=10"2, £,=0). In each plot, the top curve is the
nonchemotactic §,=0) case, and lower curves correspond to successively higher chemotactic stg&gndthghe initially unstable case
(left), theseg, values range from 0.0 to 1.0 in steps of 0.1; in the initially stable case, only the \ialaés0, 0.3, 1.0 are plotted. Error bars
for w, based on the last trial values of free parameters before convergence was declared, are typically of the ordesrdéd® and are
not visible here.

five unknowns Qi,A;,A3,A4,0). Hence, given a fixed and perturbed front, respectively; expanding, we wKk,)
wave vectorg and an already determined unperturbed solu-1 07 (x ) 5x + y,(x.)€'9Y* “'= € and hence
tion u®(x), »°x) we can calculate the perturbed solution

profile (x), #,(x) and the growth rate. wu(xs)e“i'y-*‘”t
As mentioned above, when solving for the unperturbed K== (19
solutionsu®, 7°, the conditionsc<=x, consist simply of con- u™(Xe)

tinuity of the solutions and their derivatives, together with a
condition fixing translation invariance. When solving for the
perturbation profiles, however, although the solutiahs

¥, themselves are continuous, their derivatives are not. The

discontinuity atx=x, in ¢, ¢, arises from thed (u— ) Au

Finally, Au®”, A% can be obtained directly from the origi-
nal equations

on_ ['}’_ g(xe)] 770()(5)6

cutoff in the model. We thus need to calculate the disconti- D ,
nuities A, Ay across the interface, where 0 0
An=—n"(XJ)e. (20)
Ay )=y (X)) =g’ (x7). (15 . . .
v ¥ v These expressions faru®’, A %%, andéx, yield the desired

Let us first compute this jump for thefield. Continuity of ~ matching conditions fod ¢, and A, .
the derivatives of the full solution, Using this method, we have calculated the growth rate

. versus perturbation wave numbegifor a representative se-

AT (x)+ ¢ (x)e4 YT et]=0 (16)  lection of values of reaction threshokd bacterial to nutrient

diffusivity ratio D, and chemotactic strengtly. Specifically,
and expansion of these values about the unperturbed frontwe examined both cases for which a cutoff-induced instabil-
ity already existed before chemotaxis was addBd=¢,
u% (Xe+ 8x)=u% (x.) +u®(x,) 6, (17 =10"2) and for which such an instability was abseil (
=1, €=102). In general, we used coefficients=1, K
gives this discontinuity in terms of the corresponding discon-—1 Sample plots appear in Fig. 1. The fact that 0 at
tinuity in the second derivatives of the unperturbed solutionzero wave vector is a consequence of translation invariance

Au®(x,) and the shiftdx, in the position of the front due to  and serves as a test of the accuracy of our computations.

the perturbation: Also, note in these plots that the uppermost curve corre-
L sponds to the case without chemotaxis, and these can be
A(x )€Y ol=— 5x Au®(x,). (18)  compared to earlier resulf45].

As chemotaxis is turned orgq increases from 0), we see
An analogous derivation leads to a similar expression fothat the growth rates become more negatihe curves get
Ay (Xo). The interface shift can be found directly from the lower). This demonstrates nutrient chemotaxis repression of
definition u®(x,)=e andu(x.+ 6x.)= € of the unperturbed cutoff-induced Mullins-Sekerka instabilities in this system.
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00 data(not shown demonstrate that the nonlinearity in this law
- g makes only a slight quantitative contribution to this suppres-
sion.

Why does chemotaxis suppress the onset of the instabil-
ity, especially inasmuch as a naive analysis might lead one to
argue that chemotaxis causes outwardly protruding parts of
the colony to move faster as they feel higher gradients? This
mechanism might well be important once the system exhibits
well-developed fingers, and in fact it has been suggd4t@ld
that nutrient chemotaxis is responsible for increasing the
growth velocity without any concomitant change in colony
structure. But, this is not the way in which chemotaxis af-
fects the initial instability. Here, the chemotactic response
gives rise to a increased velocity and hence a decrease in the
nutrient field diffusion length. In particular, our results indi-

- 3 cate that the nutrient profile becomes significantly sharper
L 4 (data not shownin the presence of chemotaxis. Since the

0.00=2

Growth Rate

0.000

oozl Lo b b b instability requires that the interface be deformable on scales
0.0 0.2 0.4 0.6 0.8 1.0 shorter than this diffusion length, this is now harder to ac-
Chemotactic Strength complish and thus chemotaxis pushes the instability to lower

D. Of course, the correctness of our calculations is indepen-
FIG. 2. Demonstration of linear repression of an initially un- dent of whether or not we can construct convincing argu-

stable growth rate as nutrient chemotaxis is turned on. Plotted amhents as to why the results should or should not have been
the growth ratew for the perturbation wave number=0.265  expected.
(roughly the location wherev reaches its maximal value before Our analysis was carried out for one very specific model
chemotaxis is turned orfor values ofé, for which  vs q plots  of the bacterial system. The real system is undoubtedly much
appear in Fig. 1. As in that figure, error bars are below the resolumore complicated and probably is best modeled by explicitly
tion of the figure. including an additional field for the fluid layer in which the
The repression is further illustrated in Fig. 2, where it is seeﬁo"’mte”"JI move. Sp, one.needs to verify that the suppression

we have found will continue to hold for other models. Cur-

?%;ﬁg I;ﬂg?gys\;vslttzr?}hv?lir?hoigtﬁ;yeegagamagigutrgeé;h;ter[ently, we see no reason to suspect that the results would be
nally supplied field would exhibit an enhanced instability. G'erent than those presented here; specifically, the afore-

We verified that the saturation of chemoreceptors incor—mentloned heuristic arguments regarding the changes in the

porated in the receptor lafEq. (3)] was not crucial to the nutrient profile applies in those models as well.
branching instability repression. In particular, we compared H.L. acknowledges the support of the US NSF under
w Vs g plots with and without chemotaxis saturation. Our Grant No. DMR98-5735.
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