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Nutrient chemotaxis suppression of a diffusive instability in bacterial colony dynamics
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Bacteria grown on a semisolid agar surface have been observed to form branching patterns as the colony
envelope propagates outward. The fundamental cause of this instability relates to the need for limited nutrient
to diffuse towards the colony. Here, we investigate the effect on this instability of allowing the bacteria to
move chemotactically in response to the nutrient gradient. Our results show that this additional effect has a
tendency to suppress the instability. Our calculations are done within the context of a simple ‘‘cutoff’’ model
of colony dynamics, but presumably remain valid for more complex and hence more realistic approaches.
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When bacteria are grown on a semisolid agar surfa
their resultant colonies have been observed to form a var
of spatial patterns, depending on bacterial species and e
ronmental conditions~nutrient levels, agar hardness, tem
perature!. These include spots and rings inSalmonella typh-
imurium @1# and Escherichia coli @2#; branched colonies
chiral structures, and vortices inBacillus subtilisand related
species@3–6#; and terraced rings inProteus mirabilis@7#,
Vibrio parahaemolyticus@8#, andBacillus subtilis@9#. Here,
we focus on one of the patterns ofBacillus subtilis and
Paenibacillus dendritiformis@10#, in which an initially round
two-dimensional ~2D! colony develops a disorderd, tip
splitting structure as it expands.

It is clear that the basic mechanism underlying this patt
formation process is a diffusive, Mullins-Sekerka instabili
Systems with this instability often generate patterns that
characterized by fingerlike projections growing out of t
propagating front. A variety of systems have been obser
to exhibit these diffusive instabilities; examples include 2
electrochemical deposition between a center and a surro
ing electrode and 2D Hele-Shaw cells of air injection into
glycerol layer @11–13#. It has therefore been important t
generate models of the bacterial system that exhibit this
stability. Surprisingly, the simplest two-component reactio
diffusion system that one might use, namely, the diffus
Fisher equation@10#, does not suffice for this purpose. On
must therefore include either a metastable reaction term@14#,
a cutoff due to finite particle number@15#, or nonlinear bac-
terial diffusion@16,17#. These models are compared and co
trasted in Ref.@10#.

Ben-Jacob and co-workers have suggested@18,19# that
several aspects of the observed patterns can only be un
stood if one includes the chemotactic capabilities of the b
teria. Motivated by this, we study here the effect that nutri
chemotaxis, namely, bacterial swimming towards food,
on the diffusive instability. We will show that inclusion o
this term tends to suppress the instability. Our calculati
are done with the Kessler-Levine cutoff approach@15# briefly
reviewed below, but should apply independently of the p
cise diffusive model.

Our starting point is the Kessler-Levine equations
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] tu5D¹2u1ghuQ~u2e!,

] th5¹2h2huQ~u2e!, ~1!

where Q(x) is the Heaviside step function (1 ifx.0, 0
otherwise!. In this model, bacteria~with density u) swim
around~diffuse!, eat nutrients~with concentrationh, which
also diffuses!, and reproduce. The cutoff in the reaction
small bacterial density arises via consideration of the d
creteness of individual bacteria and is responsible for
existence of a diffusive instability. This latter fact, that the
is a critical diffusion constant that goes to zero in the lim
e→0 ~the model without a cutoff!, was explained at length
in Ref. @15#. Roughly, the effective width of theu interface,
defined as the distance one must go to reach the cutoff@start-
ing from densities of O~1!#, scales as (2D ln e); this must be
smaller than theh-field diffusion length (1/v) for there to be
an instability. Since the velocity goes to a finite limit ase
→0, this predictsDcrit;21/lne, in agreement with the cal
culated results.

To include nutrient chemotaxis, we modify this model

] tu5D¹2u2¹@j~u,h!¹h#1ghuQ~u2e!,

] th5¹2h2huQ~u2e!. ~2!

Here we have introduced a new bacterial flux term prop
tional to nutrient density gradient¹h, with a coefficient de-
pendent on bacterial densityu and nutrient densityh. A typi-
cal choice forj is the receptor law,

j~u,h!5j0

K

~K1h!2 u , ~3!

whereK is the receptor dissociation constant of the recep
this arises from using the gradient of the number of bou
receptors as the relevant biological signal.

The basic idea is to find uniformly propagating front s
lutions for this system and then find the resulting stabil
spectrum. The calculation proceeds as follows. First, we
tain asymptotic expressions in the two casesx→2`, x→
1`, for the steady-state profiles. Given these expressio
1444 ©2000 The American Physical Society
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we can numerically integrate these unperturbed equation
ward from each of the boundaries toward a central match
point. We choose this point to be the place where the ba
rial density equalse and denote it asx5xe . Demanding
continuity of u0, h0 and their first derivatives fixes the fre
parameters in the aforementioned asymptotic solution. W
the unperturbed solutions in hand, we can numerically in
grate the equations for the perturbation solutionscu , ch ,
again starting from the boundaries and matching in
middle. This system is solvable only if the assumed grow
ratev is properly fixed. Thus, we can determine the grow
ratev as a function of perturbation wave numberq, thereby
finding the stability spectrum.

We first obtain the values of the unperturbed solutio
and their derivatives at the right boundary (x→1`). The
governing equation in the frame moving with velocityv be-
comes

05vu81ghuQ~u2e!1Du92~juu8h81jhh821jh9!,

05vh81h92ghuQ~u2e!, ~4!

whereju5]uj(u,h), jh5]hj(u,h), andj(u,h) is as given
in Eq. 3. In thex→1` limit, imposing u→0 and h→1
reduces Eq. 4 to

05vu81Du9,

05vh81h9, ~5!

with solutions

u~x!501B1e2(v/D)(x2xe),

h~x!512d1e2v(x2xe). ~6!

The unspecified parametersB1 andd1 are to be determined
later from the matching conditions. These conditions ena
us to integrate Eq. 4 and find the values of the unpertur
solutions and their derivatives at the matching pointxe . A
similar analysis at large negativex leads to

u~x!511d22d3ekx,

h~x!5B2ekx, ~7!

where

B25
d3k~v1Dk!

g~11d2!2j~u511d2 ,h50!k2 ,

k52
v
2

1AS v
2D 2

1~11d2!. ~8!

Then, the basic equation can be integrated forward to
matching point. Furthermore, we choose the origin of o
coordinates such thatxe50. Four continuity conditions plus
u(0)5e yield five conditions for the five unknown
(v,d1 ,d2 ,d3 ,B1). Due to an overall conservation law,
1d25g, and this serves as a test of the numerical ro
finding procedure.

Next, we perform a similar analysis for an assumed p
turbationcu(x), ch(x), where
in-
g
e-
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-
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u~x,y,t !5u0~x2vt !1cu~x2vt !eiqy1vt,

h~x,y,t !5h0~x2vt !1ch~x2vt !eiqy1vt. ~9!

The linearized equations for the perturbation amplitudes

~v1Dq2!cu5vcu81Dcu91g~h0cu1u0ch!Q~u02e!

2cu~juu
0 h08u081ju

0h091juh
0 h082!2ch

3~2j0q21jh
0h091juh

0 u08h081jhh
0 h082!

2cu8ju
0h082ch8 ~ju

0u0812jh
0h08!2ch9j0,

~v1q2!ch5vch81ch92~h0cu1u0ch!Q~u02e!.
~10!

The first line on the right-hand side of thecu equation and
the entirech equation are the same as those used in
Kessler-Levine analysis; the remaining lines consist of n
terms associated with chemotaxis. We append to these e
tions the additional boundary conditions thatcu(x) and
ch(x) both →0 asx→6`.

We proceed to find the asymptotic form of the solutions
these equations. The calculations are straightforward bu
dious. For large negativex, these linear equations have th
solution

cu~x!5A1ek1x1A2ek2x,

ch~x!5C1ek1x, ~11!

with

k152
v
2

1AS v
2D 2

1@v1q21~11d2!#,

k252
v

2D
1AS v

2D D 2

1
v1Dq2

D
,

C15A1

v2vk11D~q22k1
2!

g~11d2!1j~u511d2 ,h50!~q22k1
2!

. ~12!

For large positivex, we have

cu5A3e2k3(x2xe),

ch5A4e2k4(x2xe). ~13!

where now

k35
v

2D
1AS v

2D D 2

1
v1Dq2

D
,

k45
v
2

1AS v
2D 2

1~v1q2!. ~14!

Now that we have the values of the perturbation profi
cu , ch and their derivatives at both boundaries, we c
numerically integrate from both boundaries to the match
point xe50 ~again, defined to be the origin of our coord
nates!. Again, four continuity conditions~see below! plus an
overall normalization condition yields five conditions for th
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FIG. 1. Sample growth rate plots for perturbations to steady-state propagating front solutions. Plotted here are~left! a case with a
cutoff-induced instability (D5

1
7 , e51022, j050) and~right! a stable case (D5

1
2 , e51022, j050). In each plot, the top curve is th

nonchemotactic (j050) case, and lower curves correspond to successively higher chemotactic strengthsj0. In the initially unstable case
~left!, thesej0 values range from 0.0 to 1.0 in steps of 0.1; in the initially stable case, only the valuesj050.0, 0.3, 1.0 are plotted. Error bar
for v, based on the last trial values of free parameters before convergence was declared, are typically of the order of 1025 or less and are
not visible here.
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five unknowns (A1 ,A2 ,A3 ,A4 ,v). Hence, given a fixed
wave vectorq and an already determined unperturbed so
tion u0(x), h0(x) we can calculate the perturbed solutio
profile cu(x), ch(x) and the growth ratev.

As mentioned above, when solving for the unperturb
solutionsu0, h0, the conditionsx5xe consist simply of con-
tinuity of the solutions and their derivatives, together with
condition fixing translation invariance. When solving for th
perturbation profiles, however, although the solutionscu ,
ch themselves are continuous, their derivatives are not.
discontinuity atx5xe in cu8 , ch8 arises from theQ(u2e)
cutoff in the model. We thus need to calculate the disco
nuitiesDcu8 , Dch8 across the interface, where

Dc8~x![c8~x1!2c8~x2!. ~15!

Let us first compute this jump for theu field. Continuity of
the derivatives of the full solution,

D@u08~x!1cu8~x!eiqW •yW1vt#50 ~16!

and expansion of these values about the unperturbed fro

u08~xe1dxe!5u08~xe!1u09~xe!dxe ~17!

gives this discontinuity in terms of the corresponding disc
tinuity in the second derivatives of the unperturbed solut
Du09(xe) and the shiftdxe in the position of the front due to
the perturbation:

Dcu8~xe!e
iqW •yW1vt52dxeDu09~xe!. ~18!

An analogous derivation leads to a similar expression
Dch8 (xe). The interface shift can be found directly from th
definition u0(xe)[e andu(xe1dxe)[e of the unperturbed
-

d

e

i-

t

-
n

r

and perturbed front, respectively; expanding, we getu0(xe)
1u08(xe)dxe1cu(xe)e

iqW •yW1vt5e and hence

dxe52
cu~xe!e

iqW •yW1vt

u08~xe!
. ~19!

Finally, Du09, Dh09 can be obtained directly from the orig
nal equations

Du095
@g2j~xe!#h

0~xe!e

D
,

Dh0952h0~xe!e. ~20!

These expressions forDu09, Dh09, anddxe yield the desired
matching conditions forDcu8 andDch8 .

Using this method, we have calculated the growth ratev
versus perturbation wave numberq for a representative se
lection of values of reaction thresholde, bacterial to nutrient
diffusivity ratio D, and chemotactic strengthj0. Specifically,
we examined both cases for which a cutoff-induced insta
ity already existed before chemotaxis was added (D5 1

7 , e
51022) and for which such an instability was absent (D
5 1

2 , e51022). In general, we used coefficientsg51, K
51. Sample plots appear in Fig. 1. The fact thatv50 at
zero wave vector is a consequence of translation invaria
and serves as a test of the accuracy of our computati
Also, note in these plots that the uppermost curve co
sponds to the case without chemotaxis, and these can
compared to earlier results@15#.

As chemotaxis is turned on (j0 increases from 0), we se
that the growth rates become more negative~the curves get
lower!. This demonstrates nutrient chemotaxis repression
cutoff-induced Mullins-Sekerka instabilities in this system
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The repression is further illustrated in Fig. 2, where it is se
to vary linearly with chemotactic strengthj0. Of course, this
implies that a system with repulsive chemotaxis to an ex
nally supplied field would exhibit an enhanced instability.

We verified that the saturation of chemoreceptors inc
porated in the receptor law@Eq. ~3!# was not crucial to the
branching instability repression. In particular, we compa
v vs q plots with and without chemotaxis saturation. O

FIG. 2. Demonstration of linear repression of an initially u
stable growth rate as nutrient chemotaxis is turned on. Plotted
the growth ratev for the perturbation wave numberq50.265
~roughly the location wherev reaches its maximal value befor
chemotaxis is turned on! for values ofj0 for which v vs q plots
appear in Fig. 1. As in that figure, error bars are below the res
tion of the figure.
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data~not shown! demonstrate that the nonlinearity in this la
makes only a slight quantitative contribution to this suppr
sion.

Why does chemotaxis suppress the onset of the insta
ity, especially inasmuch as a naive analysis might lead on
argue that chemotaxis causes outwardly protruding part
the colony to move faster as they feel higher gradients? T
mechanism might well be important once the system exhi
well-developed fingers, and in fact it has been suggested@18#
that nutrient chemotaxis is responsible for increasing
growth velocity without any concomitant change in colo
structure. But, this is not the way in which chemotaxis
fects the initial instability. Here, the chemotactic respon
gives rise to a increased velocity and hence a decrease i
nutrient field diffusion length. In particular, our results ind
cate that the nutrient profile becomes significantly shar
~data not shown! in the presence of chemotaxis. Since t
instability requires that the interface be deformable on sca
shorter than this diffusion length, this is now harder to a
complish and thus chemotaxis pushes the instability to lo
D. Of course, the correctness of our calculations is indep
dent of whether or not we can construct convincing arg
ments as to why the results should or should not have b
expected.

Our analysis was carried out for one very specific mo
of the bacterial system. The real system is undoubtedly m
more complicated and probably is best modeled by explic
including an additional field for the fluid layer in which th
bacteria move. So, one needs to verify that the suppres
we have found will continue to hold for other models. Cu
rently, we see no reason to suspect that the results woul
different than those presented here; specifically, the afo
mentioned heuristic arguments regarding the changes in
nutrient profile applies in those models as well.

H.L. acknowledges the support of the US NSF und
Grant No. DMR98-5735.
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