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Correlation functions for glass-forming systems
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We present a simple, linear, partial-differential equation for the density-density correlation function in a
glass-forming system. The equation is written down on the basis of fundamental and general considerations of
linearity, symmetry, stability, thermodynamic irreversibility and consistency with the equation of continuity
(i.e., conservation of matterThe dynamical properties of the solutions show a change in behavior character-
istic of the liquid—glass transition as a function of one of the paramétensperature The equation can be
shown to lead to the simplest mode-coupling theory of glasses and provides a partial justification of this
simplest theory. It provides also a method for calculating the space dependence of the correlation functions not
available otherwise. The results suggest certain differences in behavior between glassy solids and glass-
forming liquids which may be accessible to experiment. A brief discussion is presented of how the method can
be applied to other systems such as sandpiles and vortex glasses in type Il superconductors.

PACS numbeps): 64.70.Dv, 61.20-p

The glass transition is a continuous transition between and
disordered solid and a viscoelastic liquid. Both systems can ; o
be described in terms of linear partial-differential equations 4 d
(in the limit of small strains and low flow velocitig$1,2]. el 7‘]+aq)+ﬂa_r:0 2
This suggests that a similar linear differential equation can
be written down for the density-density correlation functionor equivalently in vectorial form
®(r,t)=(5p(r,t)|5p(0,0)) which describes the system on

both sides of the transition whe(r,t) is the excess den- ngdivJ:O

sity at the pointr and timet. The simplest, low-order, linear, ot

partial-differential equation which contains enough informa-

tion to describe the transition is and
Pb b 14 19(  0d &J+ J+ a®r + B gradd=0 3

— + yJ+ a®r+ B gradd=0,

—ty—=a— —(r’®)+B— —|r>?—|. ot
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which displays the equation of continuity explicitly and es-
The interpretation is as follows: The equation is a damped@plishes that the equation preserves conservation of matter.
wave equation with an extra term. The coefficient of the first 1 "€ one-dimensional version of these equations is as fol-
term on the left is a mass density and is therefore positivéOWS:
and is normalized to unity. The coefficient of the last term on

: . 2 . ” ab  9J

the right is a compressibility and is therefore positive for — +—=0, (4)
stability. The coefficient of the second term on the left is a at - Ix
damping and the thermodynamic arrow of time implies that 23 L 2D
it is positive also. The first term on the right, the extra term, 2 2.2 .
ariséos from the fact that the object we gre calculating is a ot YT A-D0%ad+ 7 (A +1)0%a% 2 =0. (5
correlation function and the average we are calculating is an
average conditional on the fact that the excess density at tHeis slightly easier to relate this version to the mode-coupling
origin is nonzero at time zero. Thus rotational symmetry re{3—7] theories and its solutions are closely related to the
mains but translational symmetry with respect to the origin issolutions of the full three-dimensional equatidn. We will
broken and a term of this kind is therefore allowed. It wouldpresent solutions of the one-dimensional equation only but
of course be forbidden if we were calculating the density nocomment on the relation of these to the solutions of the
subject to the condition because then the symmetry woulthree-dimensional equatidil). We have written the coeffi-
not be broken. There is no basic principle which helps us teients in a slightly different form to make the relation to the
decide the sign of the coefficient and we shall see that it ignode-coupling theories a little more obvious later. We only
reasonable to assume that it depends on the temperature, @te here that is a length scalef) is a frequency, and
ing positive at lowT and negative at highi. A further point =T, /T is an inverse temperature and that the coefficient of
is that the equation may be split into two equations thus @ changes sign af=T,,.

A simple way of solving the equations is to discretize the
P P Ie_ngth s_cale an_d solve the resulting coupled ordinary-
—+ = —(r23)=0 differential equations by a simple Runge-Kutta method. The

ot r2or discretization procedure gives the following equations:
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FIG. 1. d vstfor A\=1.3(i.e., lowT) atx=1 (heavy curvg, 2,
3, 4, 5(dashed curve The remaining parameters ate=1, y=5,
anda=1. Note that the curves approach finite limitstase char-
acteristic of a solid.

doy ) 1 .
dt +a(‘]n+§(t)7‘]n7§(t))_o! (6)

dJ, . i(t
'”72()+ Y(Jns 1 (1) —Q2ad,(H) +NQ%a D, 4(1)=0

dt
()

where® ,(t)=®(na,t) andJ, . 15(t) =J((n+ 1/2)a,t). The
initial condition used igb,(0)=0 for n#0 and®,(0)=1
and J,, . 1(0)=0 for all n, which corresponds in the con-
tinuum case tob(x,0)=246(x) and J(x,0)=0. The condi-
tion atn=0 is J_,,(t)=0 for all t.

We present graphs of the results fae-1 i.e., for T
<Tgyin Figs. 1 and 2 and fox<1, i.e., forT>Tj in Figs. 3
and 4. Note that foh <1
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FIG. 2. ® vsx for A=1.3(i.e., lowT) att=10 (heavy curvg
30, 50, 70, 90(dashed curve The remaining parameters afe
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FIG. 3. ® vstfor A=0.7(i.e., highT) atx=1 (heavy curve 2,
3, 4, 5(dashed curve The remaining parameters afe=1, y=5,
anda=1. Note that the curves approach zerd-as» characteristic
of a liquid.

(Dn(t)_’o
and
P(x,t) -0 ast—w

but that forn>1

and

d(x,t)— as t—o,

2(A—1) 2(A—1)x
Nt 1 eXp( T (ZtDa

This demonstrates that the correlation function has at high
temperature the characteristic behavior of a liquid where an
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FIG. 4. ® vsxfor A\=0.7(i.e., highT) att=100(heavy curvg,

=1, y=5, anda= 1. Note that the curves approach an envelope as300, 500, 700, 90Qdashed curve The remaining parameters are

t—o indicating a freezing phenomenon.

(=1, y=5, anda=1. Note the outgoing wave pulse.
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imposed strain produces a stress that decays to zeto as More complicated versions of this equation exist which
increases and that it has at low temperature the characteristiave the kerned(t— 7) replaced by a low-order polynomial
behavior of a solid where an imposed strain produces a stress ¢(t— 7) [3,4,7,9. Some kind of microscopic many-body
that does not decay to zero screases. These results re- theory is usually presented in justification of these versions.
main true in three dimensions. Internal stresses of this kingk g clearly impossible to relate these versions to a linear
are indeed characteristic of glasses. _ ~ partial-differential equation which interpolates smoothly be-
Furthermore at high temperatures the imposed strain &{yeen the corresponding equations for a liquid and a solid.
the origin decays via an almost dispersionless outward traVrthermore a reasonably simple heuristic argument can be
eling wave pulse as is shown2|n Fig. 4. The speed of propag, o nted in favor of the simplest mode-coupling theory with
gation of the pu!se '$)?_1|Q a/'y, which goes to 0 .ag' linear kernel[5]. We consider our phenomenological and
—>12'0. In_three dimensions the pulse decays proporﬂonal tcheuristic arguments as strong evidence for the essential cor-
Lr® as it travels outward.. Thege outward-raveling WaVeS e tness of the simplest version of the mode-coupling theory.
appear only abové, and this indicates that there are strong Numerical calculations of(t) from Eq. (9) and ®(0,t)
differences in the properties of the dynamical correlationfrorn Egs.(4) and (5) compare very well th.us confirmin,g the

functions between solid and liquid ne@ip, which may be orrectness of the numerical analysis and the algebra. The

. . o c
aCCEfnSIth]: ﬁ)r;pe;lrt‘r;]en;[jallr)rl{ ;E]hetserr:]eiyr:shaﬁ segsm\\//e rtoint:b%enomenological partial-differential equation however is
assumed form ot the damping te ch may be oversim uperior because it enables us to calculate the space depen-

plified here. Obviously more research is needed on this poin ence of the correlation functiorfanpossible in the mode-

At low temperatures t.he |mpqged stralr) sgttles down to a'goupling theoried7]) and to generalize from one to three
exponentially decreasing profilgn x) which is very much dimensions

what one would expect on physical grounds. These results In order to see the range of validity of our phenomenol-

seem related t_o_ some recently reported experm{éi_]ts ogy it is worthwhile examining analogies with other systems.
At the transition temperaturé=T, the asymptotic form There are two systems that provide two-dimensional ana-
of Eg. (1) can be sply ed exactly because the first term on.th?ogues of glasses; the first is the vortex system in extreme
Ie_:ft becom?S negllglble ?‘”d the equation beco_mes the dIflet'ype Il superconductors, the second is a sandpile i.e., a pile
sion equation and this gives the three-dimensional result of strongly interacting but not cohesive objects on a flat sur-
312 face. In some experimen{d40] on the vortex system long-
@(r,t):(4—Dt) exp(—r2/4Dt) (8) lived pulses of increased vortex density are observed to
m travel across the sample under the influence of an external
force. These pulses may be similar to the almost dispersion-
less pulses seen in our calculations at highA crucial ex-
_ _ ~ periment would be to measure the velocity of the pulses in
and (7) we get algebraic equations for®n(p) the experimental system as a function ®fand check
=[o®,(t)exp(—phdt which can be solved for¢(p)  whether the velocity disappears at some finite low tempera-

=®,(p) by elementary matrix manipulations. The result canture as our results indicate. Sandpiles bear a certain opera-

be inverse transformed to give the following integrodifferen-tional similarity to lowT glasses as the following experi-
tial equation foré(t): ment suggests. Insert a pencil vertically into a sandpile and

displace it laterally. Observe the resulting lateral force on the
. . ) 5 [ . _ pencil as a function of time. The force will decay from its
() +yp(H)+Q7G(1) +AQ fo $(t—=7)¢p(7)d7=0. initial value to a lower value and then remain steady. The
(9) force displays the same remnant behavior as the stress in a
similar experiment on a glassy system at ldwInvestiga-
This equation is well known as the simplest mode-couplingiions of the transport of matter up and down the slope of
equation for the glass transitid®,6]. This shows that this shaken and unshaken sandpiles are obviously relevant here.
simplest theory is a consequence of the one-dimension&ome simple models of sandpilgkl] have the same one-

with D= B/vy and a corresponding result in one dimension.
If we take Laplace transforms of the discrete equati@ns

phenomenological theory outlined above. sided character as our basic equati@hs (2), (3), and(5).
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