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Front propagation in one-dimensional autocatalytic reactions: The breakdown of the classical
picture at small particle concentrations

J. Mai, I. M. Sokolov, and A. Blumen
Theoretische Polymerphysik, Universita¨t Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg im Breisgau, Germany

~Received 26 January 2000!

The autocatalytic schemeA1B→
p

2A in a discrete particle system is studied in one dimension via Monte
Carlo simulations. We find considerable differences in the results for the front velocities and front forms
compared to the classical, continuous picture, which is only valid in the limit of very small reaction probabili-
ties p. Interestingly, we also obtain front propagation velocities fairly below the classical minimal velocity.

PACS number~s!: 05.40.2a, 82.20.Mj, 82.65.2i
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I. INTRODUCTION

Reaction kinetics in low dimensions were extensively
vestigated in the past two decades, since they differ sig
cantly from the situation in high-dimensional spaces, a
often violate strongly the classical~mean-field! kinetical
schemes based on the mass-action law@1,2#; this happens in
particular ford51 and 2, where the reaction terms show
strong dependence on high-order particle correlation fu
tions @3,4#.

In this paper, we investigate the front propagation in

autocatalytic schemeA1B→
p

2A, where p is the reaction
probability of anA with a B particle. The system is studied i
one dimension~1D! by Monte Carlo simulations and by ana
lytical methods taking into account the particulate nature
the system.

The classical picture dating back to Fisher and to K
mogorov, Piskunov, and Petrovsky describes the propaga
within the continuous reaction-diffusion equation sche
@5,6#. This scheme predicts the existence of a minimal fr
velocity vmin , which under a wide range of conditions shou
be the only velocity sustained by the system.

Discreteness effects, however, can strongly alter the r
tion’s behavior, here in particular the front’s velocity@7–17#.
The particulate nature means that the local concentrations
discrete, a fact that influences the concentration fluctuati
Furthermore, discreteness means that particles of
‘‘wrong’’ kind can be found only at a finite distance from th
position of the front, leading to a cutoff of concentratio
@18#. Both these effects typically give rise to velocities larg
than vmin @5,6#. Numerical simulations in one-dimension
systems with high particle concentration under a parallel
date rule@19# confirm that typically attained front velocitie
are larger thanvmin and that they tend tovmin as the local
reaction rate tends to zero.

In what follows, we investigate the situation under lo
particle concentrations on a one-dimensional lattice. Per
time, each particle performs on the average one step to
of the neighboring sites. If two particles of a different kin
occupy the same lattice site, they react with the probabilitp
per unit time according toA1B→2A. There is no excluded
volume. At the beginning, the lattice is filled randomly wi
B particles with concentrationC. A single A particle is lo-
cated at the left border of the lattice. We show that under
PRE 621063-651X/2000/62~1!/141~5!/$15.00
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concentrations and for rather small but nonzero probabili
p, the attained front velocity can be considerably sma
thanvmin . The value ofvmin is obtained only in the limiting
casep→0.

We also discuss the shape of the front and show tha
depends strongly on the definition of the comoving fram
used, and that it is in any case different from the class
prediction.

The paper is structured as follows. In Sec. II we rec
Fisher’s equation and its solutions and in Sec. III we disc
the velocity of a reaction front for finite reaction probabilitie
p. In Sec. IV we compare the classical results of the fron
velocity with our Monte Carlo simulations. Section V dea
with the shape of the front.

II. THE FISHER EQUATION

The reaction process under consideration in the fram
work of a Master equation for the numbersA( i ),B( i ) of
particles at sitei reads

]A~ i ,t !

]t
5

1

2
A~ i 21,t !1

1

2
A~ i 11,t !2A~ i ,t !1pAB~ i ,t !

~1!

and

]B~ i ,t !

]t
5

1

2
B~ i 21,t !1

1

2
B~ i 11,t !2B~ i ,t !2pAB~ i ,t !,

~2!

whereAB( i ,t) is the number ofAB pairs on sitei . Under a
decoupling~mean-field! assumption,AB( i ,t)5A( i ,t)B( i ,t).
In the continuum limitA( i ,t)→A(x,t) andB( i ,t)→B(x,t),
one can rewrite Eqs.~1! and ~2! as a single equation for th
continuous concentrationA(x,t):

]A

]t
5D

]2A

]x2
1kA~C2A!, ~3!

by noticing that for initial conditions corresponding to
homogeneous population of the lattice byB particles,B( i )
5C, Eqs.~1! and ~2! imply A( i ,t)1B( i ,t)5C5const.
141 ©2000 The American Physical Society
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142 PRE 62J. MAI, I. M. SOKOLOV, AND A. BLUMEN
Equation~3! is the standard Fisher equation for the qu
dratic autocatalysis problem in one dimension. HereC is the
initial concentration ofB, and the diffusion coefficient and
the reaction rate areD51/2 andk5p, respectively. The pa
rameters of the Fisher equation defining the character
natural scales for length and time areW5AD/kc
5(2pc)21/2 ~front’s width! andT5(kc)215(pc)21. By an
appropriate change of variables, Eq.~3! can be put into the
dimensionless form

]y

]u
5

]2y

]j2
1y~12y!, ~4!

wherey5N/C, j5x/W, andu5t/T.
Looking for a stable traveling front solution, one chang

into a comoving frame, which leads to the time-independ
equation

]2y

]j2
1v

]y

]j
1y~12y!50, ~5!

where the velocityv has as a natural unitV5ADkc
5Apc/2.

Now, considering the stable propagation, we can conc
trate on the behavior of the stationary solutiony(j). The
explicit form of the solution of Eq.~5! is known only for a
special value ofv and is not of physical relevance. On th
other hand, the asymptotic forms of the solutions near
midpoint of the front~inflection point! and at the front’s far
edge are easy to obtain. In the middle of the front, near
inflection point, the term with the second spatial derivative
small and can be neglected, thus leading to a first-order e
tion

v
]y

]j
1ky~12y!50 ~6!

whose solution provides a reasonably good approxima
for the central part of the front@5#. Thus, at intermediatej,

y~j!5
1

11exp~j/v !
. ~7!

This form is physically reasonable for any value of veloc
v. On the other hand, far from the front’s midpoint~at j
@v) one can neglect they2 term and solve the linearize
equation

]2y

]j2
1v

]y

]j
1y50. ~8!

The solution of this equation is an exponential function:

y~j!5a exp„2l~v !j…, ~9!

wherel(v) is a solution of a characteristic equation

l21vl1150 ~10!

and reads
-

ic
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t
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l1,25
v
2

6Av2

4
21. ~11!

The concentrationy(x) then only stays real ifv is equal to or
is larger thanvmin52 ~where vmin52ADkc5A2pc in the
initial units!; this is a lower bound onv. The marginal sta-
bility principle then states thatv5vmin . The correspondingl
is thenA2/pc. Equation~9! is the concentration profile in the
far tail region, and the overall front form can be obtained
an interpolation between Eq.~7! and Eq.~9!.

III. THE VELOCITY OF THE FRONT

In our simulations we use lattices of sizeL53000 and
follow each realization of the process until the front reach
the middle of the lattice. We use reflective boundary con
tions at both ends of the lattice. The values ofp vary between
0.0005 and 0.3. Depending onp, we perform between 500
and 10 000 independent runs.

The velocity of the front can be defined using three p
cedures implying different averaging assumptions.

~i! One can fix the timet and calculate the average co
centration profile of the front. The front’s positionx(t) is
then defined as the point whereA„x(t)…5C/2 and the veloc-
ity is v5x(t)/t. This method does not allow us to define th
front velocity in each realization separately. This is rende
possible by the following two definitions.

~ii ! One determines the position of the rightmostA par-
ticle ~RAP! in each realization and calculatesv from x(t)
5xRAP(t), again asvRAP(t)5xRAP(t)/t.

~iii ! Another possibility is given through the total numb
NA(t) of A particles at timet: We then setx(t)5NA(t)/C.

Different procedures imply different types of averagin
The velocities obtained by~i! are already averaged over a
realizations. In method~ii !, vRAP depends on the specifi
realization; the result obtained by~iii ! is in some sense
preaveraged. We find that the mean velocities obtai
through these three procedures coincide with each o
within 1%, but their fluctuation properties differ; see the ne
section.

We have performed a series of simulations using all th
methods. In each case the position of the front, after a s
transient, starts to grow linearly in time, and the propagat
of the front is stable. The parameters of our simulations
always chosen to allow for simulation times much long
than the transient.

We start by presenting results of our numerical simu
tions in Fig. 1: Here we plot the data obtained using meth
~i! in runs with two different concentrations,c510 andc
50.1, for differentp values ranging fromp50.0005 top
50.02. In order to render the comparison easy, we plo
Fig. 1 the normalized velocityn(p)5v(p)/2ADc as a func-
tion of p; according to classical Fisher kinetics,n(p) should
behave asAp. This classical result for the normalized velo
ity, n(p)5Ap, is shown in Fig. 1 as a dashed line. We s
that the data points forc510 lie slightly above the dashe
curve, in line with the theoretical considerations of Re
@18,19#. On the other hand, the data points for the sma
concentration,c50.1, lie definitely below the dashed curv
and tend to it only for extremely small values ofp. If we try
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to describe the data through a power law, i.e., setn(p)}pa,
we obtain from a linear fit to log10„n(p)… vs p that a'0.4.
To further elucidate the role of concentration and the n
monotonic behavior of the actually attained velocity, we p
in Fig. 1 the values ofn for p50.015 as a function ofc. We
see that atc50.1,0.3,1, and 5 the velocity grows withc but
that it stays below the dashed curve, which gives the cla
cal vmin . On the other hand, forc510 the velocity exceeds
vmin slightly.

For small concentrations, there is no reason for the c
sical Fisher equation to describe the front velocity correc
For realizations with relatively largep and in dilute situa-
tions ~very smallc), the number of particles within the reac
tion front is very small, so that the region in which Eq.~9!
should start to be applicable contains noA particles. The
region is thus certainly not rendered correctly by Eq.~3! and
the requirement that the asymptotic solution of Eq.~3! be real
~as discussed in Sec. II! is void. On the other hand, whenp
decreases, the overall number of particlesN5cW5Ac/2p in
the front region increases, so that eventually, at very lowp,
the classical continuous description may become reason
Thus, for a given fixedc, decreasingp makes the front
broader and the number of particles in the front region larg
facts that letv(p) approachvmin . Now for largec one finds
that v(p) approachesvmin from above@19#. In this work we
find that whenc is low, the propagation velocityv(p) can be
considerably less thanvmin ; it only tends tovmin when p
tends to zero, but, interestingly, in this casevmin is not ap-
proached from above, but from below.

IV. THE INTERNAL FRONT STRUCTURE IN THE
COMOVING FRAME

Theoretical considerations based on the classical pic
rely on the notion of a coordinate frame moving with t
front ~comoving frame!. Operationally, this notion depend
on how the front’s velocity is defined. In what follows, w
compare the results following from definitions~ii ! and ~iii !
since definition~i! is already strongly averaged and does n
depict the situation in individual realizations properly@7–9#.

As we proceed to show, paralleling@7–9#, the ensuing

FIG. 1. Normalized front velocityn(p) vs the reaction probabil-
ity p . The dashed curve is the classical solutionn(p)5Ap. Nu-
merical results forc510 are given by circles, and forc50.1 by
squares. Forp50.015 the diamonds given for c50.3,1, and 5.
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front forms differ strongly from those obtained by Eq.~3!,
both near the midpoint of the front and at the front’s tail.
Fig. 2~a!, we show based on definition~iii ! for p50.0025,
0.005, 0.01~from left to right! the concentration profiles
averaged by centering each realization in its comoving fra
according to~iii !. The front width obtained in this way turn
out to be an order of magnitude larger than the Fisher wi
W. In its middle part~near the inflection point! the front
is well-represented by a straight line~much better than a
Fisher front has to!, and then it decays very fast towards
outer tail~leading edge!. This decay is not exponential@as it
would follow from Eqs.~9! and ~11!#, but is considerably
faster. In fact, a plot of log10ulog10„A(x)…u shows thatA(x)
decays faster thane2xn

with anyn, so that both an exponen
tial dependence~as proposed by the Fisher equation! and a
Gaussian dependence~as emerging from the simple fluctua
tion picture! are practically excluded. In Fig. 2~b! we plot
b(x)5Alog10ulog10„A(x)…u vs x, and remark that forx large
the results are very well rendered by a straight line. T
means that for largex the concentrationA(x) is

A~x!5a expF2b exp
~x2x0!2

2s2 G . ~12!

FIG. 2. ~a! Concentration profiles in the averaged comovi
frame ~iii ! for p50.0025, 0.005, and 0.01~left above from left to
right!. The dashed lines give fits according to Eq.~12!, see text for
details.~b! b(x)5Alog10ulog10„A(x)…u vs x. The linear behavior in
this plot shows in how far Eq.~12! holds.
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Note that from our numerical results it follows that Eq.~12!
describes very well the behavior ofA(x) as long asx is not
too small: In Fig. 2~a! we plotted, based on Eq.~12!, fits to
the numerical data as dashed lines; we obtained thes
linear regression in the linear regions of Fig. 2~b!. The effec-
tive time dependence of the front’s width~if any! is ex-
tremely weak.

Another way to handle the comoving frame is to cente
on the RAP, method~ii !. In this case the corresponding de
sity profiles represent theAB andAA correlation functions.
This choice gives different information about the front. T
behavior which we find in our simulations differs from th
one which could be anticipated based on classical kine
alone, and can only be understood within a discrete part
picture.

Let us study the situation which one sees sitting on
RAP. In Fig. 3 we plot theA andB concentrations average
in the frames centered on each RAP. Let us first discuss
A concentration. NoA particle is to be found to the righ
from the origin of the coordinates, henceA(x)50 for x
.0. At x50 theA(x) function shows ad peak, due to the
RAP. Then for growing, negativex the A(x) shape grows
from its dip atx50 to the valueA(x)5C to the far left. The

FIG. 3. Front structure in frames centered on the RAP. T
dashed line stands forB(x), the full lines forA(x), and for the sum
A(x)1B(x). Now A(x) has ad peak and]B/]x a discontinuity at
x50. TheA(x)1B(x) function is close to constant forx,0 and
follows B(x) for x.0. Note the depletion zone forB(x) for x.0.
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B concentration left of the RAP behaves complementarily
A(x), so thatA(x)1B(x)5C5const for x,0. For x.0,
B(x) shows a depletion zone in the vicinity ofx50 and
tends toC for x→`. At x50, B(x) is singular, in that its
derivatives left and right of the origin are different.

This singularity is connected with the depletion zone.
the coordinate frame moving with the RAP, the effecti
diffusion coefficient of all the particles~apart from the RAP!
is D̃52D ~relative diffusion coefficient!. The currents of the
B particles to the left and right of the RAP differ, due to th
probability to react with the RAP, so that

D̃S ]B1

]x
2

]B2

]x D5p. ~13!

We found that at small concentrations and within the n
merical accuracy of our simulations, Eq.~13! is correct. For
higher concentrations one has to take into account that t
can be more than one RAP. The analysis shows that foc
large and for small reaction rates, the behavior ofB(x) for
x,0 is rather well reproduced by the intermediate-range
lution of the Fisher equation, Eq.~7!, but that at larger reac
tion rates considerable deviations occur.

Thus, both in the~ii ! and in the~iii ! picture the properties
established from simulations differ considerably from the
sults obtained solely based on Fisher’s equation.

V. CONCLUSIONS

We have considered an autocatalytic reaction sche
with a finite reaction probability in one dimension. We ha
shown that for very small particle concentrations, the velo
ties at which the reaction’s fronts move are considera
smaller than the minimal propagation velocity obtained
the classical picture, Fisher’s Eq.~3!. We recover this clas-
sical result only for extremely small reaction probabilitie
The form of the fronts is related to the type of comovin
frame used and the front forms turn out to be very differe
from the results obtained from Eq.~3!.
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