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Front propagation in one-dimensional autocatalytic reactions: The breakdown of the classical
picture at small particle concentrations
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The autocatalytic schem&+ BiZA in a discrete particle system is studied in one dimension via Monte
Carlo simulations. We find considerable differences in the results for the front velocities and front forms
compared to the classical, continuous picture, which is only valid in the limit of very small reaction probabili-
ties p. Interestingly, we also obtain front propagation velocities fairly below the classical minimal velocity.

PACS numbsgfs): 05.40—a, 82.20.Mj, 82.65-i

[. INTRODUCTION concentrations and for rather small but nonzero probabilities
p, the attained front velocity can be considerably smaller
Reaction kinetics in low dimensions were extensively in-thanv y,;,. The value ofvy,;, is obtained only in the limiting

vestigated in the past two decades, since they differ significasep—0.

cantly from the situation in high-dimensional spaces, and We also discuss the shape of the front and show that it

often violate strongly the classicdmean-field kinetical ~ depends strongly on the definition of the comoving frame

schemes based on the mass-action la]; this happens in  used, and that it is in any case different from the classical
particular ford=1 and 2, where the reaction terms show aPrediction.

strong dependence on high-order particle correlation func- TN€ Paper is structured as follows. In Sec. Il we recall
tions [3,4]. Fisher's equation and its solutions and in Sec. Il we discuss

In this paper, we investigate the front propagation in ththe velocity of a reaction front for fini_te reaction probabilities
p. In Sec. IV we compare the classical results of the front’s
velocity with our Monte Carlo simulations. Section V deals
with the shape of the front.

autocatalytic schemé+B—2A, where p is the reaction
probability of anA with a B particle. The system is studied in
one dimensior{1D) by Monte Carlo simulations and by ana-
lytical methods taking into account the particulate nature of
the system. Il. THE FISHER EQUATION
The classical picture dating back to Fisher and to Kol-
mogorov, Piskunov, and Petrovsky describes the propagaticw
within the continuous reaction-diffusion equation schem
[5,6]. This scheme predicts the existence of a minimal fron
velocity v min,» Which under a wide range of conditions should

The reaction process under consideration in the frame-
ork of a Master equation for the numbefgi),B(i) of
articles at site reads

. ; AA(I,t) 1 1 . . .
be the only velocity sustained by the system. =—Ali—1t)+ A +1t)—A(i,t)+pAB(i,t)
Discreteness effects, however, can strongly alter the reac- ot 2 2
tion’s behavior, here in particular the front’s velocj§~17. @

The particulate nature means that the local concentrations are
discrete, a fact that influences the concentration fluctuation&nd
Furthermore, discreteness means that particles of the B 1 L
“wrong” kind can be found only at a finite distance from the JB(I,t . . . .
position of the front, leading to a cutoff of concentration ot 2B+ 5B+1)—B(I,U)~pAB.L),
[18]. Both these effects typically give rise to velocities larger 2
than v i, [5,6]. Numerical simulations in one-dimensional

systems with high particle concentration under a parallel upwhereAB(i,t) is the number ofAB pairs on sitd. Under a
date rule[19] confirm that typically attained front velocities decoupling(mean-fielg assumptionAB(i,t) = A(i,t)B(i,t).
are larger thar ., and that they tend to ., as the local In the continuum limitA(i,t) —A(x,t) andB(i,t)—B(x,t),

reaction rate tends to zero. one can rewrite Eq€1) and(2) as a single equation for the
In what follows, we investigate the situation under low continuous concentratioA(x,t):

particle concentrations on a one-dimensional lattice. Per unit

time, each particle performs on the average one step to one IA 2A
of the neighboring sites. If two particles of a different kind —= D—2+kA(C—A), 3)
occupy the same lattice site, they react with the probaplity at IxX

per unit time according té&\+B— 2A. There is no excluded

volume. At the beginning, the lattice is filled randomly with by noticing that for initial conditions corresponding to a
B particles with concentratio€. A single A particle is lo- homogeneous population of the lattice Byparticles,B(i)
cated at the left border of the lattice. We show that under low=C, Egs.(1) and(2) imply A(i,t) +B(i,t) =C=const.
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Equation(3) is the standard Fisher equation for the qua- v 2
dratic autocatalysis problem in one dimension. Héris the 7\1,2=§i i 1. (11

initial concentration ofB, and the diffusion coefficient and
the reaction rate ar® =1/2 andk= p, respectively. The pa-

rameters of the Fisher equation defining the characteristi

natural scales for length and time are/=D/kc
=(2pc) Y2 (front’s width) and T=(kc) "*=(pc) . By an
appropriate change of variables, Eg) can be put into the
dimensionless form

ay %y
%—a—gzﬂ/(l—y), (4)

wherey=N/C, £é=x/W, and6=t/T.

Looking for a stable traveling front solution, one change
into a comoving frame, which leads to the time-independen

equation

?y  dy
0—§2+va—§+y(l—y)=0, 5

where the velocityv has as a natural univV=+Dkc
=\pc/2.

S

&he concentratiog(x) then only stays real i is equal to or

is larger thanv,,=2 (Where v,=2\Dkc=\2pc in the
initial units); this is a lower bound om. The marginal sta-
bility principle then states that=v ;;,. The corresponding

is theny/2/pc. Equation(9) is the concentration profile in the
far tail region, and the overall front form can be obtained as
an interpolation between E¢7) and Eq.(9).

Ill. THE VELOCITY OF THE FRONT

In our simulations we use lattices of site=3000 and
Eollow each realization of the process until the front reaches
he middle of the lattice. We use reflective boundary condi-
tions at both ends of the lattice. The valuepafary between
0.0005 and 0.3. Depending qn we perform between 500
and 10000 independent runs.

The velocity of the front can be defined using three pro-
cedures implying different averaging assumptions.

(i) One can fix the tima and calculate the average con-
centration profile of the front. The front's positiof(t) is

Now, considering the stable propagation, we can concerthen defined as the point wheféx(t))=C/2 and the veloc-

trate on the behavior of the stationary solutip(€). The
explicit form of the solution of Eq(5) is known only for a

ity is v =x(t)/t. This method does not allow us to define the
front velocity in each realization separately. This is rendered

special value of) and is not of physical relevance. On the possible by the following two definitions.
other hand, the asymptotic forms of the solutions near the (ii) One determines the position of the rightmdspar-

midpoint of the front(inflection poin} and at the front’s far

ticle (RAP) in each realization and calculatesfrom x(t)

edge are easy to obtain. In the middle of the front, near its= Xgap(t), again asw gap(t) =xgap(t)/t.

inflection point, the term with the second spatial derivative is

(iii) Another possibility is given through the total number

small and can be neglected, thus leading to a first-order equida(t) of A particles at time: We then sek(t) =Nx(t)/C.

tion

ay
v&—§+ky(1—y)=0 (6)

Different procedures imply different types of averaging.
The velocities obtained b§i) are already averaged over all
realizations. In methodii), vgap depends on the specific
realization; the result obtained bfjii) is in some sense
preaveraged. We find that the mean velocities obtained

whose solution provides a reasonably good approximatiothrough these three procedures coincide with each other

for the central part of the froff6]. Thus, at intermediaté,

1
y(é)= Trexi&lv)’ (7)

within 1%, but their fluctuation properties differ; see the next
section.

We have performed a series of simulations using all three
methods. In each case the position of the front, after a short
transient, starts to grow linearly in time, and the propagation

This form is physically reasonable for any value of velocity Of the front is stable. The parameters of our simulations are

v. On the other hand, far from the front's midpoiet &

always chosen to allow for simulation times much longer

>p) one can neglect thg? term and solve the linearized than the transient.

equation

2
j—;+v % +y=0. (8
The solution of this equation is an exponential function:
y(§)=aexp(—\(v)é), 9
where\(v) is a solution of a characteristic equation
A+uN+1=0 (10

and reads

We start by presenting results of our numerical simula-
tions in Fig. 1: Here we plot the data obtained using method
(i) in runs with two different concentrations,=10 andc
=0.1, for differentp values ranging fromp=0.0005 top
=0.02. In order to render the comparison easy, we plot in
Fig. 1 the normalized velocity(p) =v(p)/2\/Dc as a func-
tion of p; according to classical Fisher kinetiog,p) should
behave as/p. This classical result for the normalized veloc-
ity, »(p)=+/p, is shown in Fig. 1 as a dashed line. We see
that the data points foc= 10 lie slightly above the dashed
curve, in line with the theoretical considerations of Refs.
[18,19. On the other hand, the data points for the smaller
concentrationc=0.1, lie definitely below the dashed curve
and tend to it only for extremely small values pflf we try
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FIG. 1. Normalized front velocity(p) vs the reaction probabil- 0.8
ity p . The dashed curve is the classical solutigfp)=vp. Nu- 07 I
merical results forr=10 are given by circles, and far=0.1 by 1l
squares. Fop=0.015 the diamonds give for c=0.3,1, and 5. 0.6
to describe the data through a power law, i.e.,1ggf) < p<, = 05T
we obtain from a linear fit to log(v(p)) vs p that ~0.4. = 04

To further elucidate the role of concentration and the non-
monotonic behavior of the actually attained velocity, we plot I
in Fig. 1 the values of for p=0.015 as a function of. We 02
see that at=0.1,0.3,1, and 5 the velocity grows withbut i
that it stays below the dashed curve, which gives the classi- %1
cal vyin. On the other hand, far=10 the velocity exceeds 0.0
U min Slightly.

For small concentrations, there is no reason for the clas-
sical Fisher equation to describe the front velocity correctly: FIG. 2. (a) Concentration profiles in the averaged comoving
For realizations with relatively largp and in dilute situa- frame (iii) for p=0.0025, 0.005, and 0.0deft above from left to
tions (very smallc), the number of particles within the reac- right). The dashed lines give fits according to Eip), see text for
tion front is very small, so that the region in which H§)  details.(b) B(x)= Vlog;glogio(A(x))| vs x. The linear behavior in
should start to be applicable contains Aoparticles. The  this plot shows in how far E¢12) holds.
region is thus certainly not rendered correctly by B).and
the requiremen_t that th_e asy_mptotic solution of(Bpbe real  front forms differ strongly from those obtained by E@),
(as discussed in Sec,)lis void. On the other hand, whem i near the midpoint of the front and at the front's tail. In
decreases, the overall number of partidlescW=yc/2pin  Fig. 2a), we show based on definitiofiii) for p=0.0025,
the front region increases, so that eventually, at very f)ow 0.005, 0.01(from left to right the concentration profiles
the classical continuous description may become reasonablgyeraged by centering each realization in its comoving frame
Thus, for a given fixedc, decreasingp makes the front  according taliii). The front width obtained in this way turns
broader and the number of particles in the front region largergyt to be an order of magnitude larger than the Fisher width
facts that let (p) approactv . Now for largec one finds . |n its middle part(near the inflection pointthe front
thatv(p) approaches n, from above{19]. In this work we s well-represented by a straight lifenuch better than a
find that wherc is low, the propagation velocity(p) can be  Fisher front has tp and then it decays very fast towards it
considerably less than,; it only tends tov,, whenp  outer tail(leading edge This decay is not exponentifas it
tends to zero, but, interestingly, in this casg, is not ap-  would follow from Egs.(9) and (11)], but is considerably

(b)
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-600  -400 -200 0 X 200 400 600 800

proached from above, but from below. faster. In fact, a plot of logjlog;o(A(x))| shows thatA(x)
decays faster thae X" with anyn, so that both an exponen-
IV. THE INTERNAL FRONT STRUCTURE IN THE tial dependenceas proposed by the Fisher equaji@md a
COMOVING FRAME Gaussian dependenéas emerging from the simple fluctua-

. . . . _ tion picture are practically excluded. In Fig.(®) we plot
Theoretical considerations based on the classical p'CturB(x)=\/Ioglolloglo(A(x))l vs x, and remark that fo large
rely on the notion of a coordinate frame moving with the yhe “results are very well rendered by a straight line. This

front (comoving framg Operationally, this notion depends aans that for larg& the concentratio\(x) is
on how the front’s velocity is defined. In what follows, we

compare the results following from definitioris) and (iii )

since definition(i) is already strongly averaged and does not

depict the situation in individual realizations propef-9]. A(x)=aex;{ —bex
As we proceed to show, parallelif@—9], the ensuing

(X_Xo)2
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011 ‘ ' ‘ ; ' ; ] B concentration left of the RAP behaves complementarily to
0.10 s o e e A(X), so thatA(x)+B(x)=C=const forx<0. For x>0,

. B(x) shows a depletion zone in the vicinity af=0 and

] tends toC for x—«. At x=0, B(x) is singular, in that its

i derivatives left and right of the origin are different.

This singularity is connected with the depletion zone. In
the coordinate frame moving with the RAP, the effective
diffusion coefficient of all the particle@part from the RAP
is D=2D (relative diffusion coefficient The currents of the
B particles to the left and right of the RAP differ, due to the
probability to react with the RAP, so that

0.09
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0 o.06}
<C 005
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0.02 |
0.01 |

0.00 ‘ ' -
200 -100 0 100 200

X
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FIG. 3. Front structure in frames centered on the RAP. The \We found that at small concentrations and within the nu-
dashed line stands fB(X), the full lines fOfA(X), and for the sum merical accuracy of our Simu'ations’ E(q_3) is correct. For
A(x)+B(x). Now A(x) has ad peak andsB/dx a discontinuity at  higher concentrations one has to take into account that there
x=0. The A(x) +B(x) function is close to constant for<0 and g1 be more than one RAP. The analysis shows that for
follows B(x) for x>0. Note the depletion zone f@(x) for x>0. large and for small reaction rates, the behavioBéK) for
x<0 is rather well reproduced by the intermediate-range so-
lution of the Fisher equation, E7), but that at larger reac-
tion rates considerable deviations occur.

Thus, both in theii) and in theiii ) picture the properties
Rtablished from simulations differ considerably from the re-
sults obtained solely based on Fisher's equation.

Note that from our numerical results it follows that Ef2)
describes very well the behavior 8{(x) as long as< is not
too small: In Fig. 2a) we plotted, based on E@l2), fits to
the numerical data as dashed lines; we obtained these
linear regression in the linear regions of FigbR The effec-
tive time dependence of the front's widilif any) is ex-
tremely weak.

Another way to handle the comoving frame is to center it
on the RAP, methodii). In this case the corresponding den-  we have considered an autocatalytic reaction scheme
sity profiles represent th&B and AA correlation functions.  with a finite reaction probability in one dimension. We have
This choice gives different information about the front. Theshown that for very small particle concentrations, the veloci-
behavior which we find in our simulations differs from the ties at which the reaction’s fronts move are considerably
one which could be anticipated based on classical kineticgma”er than the minimal propagation Ve|ocity obtained in
alone, and can only be understood within a discrete particlgne classical picture, Fisher's E(B). We recover this clas-
picture. sical result only for extremely small reaction probabilities.

Let us study the situation which one sees sitting on therhe form of the fronts is related to the type of comoving

RAP. In Fig. 3 we plot theA andB concentrations averaged frame used and the front forms turn out to be very different
in the frames centered on each RAP. Let us first discuss thgom the results obtained from E¢B).

A concentration. NoA particle is to be found to the right
from the origin of the coordinates, henégx)=0 for x
>0. At x=0 the A(x) function shows & peak, due to the
RAP. Then for growing, negative the A(x) shape grows We acknowledge support from the DFG, from the GIF
from its dip atx=0 to the valueA(x) =C to the far left. The 1-423 project, and from the Fonds der Chemischen Industrie.

V. CONCLUSIONS
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