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Numerical model for collisions in the drift approximation that reproduces classical
and neoclassical transport

Qudsia Quraishi and Scott Robertson
Department of Physics, University of Colorado, Boulder, Colorado 80309-0390

~Received 11 February 2000!

A numerical method is described for including collisions in the drift approximation in a way that reproduces
diffusion of the guiding center and of the drift orbit center. For untrapped particles, the method gives transport
that agrees with classical values for mobility and diffusivity both parallel and perpendicular to the magnetic
field. For trapped particles, the method correctly reproduces the neoclassical mobility and diffusivity. The
model has been applied to the annular Penning trap in which a non-neutral plasma of electrons in a helical
magnetic field makes collisions with neutral gas. The model shows that the transport makes a transition from
neoclassical to classical values as the collision frequency goes from less than to greater than the axial bounce
frequency.

PACS number~s!: 02.60.2x, 52.65.2y, 52.25.Wz, 52.25.Fi
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I. INTRODUCTION AND MOTIVATION

The drift approximation is advantageous to simulate p
ticle motion in plasma confinement devices because it allo
a much greater time step than can be used with the Lor
equations of motion. The drift approximation is obtained
averaging the equations of motion over a period of gyrat
about the field lines. This averaging removes the period
gyration and the Larmor radius as time and distance sc
that must be resolved. The drift approximation can be es
cially valuable for transport because the associated time s
is often many orders of magnitude longer than the gyrat
period. The averaging process, however, removes the de
of particle motion that are needed to evaluate the guid
center displacements caused by collisions. We describ
method for putting collisions into the drift approximation
a way that correctly reproduces transport by both mobi
and diffusion. We also show that the method correctly rep
duces the neoclassical mobility and neoclassical diffus
@1,2# that apply to certain classes of confinement devic
Lastly, we apply the model to a simple experimental dev
having drift orbits with motion orthogonal to cylindrical flu
surfaces. We show that a transition is made from neoclass
to classical transport as the collision frequency is chan
from less than to greater than the frequency of the drift
bits.

Neoclassical transport occurs in omnigenous@3# confine-
ment devices in which particles have drifts orthogonal to fl
surfaces and the center of the drift orbit remains on a fl
surface. A collision model for the drift approximation th
reorients the velocity vector changes the width of the d
orbit and this causes the drift orbit center to diffuse in sp
@4,5#. This approach reproduces that part of neoclassical
fusion arising from diffusion of the drift orbit center; how
ever, diffusion of the guiding center is lost. This is of litt
consequence when the drift orbit width greatly exceeds
Larmor radius. On the other hand, correct treatment of
fusion of the guiding center is essential for modeling t
transition from neoclassical transport to classical transp
that occurs when the collision frequency becomes su
PRE 621063-651X/2000/62~1!/1405~8!/$15.00
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ciently large to prevent the completion of drift orbits. F
this reason the Lorentz equations of motion were used in
first numerical studies of the transition from neoclassical
classical transport in the tokamak@6#.

The motivation for this work is to model confinement
an annular Penning trap@7#, Fig. 1~a!, in which the collisions
are between electrons and neutral gas. The magnetic

FIG. 1. ~a! Schematic diagram of the annular Penning trap t
is the motivation for the numerical model. There is an axial fieldBz

created by external coils and an azimuthal fieldBu created by an
internal conductor with currentI. The plasma is contained betwee
concentric cylinders of radiir 1 and r 2 and loss along field lines is
prevented by an electrostatic potential created by annular electr
at the ends biased to a negative potential2V. An arrow shows the
direction of the helical field. The spiral is the trajectory of an ele
tron and the oval is the trajectory of its guiding center.~b! Local
Cartesian coordinate system used in the analysis of particle c
sions. The curved arrow is a helical field line.
1405 ©2000 The American Physical Society
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1406 PRE 62QUDSIA QURAISHI AND SCOTT ROBERTSON
geometry is cylindrical with magnetic fieldsBu andBz that
give straight cylindrical flux surfaces. Plasma of electrons
confined between two concentric cylinders that may be
ased electrically to create a radial electric fieldEr which
drives transport by mobility. The electrons are confined a
ally by an electric fieldEz at the ends of the device tha
accelerates particles toward the midplane. The axial field
sults in a bathtub-shaped potential well. The motion ass
ated with theEz3Bu drift in the end regions is radial and th
particles drift a small distance radially while being reflecte
This drift is in opposite directions at the two ends of t
device and gives the bounce orbit of the guiding cente
finite radial extent. The shape of the drift orbit is like that
a rubber band. This orbit is analogous to the bananalike d
orbit of the tokamak and results in transport being neoc
sical @8#.

In Sec. II, the numerical model for collisions in the dr
approximation is presented. In Sec. III, we derive the cla
cal and neoclassical transport coefficients for mobility a
diffusion applicable to straight cylindrical flux surfaces ha
ing axially trapped particles. The model is applied in Sec.
to the annular Penning trap with the collision frequen
much greater than, equal to, or much less than the freque
associated with the drift orbits. In the limits of high and lo
collisionality, the calculated diffusivity agrees with the cla
sical and neoclassical values, respectively.

II. THE COLLISION MODEL

A collision is modeled in the drift approximation in thre
steps: ~1! the rest frame velocity of the colliding electron
redistributed randomly among the velocity components;~2!
the displacement of the guiding center is found from
changes in velocity; and~3! the displacement across the ele
trostatic potential gradient is used to alter the particle kine
energy so that the sum of kinetic and potential energie
conserved. We model electron-neutral collisions as ha
sphere collisions in which the electron velocity vector is
oriented randomly in the rest frame of the neutral gas. Lo
energy collisions with monatomic gases are elastic collisi
in which the length of the velocity vector is unchanged. T
reorientation of the velocity vector, when averaged o
many collisions, has the effect of removing the moment
associated with drift motion. This momentum loss is one
the driving forces for transport. The procedure describ
here could easily be modified for electron-ion collisions
selecting small random angular changes in the velocity v
tor @9#.

In the drift approximation, there are gradient, curvatu
and electric drifts that are the velocities perpendicular to
magnetic field. In addition, there is motion along the fie
line at a velocityv i . In our numerical model, these velocitie
are projected onto a cylindrical coordinate system and in
grated usingRK4 @10# to find the position of the guiding
center as a function of time. The drift velocities are calc
lated at each position from the local fields and velocities. T
parallel velocity is found by integration of the parallel acc
eration. Thus, in the drift approximation, there are four va
ables found byRK4 on each time step rather than the s
variables that would be necessary for the Lorentz equat
of motion. The velocityv' in the plane perpendicular toB is
s
i-

i-

e-
i-

.

a

ift
s-

i-
d

cy

e

c
is
d-
-
-
s

e
r

f
d

c-

,
e

-

-
e

-

ns

found from the stored value of the magnetic moment of
particle and from the local value of the magnetic field. T
time step is made sufficiently small to resolve the gradie
in the electric and magnetic fields.

The analysis of collisions is simplified in a local Cartesi
coordinate system, Fig. 1~b!, at the particle location. This ha
one coordinateêb aligned with the magnetic field. A secon
coordinateêr is in the radial direction, which is perpendicula
to the flux surfaces. This coordinate is the primary direct
of the magnetic gradient, the electric field, and cross-fi
transport. The third coordinate, theêb3êr direction, is the
direction of the dominant particle drifts. The unit vectorsêr ,
êb3r , andêb form a right-handed coordinate system.

The velocity vectors before and after the collision a
found by the following procedure. The velocities used in t
drift approximation,v i andv' , are the velocities parallel to
êb and in the plane perpendicular toêb , respectively. A ran-
dom gyrophaseu is selected from 0 to 2p. A sine and a
cosine are used to projectv' onto theêr andêb3r directions.
The velocity in theêb3r direction is added to the guiding
center drifts in this direction to find the rest frame velocity
the particle. The squares of the rest frame velocity com
nents are then summed to obtain the square of the magn
of the velocity vector in the rest frame:

v tot
2 5~vD1v',1 cosu!21~v',1 sinu!21v i ,1

2

5vD
2 12vDv',1 cosu1v',1

2 1v i ,1
2 , ~1!

wherevD is the sum of the guiding center drifts in theêb3r
direction,v',1 is found from the local magnetic field and th
stored value of the magnetic moment, the radial guiding c
ter drifts are assumed negligible, and the subscript 1 refer
quantities before a collision. The cosine of the postcollis
pitch angle, cosa, is selected randomly in the domain21 to
11 and is used to projectv tot onto êb :

v i ,25v tot cosa, ~2!

where the subscript 2 refers to quantities after a collisi
This is done without a coordinate transformation between
drifting and rest frames because the drifts are orthogona
this direction. The cosine is selected randomly rather th
the angle so that all solid angles are given equal weight
The remaining velocity is divided between the remaini
two directions by selecting randomly an azimuthal angleb
spanning 0 to 2p and using the sine and cosine:

v r ,25v tot sina cosb, ~3!

vb3r ,25v tot sina sinb2vD . ~4!

The azimuthal angle is not the pitch angle because the fr
of reference is not the drifting frame. The guiding center d
has been subtracted to findvb3r ,2 in the drifting frame. The
sum of the squares of these velocities is the square of
new v' :

v',2
2 5v r ,2

2 1vb3r ,2
2 , ~5!

where the radial guiding center drift has again been assu
negligible.
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PRE 62 1407NUMERICAL MODEL FOR COLLISIONS IN THE DRIFT . . .
The guiding center displacement is calculated in the
lowing way. First, the particle location is found by findin
the vectorr1 pointing from the stored guiding center locatio
to the particle. The magnitude of this vector is the Larm
radius and its direction is opposite to the direction of thev
3B acceleration of the magnetic field:

r152mv13B/qB2, ~6!

wherem is the electron mass andq52e is its charge. Sec-
ond, this vector is evaluated again after the collision us
the subsequent particle velocityv2 . Third, this vector is sub-
tracted from the particle location to yield the new position
the guiding center. These steps are combined to yield

x25x12m~v12v2!3B/qB2, ~7!

wherex1 andx2 are the guiding center locations before a
after the collision, respectively.

The components of the guiding center displacement
most easily evaluated in the plane perpendicular toêb :

dr52m~vb3r ,12vb3r ,2!/qB, ~8!

db3r5m~v r ,12v r ,2!/qB. ~9!

The second of these is projected onto the cylindrical r
frame coordinate system using

du5db3rBz /B, ~10!

dz52db3rBu /B. ~11!

At this point conservation of energy may have been v
lated because the guiding center has moved to a pos
where the electrostatic potential is different. The change
potential energy must be subtracted from the kinetic ene
In the case where the electric field is primarily radial, t
potential energy before the collision is

Wp5qF~r GC2mvb3r ,1 /qB!

5qF@r GC2~mv',1 /qB!cosu#, ~12!

whereF(r ) is the electrostatic potential at the particle loc
tion, r GC is the radial coordinate of the guiding center,u is
the gyrophase angle appearing in Eq.~1!, and the potential
has been assumed to be a function only of the radius. F
Eqs.~1! and ~12!, the sum of the kinetic and potential ene
gies is

Wtot5Wp1 1
2 mv tot

2 5 1
2 m~vD

2 1v',1
2 1v i ,1

2 !1qF~r GC!.
~13!

We have assumed that the gradient and curvature drifts
negligible so thatvD52Er /B, in which case the two term
with cosu cancel one another. A loss of potential ener
arising from a displacement must be added to the kin
energy through a revision in the value ofv' :

v',2
2 5v',2

2 12~q/m!@F~r GC!2F~r GC1dr !#

>v',2
2 12dr~q/m!Er~r GC!. ~14!
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Whether the potential or the field is used to find the corr
tion is a choice that can be based upon which is most ea
calculated. At the point wherev',2 is found by taking a
square root of the above expression, there is a small p
ability that the argument will be negative. This can be p
vented with little loss in accuracy by setting negative valu
to zero. The newv',2 is used to revise the stored value of th
magnetic moment.

Conservation of energy may also be used to findv tot just
before the collision. In this case Eq.~1! is replaced with

v tot
2 52@Wtot2qF~r GC2mv',1 cosu/qB!#/m. ~15!

For modeling problems having strong electric drifts or du
tions of 100 collision times or more, enforcement of ener
conservation may be necessary because of inaccuracie
herent in the drift approximation. The use of Eq.~15! pre-
vents conservation of energy from being used as a chec
the accuracy of the computations.

III. TRANSPORT COEFFICIENTS FOR CYLINDRICAL
GEOMETRY

The numerical model is tested by comparing the transp
from the model with analytical values. For the annular Pe
ning trap, the transport coefficients can be found most ea
from a fluid approach. The fluid momentum equation f
plasma of electrons is

nm
dv

dt
52“P2nq“F1J3B, ~16!

whereP is the scalar electron pressure andJ is the equilib-
rium current. The gradients are radial except in the end
gions, which are ignored. The general solution for the eq
librium current is

J5B3~“P1nq“F!/B21lB, ~17!

wherel is an adjustable constant. In the case of a long m
free path, the axial confinement results in there being no fl
z velocity and hence noJz . This condition constrains the
choice ofl and one finds that

Ju5S T
dn

dr
2nqEr D Y Bz , ~18!

where the gradient in the temperature~written in energy
units! has been set to zero for simplicity. The equilibriu
current is the sum of a diamagnetic drift part and anE3B
drift part. Collisions with neutrals create a drag force on t
equilibrium current:

Fu52mvun52mJun/nq52~mn/Bznq!S T
dn

dr
2nqEr D

~19!

where Fu is the force per particle andn is the electron-
neutral momentum transfer collision frequency. The torq
rF u changes the canonical angular momentumPu , and from
this change the displacement causing transport can be fo

The canonical angular momentum may be averaged o
the gyrophase and the axial bounce motion to obtain
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1408 PRE 62QUDSIA QURAISHI AND SCOTT ROBERTSON
Pu5r 0@mvD,u1qAu~r 0!#5r 0~mvD,u1 1
2 qr0Bz!, ~20!

wherer 0 is the radial location of the drift orbit center,Au(r )
is the magnetic vector potential,vD,u is theu component of
the guiding center drift, andBz is assumed to be spatiall
constant. The torque from collisions,rF u , changes the ca
nonical momentum:

r 0Fu5
dPu

dt
5

d

dt
@r 0~mvD,u1 1

2 qr0Bz!#>r 0qBz

dr0

dt
,

~21!

from which one finds the transport drift rate,

dr0

dt
5Fu /qBz , ~22!

where we have used thatr 0@umvD,u /qBzu. From the drag
force on the equilibrium current, we obtain the particle fl
G:

G5n
dr0

dt
52~mnT/q2Bz

2!
dn

dr
1mnnEr /qBz

2

52DNC

dn

dr
1nmNCEr , ~23!

where

DNC5mnT/q2Bz
2, ~24!

is the neoclassical diffusion coefficient. The neoclassical m
bility coefficient

mNC5mn/qBz
2 ~25!

relates the radial drift velocity to the radial electric field.
In the limit of short mean free path, local condition

rather than the end conditions determine the adjustable
stant in Eq.~17!. The current parallel toB is determined by
an additional equation, a parallel Ohm’s law, which rela
the parallel current to the parallel electric field. There be
no parallel electric field~except in the end regions!, the par-
allel current is zero~rather thanJz) and l50. In this case,
one finds the classical values for mobility,

mC5mn/qB2, ~26!

and for diffusion,

DC5mnT/q2B25nr L
2, ~27!

where r L
25mT/q2B2 is the square of the thermal Larmo

radius.
The numerical model should also reproduce the coe

cients for transport parallel to the field lines:

D i5T/mn, ~28!

m i5q/mn. ~29!

We return to the discussion of the numerical model a
show that it correctly reproduces~1! the drift orbit width
-

n-

s
g

-

d

obtained from angular momentum conservation and~2! the
neoclassical diffusion. The canonical momentum avera
over gyrophase alone is

Pu5r GC@m~vD,u1v iBu /B!1 1
2 qrGCBz#, ~30!

which in the absence of collisions is conserved. The veloc
along the field line is reversed in the vicinity of the orbit tip
and successive crossings of the midplane must be displ
radially by

2r B52mv i ,0Bu /qBBz , ~31!

which is twice the drift orbit ~banana! width r B and
v i ,0(Bu /B) is the azimuthal component of the parallel velo
ity evaluated at the midplane. From Eqs.~24! and ~31!, one
finds

DNC5n~r L
21r B,t

2 !, ~32!

wherer B,t5~mT!1/2Bu /qBBz is the thermal drift orbit width.
This way of writing DNC shows the separate contribution
from the diffusion of the guiding center and the diffusion
the drift orbit center. The radial distance from the partic
location to the flux surface with the drift orbit center is

Dr GC5mv iBu /qBBz . ~33!

The drift orbit width becomes the characteristic length
diffusion in the limit of smallBz in which Bu→B.

It can be shown that the drift orbit width is correctly co
tained in the drift approximation by noting thatv i is changed
by the time integral of the projection of the axial electr
field onto the parallel direction:

22mv i ,05qE ~Bz /B!Ezdt, ~34!

where the integral is taken along the orbit in the upper h
plane. This time integral ofEz simultaneously results in a
radial displacement from the radial component of theE3B
drift:

2r B52E ~EzBu /B2!dt52mv i ,0~Bu /qBBz!, ~35!

where the previous equation has been used to eliminate
time integral. This displacement is the drift orbit width o
tained from canonical momentum conservation.

A loss of momentum in a collision leads to neoclassi
displacement of both the guiding center and the drift or
center. The vector momentum removed by a collision m
be decomposed into components in theêr , êb3r , and êb
directions. Loss of momentum in theêr direction results in a
guiding center displacement in theêb3r direction, and this
transport is within, not across, the flux surfaces. Loss of m
mentum in theêb3r direction results in transport in theêr
direction through displacement of the guiding center. T
relation of this momentum to the azimuthal momentum
mvu5mvb3r(Bz /B). The displacement of the guiding cen
ter from a momentum incrementmDvb3r , is

dr5m Dvb3r /qB5m Dvu /qBz , ~36!
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PRE 62 1409NUMERICAL MODEL FOR COLLISIONS IN THE DRIFT . . .
which is the neoclassical relationship between displacem
and azimuthal momentum loss. Lastly, a momentum cha
in the êb direction results in no guiding center displaceme
however,v i is changed and there is a displacement of
drift orbit center relative to the guiding center. The relatio
ship between this component of momentum and the
muthal momentum ismvu5mv i(Bu /B). This relation
placed into the expression for the distance from the guid
center to the drift orbit center, Eq.~33!, yields a displace-
ment of the orbit center

sr5mDvu /qBz , ~37!

which again is the neoclassical displacement. There is
need to add this displacement explicitly in the numeri
model because the drift orbit is correctly reproduced in
drift approximation. Equations~36! and ~37! show that a
momentum change from a collision results in a displacem
of the guiding center if in theêb3r direction, a displacemen
of the drift orbit center if in theêb direction, and that in
either case the displacement has the neoclassical relation
with loss of azimuthal momentum. The first equality in E
~36! is the classical result for the dependence of the displa
ment upon a change in momentum.

IV. APPLICATION TO THE ANNULAR PENNING TRAP

The numerical model is applied to the Penning trap
first finding the appropriate particle drifts. The electric dr
is

vE5~2EzBuêr2ErBzêu1ErBuêz!/B
2

52~EzBu /B2!êr2~Er /B!êb3r . ~38!

The gradient drift is

v
“B5v'

2 ~2Bzêu1Buêz!Bu
2/2B3rV

52~v'
2 Bu

2/2B2rV!êb3r , ~39!

whereV5qB/m is the cyclotron frequency. The radius o
curvature of a field line isRc5rB2/Bu

2 and this appears in
the denominator. The inertial drift is

v15~B3dvGC/dt!/BV

52vuGC

2 ~B3êr !/BrV

'2~v iBu /B2ErBz /B2!2êb3r /rV

52~v iBu /B2ErBz /B2!2~Bzêu2Buêz!/BrV , ~40!

wheredvGC/dt is the centripetal acceleration2vuGC

2 /r of the

guiding center. This acceleration has contributions fr
v iBu /B, the azimuthal component of the bounce motion, a
from the azimuthal electric drift. These three drifts a
summed in the numerical model to obtain thevD used in
evaluation of the total velocity.

The equation of motion parallel to the field is@11,12#
nt
e
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e
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e
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dv i /dt5qEi /m1vE•@~vE1vi!•“#êb

5~q/m!~EzBz /B!2~vE,u1v iBu /B!vE,rBu /rB

2vE,r~vE,uBz
2Bu1vE,zBzBu

2!/rB3, ~41!

whereEi5EzBz /B is the projection onto the parallel direc
tion of the electrostatic confining field at the ends of the tr
The terms after the first give the change in the parallel
locity due to the changing orientation of the parallel directi
êb . The azimuthal motion of the guiding center causesêb to
rotate in the r -u plane at the angular rate (vE,u
1v iBu /B)/r . This change inêb at the particle location has
projection onto the radial electric driftvE,r occurring at the
tips of the drift orbits. Additionally, the radial drift at the
orbit tips carries the guiding center in the direction of t
shear in the magnetic field. This causesêb to rotate in theu-z
plane and the rotation changes the projection ofêb onto the
other two components ofvE . The inclusion of these term
improves energy conservation from one side of the drift or
to the other by an order of magnitude when there is an e
tric field applied to drive transport by mobility. There is n
term from the“B force in this equation because there is
gradient ofB in the parallel direction in the experiment bein
modeled. This term would be important for the tokamak,
example, where the“B force causes the reflection of pa
ticles at the drift orbit tips.

The assignment of initial particle velocities in the dr
approximation is straightforward for the two degrees of fre
dom represented byv' , but the assignment of initial veloci
ties tov i must be done with care. For axially confined pa
ticles on drift orbits, a particle withv i50 will be carried
toward the drift orbit tips by thez component of the drifts,
and there it will be reflected. This violates the requireme
that the bounce motion should cease at zero parallel temp
ture. There is no bounce motion and the particle rema
stationary inz whenv i has the valuev i ,D to cancel the drifts
in the z direction:

v i ,D52vD~B/Bz!>2ErBu /BBz , ~42!

where we have assumed that only the electric drift is sign
cant. This velocity is added to the parallel initial velocitie
before they are assigned to the particles. This step may
omitted when the electric drift velocity is very much le
than the thermal velocity.

The model was first applied to finding the drift orbits
the trap. Figure 2 shows drift orbits found from the Loren
equations of motion and from the drift approximation. T
experimental conditions were an inner cylinder radius
25.4 mm, an outer cylinder radius of 50 mm, and cylind
lengths of 150 mm. The fields wereBz5Bu52 mT andEr
approximately 0.8 V/mm from a potential difference of 20
applied to the outer cylinder with the inner cylinder at ze
potential. To simplify testing the collision model, the electr
field was specified rather than found from Poisson’s eq
tion. An electron was given an initial energy of 1 eV in ea
degree of freedom. The confining fieldEz was modeled so
that Ez and Er together satisfied, approximately, Laplace
equation. The fields used in Fig. 2 were made lower th
would be used in a laboratory experiment to better illustr
the cyclotron motion and the finite width of the drift orbi
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1410 PRE 62QUDSIA QURAISHI AND SCOTT ROBERTSON
The Lorentz equations of motion and the drift approximat
give displacements at the end of one drift orbit that agree
within a few percent. The sources of driftEr , v' , and v i

were set to zero in pairs to verify that the drift arising fro
the remaining quantity alone was correctly reproduced. T
failure of energy conservation at the end of one drift orbit
of order 1025 when there are about 10 time steps in t
steep-gradient region at each orbit tip where the confin
field reversesv i . At the end of half a drift orbit, there ar
two sources of error arising from the differences in elec
and magnetic fields from one side of the drift orbit to t
other: ~1! the change in theE3B drift velocity and~2! the
change inv' arising from magnetic moment conservatio
Motion along a field line into increasingB increasesv' at
the expense ofv i . In the experiment being modeled, how
ever, there is no gradient ofB alongB. The electrons cross
the magnetic gradient because of theE3B drift occurring at
the orbit tips and, in the drift approximation, this change
v' is not accompanied by an offsetting change inv i .

The numerical model was tested to confirm correct m
eling of the transport described by the six coefficientsm i ,
D i , mC , DC , mNC, andDNC. For determination ofD i and
DC , the experiment was made infinitely long so that the
were no drift orbits and no limit to the distance the partic
could move in thez direction. This required simply setting t
zero the confining fieldEz . The experimental condition
wereBz55 mT, Bu50, T52 eV ~1 eV initially in each de-
gree of freedom!, Er50, Ez50, and a time step giving 1 mm
of displacement at the thermal velocity. The thermal veloc
is 63105 m/s and the gradient and inertial drifts a
;104 m/s. The collision time was made 20 time steps a
256 particles were followed for 64 collision times. Th
squares of the displacements for the first 1000 collisions~the
first four particles! are plotted in Fig. 3. A linear regressio
to all ;16 000 collision points was compared with the an
lytical result for the random walk,̂r 2&52DCt, and found to
be lower by 6%. A similar plot was made for^z2& as a
function of time and the numerical result was 4% higher th
the analytical result̂ z2&52D it. Repetitions of the tests
yielded different percentages but in no case did the dif
ence exceed 7%. These agreements were considered
ciently good that the question of the differences being r
dom or systematic was not pursued.

The mobility perpendicular to the field was examined
applying a radial electric field of21000 V/m, giving vD

FIG. 2. A drift orbit plotted with the Lorentz equations of mo
tion ~left! and the drift approximation~right!. The plots are made in
the frame rotating with theE3B drift velocity.
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523105 m/s, which is not sufficiently smaller than the the
mal velocity for effects second order inEr @in Eqs.~40! and
~41!# to be ignored. Again 256 particles were followed for 6
collision times. The displacement by 64 collisions is of ord
10 mm, resulting in a potential energy gain of order 10
which is sufficient to test energy conservation when there
Joule heating. A plot of;1000 positions as a function o
time, Fig. 4, shows that, in addition to the mobility drif
there is significant diffusion that results in some partic
returning to the origin. Conservation of energy, howev
prevents diffusion beyond23 mm, the point at which the
initial 3 eV of kinetic energy is lost to potential energy.
linear regression to;16 000 points yields a mean displac
ment that is about 3% lower than the analytical value^r &
5mCErt. A similar test was made with an axial fieldEz5
250 V/m, and the mean axial displacement was compa
with ^z&5m iEzt. The numerical result was again about 3
lower than the analytical result. In all the tests without dr
orbits, the sum of kinetic and potential energies was c
served to order 1025 after 64 collisions.

The neoclassical diffusion was examined by applying
electric field to reflect particles at distances beyond675
mm. The axially trapped particles executed drift orbits li
those shown in Fig. 2. The axial electric field strength at
ends was selected to reverse the axial motion in a distanc
;5 mm so that spatial steps of order 1 mm were sufficien
resolve the potential gradient. The fields were set atBz
55 mT andBu510 mT, which gives a thermal Larmor ra
dius of 0.3 mm and a thermal drift orbit width of 0.6 mm
This separates the classical and neoclassical diffusivities

FIG. 3. A plot of the mean squared radial displacements
electrons as a function of time. Points are plotted at each collis
and the line is a linear regression.

FIG. 4. A plot of the radial displacements of particles as a fu
tion of time with an applied radial electric field causing transport
mobility. Points are plotted at each collision and the line is a lin
regression. The particle boundary at23 mm is a consequence o
conservation of energy.
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PRE 62 1411NUMERICAL MODEL FOR COLLISIONS IN THE DRIFT . . .
factor of 5. The paths of 1000 particles were followed for
collisions, which gives a mean squared radial deviation
64r L

2 for classical diffusion and 64(r L
21r B,t

2 ) for neoclassical
diffusion. The collision frequency was changed in logari
mic steps from less than to greater than the drift orbit f
quencyvB , defined as 2p divided by the drift orbit bounce
time. The mean square deviations are plotted in Fig. 5~a! as
a function ofn* 5n/vB . The filled circles are with enforce
ment of energy conservation, Eq.~15!, and the closed circles
are without, Eq.~1!. At low collisionality, n* ,10, the dif-
fusion is near the neoclassical value and at high collisiona
n* .100, the diffusion is near the classical value. The dif
sivity is plotted as a function ofn* in Fig. 5~b!. The diffu-
sivity has been divided byD* 5vBr L

2 so that the slope of the
plot is unity at high collisionality and 11(r B,t /r L)255 at
low collisionality. The electrons were initially distribute
randomly along the length of the device at a radius of
mm. Examination of the data showed that, at intermed
collisionality ~the plateau!, the particles initially near the or
bit tips diffused the greatest distances. The energies of
electrons wandered by about;0.1 eV during the tests with
out energy conservation except for the longest testsn*
,8), where the mean energy was reduced by;0.5 eV,
causing a systematic reduction in the diffusivity. The avera
of the mean square deviations obtained atn* values spanning
1 to 8 is 1.02 of the neoclassical value. An average of
mean square deviations forn* 5512 and 724 is 1.06 of the
classical value.

The usual plateau of the neoclassical theory for tokam
connects neoclassical diffusion with Pfirsch-Schlu¨ter diffu-
sion rather than with simple classical diffusion@6,13#. Toka-

FIG. 5. ~a! Mean square radial deviation of diffusing particle
after 32 collisions as a function of the collisionality parametern* .
The upper dotted line is the expected value in the neoclassica
gime and the lower dotted line is the expected value in the class
regime. The filled circles are with enforcement of energy conse
tion and the open circles are without.~b! A plot of diffusivity,
normalized to the classical value atn* 51, as a function of colli-
sionality. The points are spaced logarithmically by half powers o
f
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mak transport arises from collisions of both passing partic
and trapped particles and from collisions causing transiti
of particles from one class to the other. Thus, transport in
annular trap is less complicated than that in the tokamak
the simulations, all of the particles have the same collis
frequency, which would not be the case in laboratory plas

The neoclassical perpendicular mobility was examin
with the same parameters as the classical perpendicular
bility except that the axial confining field was applied at t
ends to create drift orbits. The mobility resulted in particl
moving preferentially ‘‘downhill’’ in the electrostatic poten
tial as a result of collisions. The particles gained 1 eV
energy per mm of displacement. The energy error accu
lated after 32 collisions became comparable, for those p
ticles moving several centimeters, to the initial kinetic e
ergy. The errors were much smaller when there was
electric field. To eliminate the error, the program was mo
fied so that energy conservation, Eq.~15!, was used to find
the magnitude of the velocity before the collision. Plotted
Fig. 6 is the mean drift distance for 1000 particles after
collision times as a function ofn* . Also shown are the mean
displacements calculated from the classical and neoclas
mobilities. The calculated displacement is approximately
neoclassical value forn* ,2 and is approximately the clas
sical value forn* .90. The average of the mobility value
for n* 50.5, 0.7, 1, and 1.4 is 2% below the neoclassi
value and the average forn* 590, 128, 181, and 256 is 10%
higher than the classical value. In computations in wh
energy conservation was not enforced, the energy error
not perceptibly change the mobility; however, the diffusivi
was increased. This difference in sensitivity to energy er
arises because the diffusivity is dependent upon the par
energies and the mobility is not.

V. SUMMARY AND CONCLUSION

A method has been described for simulating with the d
approximation plasma transport arising from collisions
electrons with neutral gas. At the time of a collision, a ra
dom gyrophase is selected and used to construct a velo
vector. This vector is repointed randomly in the rest fram
the displacement of the guiding center is found, the kine
energy is corrected for the change in the electrostatic po
tial energy arising from the displacement, and integration

e-
al

a-

.

FIG. 6. Mean radial displacement as a function of collisional
for 1000 particles after 32 collisions with a radial electric field
21000 V/m. The upper dotted line is the value based upon
neoclassical mobility and the lower line is the value based upon
classical mobility.



h
fo

he
a
o

en

to
on

col-
cy
n

ssor
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the guiding center equations of motion is resumed. T
method reproduces, to within about 5%, classical values
mobility and diffusion both perpendicular and parallel to t
magnetic field. Neoclassical transport is reproduced for p
ticles trapped electrostatically in the helical magnetic field
the annular Penning trap. The method finds the depend
of the diffusivity upon collisionality in the ‘‘plateau’’ region
in which the collision frequency goes from less than
greater than the frequency of the drift orbit. The transiti
tt.

r,
e
r

r-
f
ce

from neoclassical to classical behavior begins when the
lision frequency is about 10 times the drift orbit frequen
~in radians per second! and is completed when the collisio
frequency is about 100 times the drift orbit frequency.
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