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Numerical model for collisions in the drift approximation that reproduces classical
and neoclassical transport
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A numerical method is described for including collisions in the drift approximation in a way that reproduces
diffusion of the guiding center and of the drift orbit center. For untrapped particles, the method gives transport
that agrees with classical values for mobility and diffusivity both parallel and perpendicular to the magnetic
field. For trapped particles, the method correctly reproduces the neoclassical mobility and diffusivity. The
model has been applied to the annular Penning trap in which a non-neutral plasma of electrons in a helical
magnetic field makes collisions with neutral gas. The model shows that the transport makes a transition from
neoclassical to classical values as the collision frequency goes from less than to greater than the axial bounce
frequency.

PACS numbgs): 02.60—x, 52.65-y, 52.25.Wz, 52.25.Fi

[. INTRODUCTION AND MOTIVATION ciently large to prevent the completion of drift orbits. For
this reason the Lorentz equations of motion were used in the
The drift approximation is advantageous to simulate parfirst numerical studies of the transition from neoclassical to

ticle motion in plasma confinement devices because it allowslassical transport in the tokama].
a much greater time step than can be used with the Lorentz The motivation for this work is to model confinement in
equations of motion. The drift approximation is obtained byan annular Penning trd@], Fig. 1(a), in which the collisions
averaging the equations of motion over a period of gyratiorf'® between electrons and neutral gas. The magnetic field
about the field lines. This averaging removes the period of
gyration and the Larmor radius as time and distance scales 1 0on
that must be resolved. The drift approximation can be espe- ﬁ_—_g_,
cially valuable for transport because the associated time scale v
is often many orders of magnitude longer than the gyration =
period. The averaging process, however, removes the details 7\ A

of particle motion that are needed to evaluate the guiding ov B
center displacements caused by collisions. We describe a

method for putting collisions into the drift approximation in 2
a way that correctly reproduces transport by both mobility v

and diffusion. We also show that the method correctly repro-
duces the neoclassical mobility and neoclassical diffusion
[1,2] that apply to certain classes of confinement devices.
Lastly, we apply the model to a simple experimental device
having drift orbits with motion orthogonal to cylindrical flux
surfaces. We show that a transition is made from neoclassical
to classical transport as the collision frequency is changed
from less than to greater than the frequency of the drift or-
bits.

Neoclassical transport occurs in omnigeng8kconfine-
ment devices in which particles have drifts orthogonal to flux
surfaces and the center of the drift orbit remains on a flux
surface. A collision model for the drift approximation that
reo.”ents th.e velocity VeCtO.r Chaf‘ges the Wld.th of Fhe drlftis the motivation for the numerical model. There is an axial fie}d
orbit and_ this causes the drift orbit center to diffuse IN SPaC&eated by external coils and an azimuthal fiBlgl created by an
[4,5]. This approach reproduces that part of neoclassical difyemal conductor with currerit The plasma is contained between
fusion arising from diffusion of the drift orbit center; how- ¢oncentric cylinders of radii, andr, and loss along field lines is
ever, diffusion of the guiding center is lost. This is of little prevented by an electrostatic potential created by annular electrodes

consequence when the drift orbit width greatly exceeds thg the ends biased to a negative potential. An arrow shows the
Larmor radius. On the other hand, correct treatment of difdirection of the helical field. The spiral is the trajectory of an elec-

fusion of the guiding center is essential for modeling thetron and the oval is the trajectory of its guiding cent@). Local
transition from neoclassical transport to classical transportartesian coordinate system used in the analysis of particle colli-
that occurs when the collision frequency becomes suffisions. The curved arrow is a helical field line.

A) Bo T B

B)

FIG. 1. (a) Schematic diagram of the annular Penning trap that
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geometry is cylindrical with magnetic field3, andB, that  found from the stored value of the magnetic moment of the
give straight cylindrical flux surfaces. Plasma of electrons igarticle and from the local value of the magnetic field. The
confined between two concentric cylinders that may be bitime step is made sufficiently small to resolve the gradients
ased electrically to create a radial electric fidld which  in the electric and magnetic fields.
drives transport by mobility. The electrons are confined axi- The analysis of collisions is simplified in a local Cartesian
ally by an electric fieldE, at the ends of the device that coordinate system, Fig(ll), at the particle location. This has
accelerates particles toward the midplane. The axial field reene coordinaté, aligned with the magnetic field. A second
sults in a bathtub-shaped potential well. The motion associeoordinates, is in the radial direction, which is perpendicular
ated with theE, X B, drift in the end regions is radial and the to the flux surfaces. This coordinate is the primary direction
particles drift a small distance radially while being reflected.of the magnetic gradient, the electric field, and cross-field
This drift is in opposite directions at the two ends of thetransport. The third coordinate, tléggXx & direction, is the
device and gives the bounce orbit of the guiding center alirection of the dominant particle drifts. The unit vectérs
finite radial extent. The shape of the drift orbit is like that of &,,, and&, form a right-handed coordinate system.
a rubber band. This orbit is analogous to the bananalike drift The velocity vectors before and after the collision are
orbit of the tokamak and results in transport being neoclasfound by the following procedure. The velocities used in the
sical[8]. drift approximationy; andv, , are the velocities parallel to

In Sec. Il, the numerical model for collisions in the drift &, and in the plane perpendicular &g, respectively. A ran-
approximation is presented. In Sec. lll, we derive the classidom gyrophased is selected from 0 to 2 A sine and a
cal and neoclassical transport coefficients for mobility andcosine are used to projeet onto theg and@,,, directions.
diffusion applicable to straight cylindrical flux surfaces hav-The velocity in theg,y, direction is added to the guiding
ing axially trapped particles. The model is applied in Sec. IVcenter drifts in this direction to find the rest frame velocity of
to the annular Penning trap with the collision frequencythe particle. The squares of the rest frame velocity compo-
much greater than, equal to, or much less than the frequengyents are then summed to obtain the square of the magnitude
associated with the drift orbits. In the limits of high and low of the velocity vector in the rest frame:
collisionality, the calculated diffusivity agrees with the clas-
sical and neoclassical values, respectively. vi=(vp+v, 1€080)%+ (v, 1SiN0)>+vf,

=v%+2vaL’10030+vi1+vﬁ1, 1)
II. THE COLLISION MODEL
wherevp is the sum of the guiding center drifts in tlég,,
direction,v, ; is found from the local magnetic field and the
. : stored value of the magnetic moment, the radial guiding cen-
redistributed randomly among the velocity componef®; o grifts are assumed negligible, and the subscript 1 refers to

the displacement of the guiding center is found from they anities before a collision. The cosine of the postcollision
changes in velocity; anB) the displacement across the elec-

trostatic potential gradient is used to alter the particle kinetié)itCh angle, cos, is selected randomly in the domairil to
energy so that the sum of kinetic and potential energies isle and s used to projeety onto & :

conserved. We model electron-neutral collisions as hard- U} 2= V1ot COSQ, )
sphere collisions in which the electron velocity vector is re- ’

oriented randomly in the rest frame of the neutral gas. Lowywhere the subscript 2 refers to quantities after a collision.
energy collisions with monatomic gases are elastic collisionghis is done without a coordinate transformation between the
in which the length of the velocity vector is unchanged. Thedrifting and rest frames because the drifts are orthogonal to
reorientation of the velocity vector, when averaged ovetthis direction. The cosine is selected randomly rather than
many collisions, has the effect of removing the momentumhe angle so that all solid angles are given equal weighting.
associated with drift motion. This momentum loss is one ofThe remaining velocity is divided between the remaining

the driving forces for transport. The procedure describedwo directions by selecting randomly an azimuthal angle
here could easily be modified for electron-ion collisions byspanning 0 to 2 and using the sine and cosine:

selecting small random angular changes in the velocity vec-

A collision is modeled in the drift approximation in three
steps: (1) the rest frame velocity of the colliding electron is

tor [9]. Ur 2=Vt SiNa COSPB, 3
In the drift approximation, there are gradient, curvature,
and electric drifts that are the velocities perpendicular to the Upxr 2= Vot SN SinB—vp . (4)

magnetic field. In addition, there is motion along the field

line at a velocityy . In our numerical model, these velocities The azimuthal angle is not the pitch angle because the frame
are projected onto a cylindrical coordinate system and inteef reference is not the drifting frame. The guiding center drift
grated usingrk4 [10] to find the position of the guiding has been subtracted to fimg,, , in the drifting frame. The
center as a function of time. The drift velocities are calcu-sum of the squares of these velocities is the square of the
lated at each position from the local fields and velocities. Thenew v | :

parallel velocity is found by integration of the parallel accel-

eration. Thus, in the drift approximation, there are four vari- 02 =02+ i o (5
ables found byrk4 on each time step rather than the six T '

variables that would be necessary for the Lorentz equationwhere the radial guiding center drift has again been assumed
of motion. The velocityw , in the plane perpendicular ®is  negligible.
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The guiding center displacement is calculated in the fol-\Whether the potential or the field is used to find the correc-
lowing way. First, the particle location is found by finding tion is a choice that can be based upon which is most easily
the vector; pointing from the stored guiding center location calculated. At the point where, , is found by taking a
to the particle. The magnitude of this vector is the Larmorsquare root of the above expression, there is a small prob-
radius and its direction is opposite to the direction of the ability that the argument will be negative. This can be pre-

X B acceleration of the magnetic field: vented with little loss in accuracy by setting negative values
) to zero. The new | , is used to revise the stored value of the
ry=-—mv;XB/qB*, (6)  magnetic moment.

, o Conservation of energy may also be used to fipgjust
wherem is the electron mass arp= —e is its charge. Sec- pefore the collision. In this case E€) is replaced with
ond, this vector is evaluated again after the collision using

the subsequent particle velocity. Third, this vector is sub- 2= 2[Wioi— q®(r gc— Mo, ;cosh/qB)]/m. (15
tracted from the particle location to yield the new position of
the guiding center. These steps are combined to yield For modeling problems having strong electric drifts or dura-
tions of 100 collision times or more, enforcement of energy
Xo=X1—M(V;,—V,) X B/qB?, (7) conservation may be necessary because of inaccuracies in-

herent in the drift approximation. The use of E45) pre-
wherex; andx, are the guiding center locations before andvents conservation of energy from being used as a check on

after the collision, respectively. the accuracy of the computations.
The components of the guiding center displacement are
most easily evaluated in the plane perpendicula,to IIl. TRANSPORT COEFFICIENTS FOR CYLINDRICAL
GEOMETRY
dr:_m(var,l_var,Z)/qB: 8

The numerical model is tested by comparing the transport
dpxr=M(v, 1~ v, 2)/qB. (99  from the model with analytical values. For the annular Pen-
ning trap, the transport coefficients can be found most easily
The second of these is projected onto the cylindrical restrom a fluid approach. The fluid momentum equation for

frame coordinate system using plasma of electrons is
= dv
do=b:B./B, (10 nmg=—-VP-nqvd+JxB, (16)
d,= —dpx,By/B. (11

whereP is the scalar electron pressure ahd the equilib-

At this point conservation of energy may have been vio-rium current. The gradients are radial except in the end re-
lated because the guiding center has moved to a positiogions, which are ignored. The general solution for the equi-
where the electrostatic potential is different. The change idibrium current is
potential energy must be subtracted from the kinetic energy. 5
In the case where the electric field is primarily radial, the J=BX(VP+nqV®)/B +AB, (17)

potential energy before the collision is where\ is an adjustable constant. In the case of a long mean

free path, the axial confinement results in there being no fluid

Wo=a®(rec™Mupsr1/qB) z velocity and hence nd,. This condition constrains the

=q®[rgc— (mv, ;/qB)cosd], (120  choice of\ and one finds that
where® (r) is the electrostatic potential at the particle loca- J= T@— nqE, B (18
tion, rgc is the radial coordinate of the guiding centéris o=\ "qgr " z

the gyrophase angle appearing in Ef), and the potential _ _ . _
has been assumed to be a function only of the radius. Fronhere the gradient in the temperatuferitten in energy
Egs.(1) and(12), the sum of the kinetic and potential ener- units) has been set to zero for simplicity. The equilibrium

gies is current is the sum of a diamagnetic drift part andEx B
drift part. Collisions with neutrals create a drag force on the
Wigr= Wy + smufy=sm(vp+v2 1+ vl ) +ad(rae). equilibrium current:
(13

dn
We have assumed that the gradient and curvature drifts ard 6= ~Mve¥=—MmJr/NQq= _(m”/Ban)(Tm_anf>
negligible so thav = —E, /B, in which case the two terms (19)
with cos¥ cancel one another. A loss of potential energy
arising from a displacement must be added to the kinetiavhere F, is the force per particle and is the electron-

energy through a revision in the value of : neutral momentum transfer collision frequency. The torque
rF , changes the canonical angular momentn and from
v? 2= vi2+ 2(9/m)[D(rge) —P(regetd;)] this change the displacement causing transport can be found.

5 The canonical angular momentum may be averaged over
=v{ ,+2d.(a/M)E,(rgo)- (14 the gyrophase and the axial bounce motion to obtain
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Py=ro[Mup o+ qA,re)]=ro(Mup 4+ 2qreB,), (20)  obtained from angular momentum conservation &dthe
neoclassical diffusion. The canonical momentum averaged
wherer  is the radial location of the drift orbit centeky(r) over gyrophase alone is
is the magnetic vector potentialp 4 is the § component of
the guiding center drift, an, is assumed to be spatially Py=rod M(vp st v Bs/B)+3qrecB,l, (30
constant. The torque from collisions- ,, changes the ca-

nonical momentum: which in the absence of collisions is conserved. The velocity

along the field line is reversed in the vicinity of the orbit tips
P, d dro and successive crossings of the midplane must be displaced
roFo="gp = &[ro(va,aJr 3qroB,)1=roq B gr radially by

(21) 2rB:2mU||voBlg/qBBZ, (31)

from which one finds the transport drift rate, which is twice the drift orbit (banana width rg and

dr v.0(B4/B) is the azimuthal component of the parallel veloc-
H=F0/q B,, (22 ity evaluated at the midplane. From E@24) and(31), one
finds

where we have used thag>|muvp 4/qB,|. From the drag
force on the equilibrium current, we obtain the particle flux
I

Dne=v(rZ+rg,), (32)

whererg ;= (mT)Y2B,/qBB, is the thermal drift orbit width.
dro dn This way of writing Dyc shows the separate contributions
I'=n—-=—(mvT/q’B2) — +mvnE, /qB? from the diffusion of the guiding center and the diffusion of
dt dr the drift orbit center. The radial distance from the particle
dn location to the flux surface with the drift orbit center is
=—Dpne +
Pregr FencEr 23 Afge=mv,B,/qBB,. (33

where The drift orbit width becomes the characteristic length for
diffusion in the limit of smallB, in which B,— B.

It can be shown that the drift orbit width is correctly con-
. . e - . tained in the drift approximation by noting thatis changed
l)silgg/ecr;ee?f(i:::?:r?[cal diffusion coefficient. The neoclassical moby the time integral of the projection of the axial electric

field onto the parallel direction:

Dne=mvT/g%B2, (24)

pnc=mvlqBZ (295
—2mv‘|10=qJ' (BZ/B)EZdt, (34)

relates the radial drift velocity to the radial electric field.
In the limit of short mean free path, local conditions

rather than the end conditions determine the adjustable corlf\Zhere the_ mt_egra_l s taken 3'009 the orbit in the upper half
plane. This time integral oE, simultaneously results in a

stant in Eq.(17). The current parallel t® is determined by L .

an additional equation, a parallel Ohm'’s law, which relatesg’;g;?l displacement from the radial component of EweB
the parallel current to the parallel electric field. There being™ "
no parallel electric fieldexcept in the end regiopsthe par-
allel current is zerdrather thand,) andA=0. In this case, 2rg= —f (E,By/B?)dt=2mv, o(B,/qBB,), (35

one finds the classical values for mobility,
where the previous equation has been used to eliminate the

_ 2
pe=mrv/qB’, (26) time integral. This displacement is the drift orbit width ob-

and for diffusion, tained from canonical momentum conservation.
A loss of momentum in a collision leads to neoclassical
Dc=muT/q?B?=vr?, (27)  displacement of both the guiding center and the drift orbit

center. The vector momentum removed by a collision may
where r=mT/q?B? is the square of the thermal Larmor be decomposed into components in #e &, and &,

radius. directions. Loss of momentum in ti& direction results in a
The numerical model should also reproduce the coeffiguiding center displacement in tigg,, direction, and this
cients for transport parallel to the field lines: transport is within, not across, the flux surfaces. Loss of mo-

mentum in theg,, direction results in transport in the
D,=T/mv, (28 direction through displacement of the guiding center. The

relation of this momentum to the azimuthal momentum is
my=q/mu. (29 mv ;= Moy« (B,/B). The displacement of the guiding cen-

. ) ) ter from a momentum incrememAuvyy, , is
We return to the discussion of the numerical model and

show that it correctly reproduced) the drift orbit width d,=mAuvyy,/qB=mAv,/qB,, (36)
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which is the neoclassical relationship between displacement dv,/dt=qE;/m+vg-[(ve+V))-V]&,

and azimuthal momentum loss. Lastly, a momentum change

in the &, direction results in no guiding center displacement; =(a/m)(E;B,/B)—(vg gt v By/B)vg,By/rB
however,v, is changed and there is a displacement of the 2 2 3

drift orbit cHenter relative to the guiding center. The relation- ~Uer(VeB;ByTve BB/ (41)
ship between this component of momentum and the az
muthal momentum ismv,=mv(B,/B). This relation
placed into the expression for the distance from the guidin
center to the drift orbit center, Eq33), yields a displace-
ment of the orbit center

I\'/vhereEH=EZBZ/B is the projection onto the parallel direc-
tion of the electrostatic confining field at the ends of the trap.
he terms after the first give the change in the parallel ve-
locity due to the changing orientation of the parallel direction
8,. The azimuthal motion of the guiding center cauggo
rotate in the r-¢ plane at the angular ratevg ,
Sr=mAv,/qB,, (37 +v,B,/B)/r. This change i, at the particle location has a
projection onto the radial electric driftz , occurring at the

which again is the neoclassical displacement. There is ntips of the drift orbits. Additionally, the radial drift at the
need to add this displacement explicitly in the numericalorbit tips carries the guiding center in the direction of the
model because the drift orbit is correctly reproduced in theshear in the magnetic field. This cauggdo rotate in thep-z
drift approximation. Equation$36) and (37) show that a plane and the rotation changes the projectio@pobnto the
momentum change from a collision results in a displacemenbdther two components afg. The inclusion of these terms
of the guiding center if in th&,,, direction, a displacement improves energy conservation from one side of the drift orbit
of the drift orbit center if in the§, direction, and that in to the other by an order of magnitude when there is an elec-
either case the displacement has the neoclassical relationsHijc field applied to drive transport by mobility. There is no
with loss of azimuthal momentum. The first equality in Eq.term from theVB force in this equation because there is no
(36) is the classical result for the dependence of the displacegradient ofB in the parallel direction in the experiment being
ment upon a change in momentum. modeled. This term would be important for the tokamak, for
example, where th& B force causes the reflection of par-
ticles at the drift orbit tips.

The assignment of initial particle velocities in the drift

The numerical model is applied to the Penning trap byapproximation is straightforward for the two degrees of free-
first finding the appropriate particle drifts. The electric drift dom represented hy, , but the assignment of initial veloci-

IV. APPLICATION TO THE ANNULAR PENNING TRAP

is ties tov; must be done with care. For axially confined par-
ticles on drift orbits, a particle witv,=0 will be carried
Ve=(—E,B,& —E,B,2,+ E,B,2,)/B2 toward the_ drift orbit tips by the component of the o_Irifts,
and there it will be reflected. This violates the requirement
=—(E,B,/B%)&—(E,/B)&,y, . (38)  that the bounce motion should cease at zero parallel tempera-
ture. There is no bounce motion and the particle remains
The gradient drift is stationary inz whenv has the value  to cancel the drifts
in the z direction:
Vye=vT(~ B2+ B8 By/2B7 0 v1.0= —vp(BIB,)=—E,B,/BB,, (42
=—(v?BY2BZrQ)8,.,, (39

where we have assumed that only the electric drift is signifi-
) _ cant. This velocity is added to the parallel initial velocities
where(}=qB/m is the cyclotron frequency. The radius of pefore they are assigned to the particles. This step may be
curvature of a field line iRR;=rB?B and this appears in omitted when the electric drift velocity is very much less

the denominator. The inertial drift is than the thermal velocity.
The model was first applied to finding the drift orbits in
v;=(BXdvgc/dt)/BQ the trap. Figure 2 shows drift orbits found from the Lorentz
) R equations of motion and from the drift approximation. The
= —vjy (BX&)/BrQ experimental conditions were an inner cylinder radius of
5o 25.4 mm, an outer cylinder radius of 50 mm, and cylinder
~—(vBy/B—E;B;/B%) &, /1 lengths of 150 mm. The fields wei,=B,=2 mT andE,

— _ 2R A _R A approximately 0.8 V/mm from a potential difference of 20 V
(v1By/B~EB,/BY) (B2~ B&)/BrQ, (40 applied to the outer cylinder with the inner cylinder at zero
) ) o, potential. To simplify testing the collision model, the electric
wheredv gc/dtis the centripetal accelerationvy /1 ofthe  figlq was specified rather than found from Poisson’s equa-
guiding center. This acceleration has contributions fromtion. An electron was given an initial energy of 1 eV in each
vB,/B, the azimuthal component of the bounce motion, anddegree of freedom. The confining fiel, was modeled so
from the azimuthal electric drift. These three drifts arethat E, and E, together satisfied, approximately, Laplace’s
summed in the numerical model to obtain thg used in  equation. The fields used in Fig. 2 were made lower than
evaluation of the total velocity. would be used in a laboratory experiment to better illustrate
The equation of motion parallel to the field[i¥1,12 the cyclotron motion and the finite width of the drift orbit.
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300
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Time [ps]
B AN FIG. 3. A plot of the mean squared radial displacements of

electrons as a function of time. Points are plotted at each collision
FIG. 2. A drift orbit plotted with the Lorentz equations of mo- and the line is a linear regression.
tion (left) and the drift approximatiofright). The plots are made in

the frame rotating with th&x B drift velocity. =2x10° m/s, which is not sufficiently smaller than the ther-

The Lorentz equations of motion and the drift approximationrgr"’lII vtelcl))cny for e:;fegts _se;c;réd or?_elr i [in EES“' (40 dafnd 64
give displacements at the end of one drift orbit that agree t(g ).] {0 be ignored. Again particles were followed for
within a few percent. The sources of dri; , v, , andu, collision times. Tht_a d|splacen_1ent by 64 coI_I|S|0ns is of order
were set to zero in pairs to verify that the drift arising from 10_m”?' resu_lt!ng in a potential energy gain of order 10 V.'
the remaining quantity alone was correctly reproduced. Th hich is sujﬂment to test energy co_n.servatlon when_there IS
failure of energy conservation at the end of one drift orbit is .ouIe heating. A plot 0F~1000 positions as a function of

of order 10°° when there are about 10 time steps in thet'r:ne’ '.:'g'.4’ .?hOV\il:Sd'F?fat,' n ?ﬁdt't'on tlct) the mobility ‘1”?
steep-gradient region at each orbit tip where the confinin ere 1S signiticant difiusion that resufts in some particies

field reverses . At the end of half a drift orbit, there are eturning to the origin. Conservation of energy, however,

two sources of error arising from the differences in eIectric.prevents difiusion beyond-3 mm, the point at which the

and magnetic fields from one side of the drift orbit to the'.nitial 3ev of.kinetic energy is. lost fo potential energy. A
other: (1) the change in th&Xx B drift velocity and(2) the linear regression t(}lf 000 points yields a mean displace-
change inv, arising from magnetic moment conservation. Tent that is .ab.out 3% lower than the analytllcallva{tlé
Motion along a field line into increasing increasew | at =pcEt. A similar test was _mad_e with an axial fieff, =

the expense ob, . In the experiment being modeled, how- —50V/m, and the mean axial displacement was compaored
ever, there is no gradient & alongB. The electrons cross with (z)=4,E,t. The numerical result was again about 3%

the magnetic gradient because of e B drift occurring at Iow_er than the analyfucal_ result. In all _the tests _Wlthout drift
o . . S ; . _orbits, the sum of kinetic and potential energies was con-
the orbit tips and, in the drift approximation, this change N orved to order 10 after 64 collisions
v, I not accompanied by an offsetting change jn The neoclassical diffusion was examined by applying an
The numerical model was tested to confirm correct mod- y appying

eling of the transport described by the six coefficients electric field to reflect particles at distances beyah@d5
Dy, pics De, s, andDye. For determination ob, and mm. The axially trapped particles executed drift orbits like

D the experiment was made infinitelv lona so that therethose shown in Fig. 2. The axial electric field strength at the
c» Kperim . y long . ~_“ends was selected to reverse the axial motion in a distance of
were no drift orbits and no limit to the distance the particles

X S . . : . ~5 mm so that spatial steps of order 1 mm were sufficient to
could move in the direction. This required simply setting to resolve the potential gradient. The fields were seBat
zero the confining fieldE,. The experimental conditions —5mT andB.=10mT. which éives a thermal Larmor ra

_ . - e . Co= b= , )
wereB, =5 mT, B,=0, T=2 eV (1 eV initially in each de- s o 0 3’ mm and a thermal drift orbit width of 0.6 mm.
gree of freedory E, =0, E,=0, and a time step giving 1 mm

of displacement at the thermal velocity. The thermal veIocityThIS separates the classical and neoclassical diffusivities by a

is 6X10°m/s and the gradient and inertial drifts are
~10*m/s. The collision time was made 20 time steps and
256 particles were followed for 64 collision times. The 15
squares of the displacements for the first 1000 collisitimes T
first four particle$ are plotted in Fig. 3. A linear regression E
to all ~16 000 collision points was compared with the ana- g
lytical result for the random walky?)=2Dt, and found to 0 S
be lower by 6%. A similar plot was made fdz?) as a
function of time and the numerical result was 4% higher than
the analytical resul{z?)=2Dt. Repetitions of the tests
yielded different percentages but in no case did the differ-
ence exceed 7%. These agreements were considered suffi-FiG. 4. A plot of the radial displacements of particles as a func-
ciently good that the question of the differences being rantion of time with an applied radial electric field causing transport by
dom or systematic was not pursued. mobility. Points are plotted at each collision and the line is a linear

The mobility perpendicular to the field was examined byregression. The particle boundary a8 mm is a consequence of
applying a radial electric field of~1000 V/m, givingup conservation of energy.

20

Time [us]
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284 o . FIG. 6. Mean radial displacement as a function of collisionality
1 / for 1000 particles after 32 collisions with a radial electric field of
320 1 Neoclassical / "-*" Classical —1000 V/m. The upper dotted line is the value based upon the
261 . . neoclassical mobility and the lower line is the value based upon the
= ; "o, ; .
o 1924 . 6/; classical mobility.
128 { a0 .-
64 ib mak transport arises from collisions of both passing particles
0 : : . . . , and trapped particles and from collisions causing transitions
gy 0 64 128 152 266 320 384 448 of particles from one class to the other. Thus, transport in the
v annular trap is less complicated than that in the tokamak. In

the simulations, all of the particles have the same collision
FIG. 5. () Mean square radial deviation of diffusing particles frequency, which would not be the case in laboratory plasma.
after 32 collisions as a function of the collisionality parametér The neoclassical perpendicular mobility was examined
The upper dotted line is the expected value in the neoclassical reyith the same parameters as the classical perpendicular mo-
gime and thellower.dotted line is the expected value in the cIassmeBi”ty except that the axial confining field was applied at the
regime. The filled circles are with enforcement of energy conservagqs to create drift orbits. The mobility resulted in particles
tion and the open circles are withoub) A plot of diffusivity, 1 4ying preferentially “downhill” in the electrostatic poten-
Q%rr:r;ﬁilze_?hteo t:;tglzlegal va:jule ot :thl as IT ftl)mf]t'(l)fn of CO”"fztiaI as a result of collisions. The particles gained 1 eV of
Y P paced fogarithmically by halt powers o ‘energy per mm of displacement. The energy error accumu-
factor of 5. The paths of 1000 particles were followed for 32lated after 32 collisions became comparable, for those par-
collisions, which gives a mean squared radial deviation oticles moving several centimeters, to the initial kinetic en-
64r for classical diffusion and 64f+r3 ,) for neoclassical €rgy. The errors were much smaller when there was no
diffusion. The collision frequency was changed in logarith-€lectric field. To eliminate the error, the program was modi-
mic steps from less than to greater than the drift orbit frefied so that energy conservation, E@5), was used to find
quencywg, defined as 2 divided by the drift orbit bounce the magnitude of the velocity before the collision. Plotted in
time. The mean square deviations are plotted in Fig) &  Fig- 6 is the mean drift distance for 1000 particles after 32
a function ofv* = vl wg . The filled circles are with enforce- collision times as a function of*. Also shown are the mean
ment of energy conservation, E@.5), and the closed circles displacements calculated from the classical and neoclassical
are without, Eq.(1). At low collisionality, »* <10, the dif- mobilities. The calculated displacement is approximately the
fusion is near the neoclassical value and at high collisionali€oclassical value for* <2 and is approximately the clas-
v*>100, the diffusion is near the classical value. The diffu-Sical value fory*>90. The average of the mobility values

sivity is plotted as a function of* in Fig. 5(b). The diffu-  for »*=0.5, 0.7, 1, and 1.4 is 2% below the neoclassical
sivity has been divided bp* = wgr? so that the slope of the Value and the average fof* =90, 128, 181, and 256 is 10%

plot is unity at high collisionality and _]:(rB,t/rL)ZZS at higher than the classical value. In computations in which

low collisionality. The electrons were initially distributed €N€rgy conservation was not enforced, the energy error did
randomly along the length of the device at a radius of 4010t Perceptibly change the mobility; however, the diffusivity
mm. Examination of the data showed that, at intermediat&/@S increased. This difference in sensitivity to energy error
collisionality (the plateay the particles initially near the or- a'iS€s because the diffusivity is dependent upon the particle
bit tips diffused the greatest distances. The energies of thenergies and the mobility is not.
electrons wandered by abott0.1 eV during the tests with-
out energy conservation except for the longest tests (
<8), where the mean energy was reduced 9.5 eV,
causing a systematic reduction in the diffusivity. The average A method has been described for simulating with the drift
of the mean square deviations obtained’avalues spanning approximation plasma transport arising from collisions of
1 to 8 is 1.02 of the neoclassical value. An average of thelectrons with neutral gas. At the time of a collision, a ran-
mean square deviations fo* =512 and 724 is 1.06 of the dom gyrophase is selected and used to construct a velocity
classical value. vector. This vector is repointed randomly in the rest frame,
The usual plateau of the neoclassical theory for tokamakghe displacement of the guiding center is found, the kinetic
connects neoclassical diffusion with Pfirsch-Sedtudiffu- — energy is corrected for the change in the electrostatic poten-
sion rather than with simple classical diffusigh13]. Toka- tial energy arising from the displacement, and integration of

V. SUMMARY AND CONCLUSION
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the guiding center equations of motion is resumed. Thdrom neoclassical to classical behavior begins when the col-
method reproduces, to within about 5%, classical values folision frequency is about 10 times the drift orbit frequency
mobility and diffusion both perpendicular and parallel to the(in radians per seconénd is completed when the collision
magnetic field. Neoclassical transport is reproduced for parfrequency is about 100 times the drift orbit frequency.

ticles trapped electrostatically in the helical magnetic field of

the ann_ular_P_ennlng trap. '_I'he r_ne';hod finds the depe_ndence ACKNOWLEDGMENTS

of the diffusivity upon collisionality in the “plateau” region
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