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Improved Rosenbluth Monte Carlo scheme for cluster counting and lattice animal enumeration
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We describe an algorithm for the Rosenbluth Monte Carlo enumeration of clusters and lattice animals. The
method may also be used to calculate associated properties such as moments or perimeter multiplicities of the
clusters. The scheme is an extension of the Rosenbluth method for growing polymer chains and is a simplifi-
cation of a scheme reported earlier by one of the authors. The algorithm may be used to obtain a Monte Carlo
estimate of the number of distinct lattice animals on any lattice topology. The method is validated against exact
and Monte Carlo enumerations for clusters up to size 50, on a two dimensional square lattice and three
dimensional simple cubic lattice. The method may be readily adapted to yield Boltzmann weighted averages
over clusters.

PACS numbeps): 02.70.Lqg, 05.50tq

[. INTRODUCTION the use of the method in Sec. Ill. Conclusions are given in
Sec. IV.

The enumeration of lattice animals is an important prob- An alternative, and commonly used, method of estimating
lem in a variety of physical problems including nucleationthe number of lattice animals of a given size is theom-
[1], percolation[2], and branched polymerg]. A lattice  Plete enumeratiomethod(e.g.,[11]), which is based on an
animal is a cluster oN connected sites on a lattice with €xact enumeration scheme for which an algorithm was pro-
given symmetry and dimensionality, and we seek to enume0sed by Martif15] and Rednef16]. Although effective,
ate all distinct animals with a given number of sites. Exacth® incomplete enumeration scheme has the problem that

enumeration has been carried out for small lattice animal§°nfigurations produced in a single trial are correlated and

using a variety of methodg,4,5| but the methods become :E_erei?reta\l/ertar\]geslmui';]be taken (t)vgrbmlany tr'lflltito rlmtltgate
computationally prohibitive for large animals. Many tech- IS etiect. In the algorithm presented below, afl the clusters

nigues have been used to enumerate larger lattice anima?ga given size are generated completely independently, W'th.

including various Monte Carlo growth schemgx6-§, a no rlefe{tra]nce to the cllstLers }hat. ?lave beeﬂ gene(rjated previ-
) . ’ ously. This property of the algorithm may have advantages

constant fugacity Monte Carlo methg#,10], an incomplete y property g y 9

enumeration method. 1], and reaction limited cluster-cluster for calculating some classes of cluster properties.
aggregatiori 3].

In this paper we describe an improvement of a method II. ALGORITHM
propos_ed by one of the authdd2], which was based on an Any algorithm suitable for the purpose of enumeration of
extension of the scheme proposed by Rosenbluth and ROS&yice animals using the Rosenbluth Monte Carlo approach
bluth [13] for enumerating self-avoiding polymer chains. st satisfy two important criteria. First of all it has to be
The central problem in using the Rosenbluth scheme for latagodic. That is to say, the algorithm should have a nonzero
tice animal enumeration is calculating the degeneracy of th%robability of sampling any given cluster shape. The second
clusters that are generated. In the method proposed by Caigiterion relates to the degeneracy that is associated with
the cluster growth was modified in a way that forced theeach cluster and requires this to be determinable. This degen-
degeneracy to bH! whereN is the number of sites occupied eracy arises from the number of different ways that the same
by the lattice animal. However, the resulting algorithm wascluster shape can be constructed by the algorithm. While it is
fairly complicated to implement. An alternative method of easy to devise methods of growing clusters that meet the first
correcting for the degeneracy had been proposed by Prattquirement, the second condition is more difficult to satisfy.
[14]. In this latter scheme the correcting weight is more com+or many simple algorithms the calculation of the degen-
plicated to determine and must be recalculated at each stageacy, for every cluster, can be a more complex problem than
of the cluster growth if results are sought at each cluster size¢he original task of enumerating the number of lattice ani-
However, the Pratt scheme does not require any restrictiomals.
on the growth of the cluster. In the original Rosenbluth Monte Carlo approach of Care

We show here that there is a class of Rosenbluth-likg12], this difficulty was overcome by ensuring that the de-
algorithms that yield a degeneracy Nfand are straightfor- generacy for all clusters of si2¢ was the same and equal to
ward to implement. The method provides an estimate of th&l!. However, to achieve this result the algorithm had to
number of lattice animals and can also yield estimates of angmploy a somewhat elaborate procedure. This made the
other desired properties of the animals, such as their radiusplementation of the method rather complicated, as well as
of gyration or perimeter multiplicitie§2]. We describe and limiting its possible extension to enumeration of other types
justify the algorithm in Sec. Il and present results to illustrateof clusters. Here we shall consider an alternative algorithm,
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which, while satisfying both of the above criteria, is consid-as well as to a list of accepted sites. The examination of the
erably simpler than the algorithm proposed by Care. In Secsites is now resumed for the neighbors of this newly ac-
Il A we describe the algorithm in its most basic form, beforecepted site. Once again this is done in the strict order that
proving in Sec. Il B that the ergodicity and degeneracy re-was agreed at the start of the algorithm.
quirements are both met. In Sec. Il C we demonstrate how (iv) Sites that have already been accepted or rejected are
the basic algorithm can be further refined to improve its ef-no longer available for examination. Thus, if such a site is
ficiency. encountered, it is ignored and the examination is moved on
to the next eligible neighbor in the list.
A. Basic algorithm (v) If at any stage the current site has no more neighbors
. . . . left, that is, all its adjacent sites are already accepted or re-
Having chosen a swtab!e lattice on Wh'.Ch the clusters a:fected, then the current position is moved back by one to the
to be grown(square and simple cubic lattices were used irl q,iq,5 |ocation. This will be the position below the current
this study for two(2D) and three dimension&8D) systems, 0 i the stack. The current position is removed from the

respgctiyely, a probabili_typ of acceptance ."’mq:(l_ P) top of the stack, though not from the list of accepted sites.
of rejecting sites is specified. Although in principle any value (vi) The algorithm stops for one of the following two

of p bgtween 0 an_d 1 can be selected, the efficiency O_f theoasons. If ever the number of accepted sites reddht®en
sampling process is largely dependent on a careful choice g 1gorithm is immediately terminated. In this case a clus-
this value, as will be discussed later. In addition, an orderegl, o¢ cizeN is successfully produced. Note that, unlike some
list of all neighbors of a site on _thellattlcells made. FOr ¢ the other common cluster growth algorithii, it is not
example, for.a 2D square I'a'gt!ce this mlght'réaght, dOWU'. necessary here for every neighbor of the generated cluster to
left, up). While the order initially chosen is arbitrary, it iS g reiected. Some of these might still be unexamined before
essential that this remains the same throughout a given rug,, algorithm terminates. The second way in which the algo-

In t.he pasic algprithm, once chosen, the probabip‘tye- rithm stops is when it fails to produce a cluster of dizeln
mains fixed during the Monte Carlo sampling procedurey;q case, the number of accepted sites willNbecN, with

However, in Sec. Il C the effect of relaxing this requirementa” the neighbors of thesM! sites already having been re-

is discussed. jected, leaving no eligible sites left for further examination.

We construct an gnsemble NE plusters and for each of From step(v), it is clear that in cases such as this, the current
these calculate a weight factor which we subsequently use osition would have returned to the starting location.

calculate weighted averages of various cluster properties. For (vii) The e ; .
) X X probability of producing a cluster of sikg in a
a propertyO of the clusters, the weighted average is def'ne%anner involving rejections, is simphp™~1q. Hence the
as weightW, associated with the growth of the cluster is given
1 MNe by
<O>W:N_E Zl Waoa . (1)

W, =1[dyp™"D(1-p)'], (4)
The weight associated with clustarwith N sites is defined
to beW,=1/(d\P,), whereP,, is the normalized probabil-
ity of growing the cluster andy, is a degeneracy equal to the
number of ways of growing a particular cluster shape. It ca
be shown[12] that the weighted average can be used toE
estimate the numbae of lattice animals of siz&l and other
properties such as the average radius of gyraﬂﬁ;n

where the degeneraa) is shown below to be exactli.
rEailed attempts have a zero weight associated with them.
owever, they must be included in the weighted average of
g.(2).
(viii) During the growth of a cluster of sizZd, we may
also collect data for all the clusters of sigewhereM <N. It
must be remembered that the weights for these smaller clus-

El{Dw]=cn, @ ters must be calculated with a degeneracyvof
on A specific example is helpful in demonstrating the algo-
2\ 1. 2 _ .52 rithm. Figure 1 displays a successful attempt at forming a
EL(Rywl {;1} Rivw = CnRN: @ cluster of size\=4, on a square lattice. The order in which

the neighbors were examined was chosen to be right, down,

During the growth of each cluster we maintain a record ofleft, and up. Let us now consider various steps involved in
the sites that have been occupied, the sites that have beeanstruction of this cluster in detail. Beginning from the ini-
rejected, and a “last-in-first-out stack” of sites that is main- tial position labeled cell 1, the adjacent site to the right of
tained according to the rules described below. Each cluster ihis position is examined. In this case the site is rejected and
grown as follows. the current position remains on the cell 1. Such rejected cells

(i) Starting from an initial position, the neighbors of this are indicated by the lettet. The next neighbor in the list is
site are examined one at a time according to the list specifiethe one below, labeled cell 2. As it happens, this is accepted.
above. An adjacent site is accepted with a probabpityr ~ Thus, the current position moves to this site and its position

else is rejected. is added to the top of the stack, ahead of the position of cell
(i) If the adjacent site is rejected, a note of this is madel. The process of examining the neighbors is resumed for
and the next neighbor in the list is considered. sites adjacent to cell 2. Once again, following the strict order

(i) If, on the other hand, it is accepted, then this becomesn the list, the site labeled 3 to the right of the current posi-
the current site and its position is added to the top of a stackjon is considered first. This is also accepted and as before is
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lar site on a given cluster, a series of acceptances and rejec-
tions (1 and Q can always be determined that leads to that
cluster shape. We stress that we are not concerned about how
probable such a sequence is likely to be, but merely that it
1 X exists. We can attempt to construct such a sequence by fol-
lowing the same rules as our algorithm described above, with
one exception; we accept and reject each examined site ac-
4 2 3 X cording to whether it forms part of the target cluster shape or
not. Obviously, in the original algorithm, each such move
has a nonzero chance of occurring, provige not set to
X X zero or 1. Since we accept only sites that belong to the clus-
ter in question, it follows that if the sequence is successful
we will achieve the desired cluster shape. However, we
might argue that for some choice of target cluster and start-
ing position, a series started in this manner will always ter-
minate prematurely. That is to say, it will inevitably lead to a
FIG. 1. Sequence of accepted sites leading to a cluster of siztilure, with only part of the required cluster having been
N=4. The sites examined but rejected along the way are indicate@onstructed. Now, it is easy to see that this cannot be true. If
by X. In our notation this sequence can be represented byhe series fails, it implies that all the neighboring sites of the
{0,1,1,0,0,0,}2. subcluster formed so far are rejected. However, the rest of
) _the cluster must be connected to this subcluster at some
placed at the top of the stack. At th_|s stage the stack containggin. Hence, at the very least, one neighboring site of the
the positions of cells 3, 2, and 1, in that order. The currenghcjyster must be part of the full cluster and could not have
position is now cell 3. _ been rejected. Starting from any of the sites belonging to a
The site to the right of this, followed by the one below, ¢|yster, then, it is always possible to write down a sequence
are tested and both rejected in succession. Since both thg 15 and zeros that will result in the formation of that clus-
neighbors to the lefti.e., cell J and the one above have e Similarly, considering every starting point on a cluster of
already been considered, the current position has no Moig,e N, another implication of the above result is that the
eligible neighbors left to test. Therefore, following rul)  corresponding cluster shape can be generated in a minimum
above, site 3 is removed from the stack. This leaves thgs 4t |easiN distinct ways.

position of cell 2 at the top of the stack, making this the  Next, we shall show that the degeneracy of a cluster of
current position again. The cell 2 has two neighbors, th&;ze N in our algorithm is in fact exactii (unlike the origi-
adjacent sites below and to the left, which are still unexamy,g algorithm of Card12] which has a degeneracy df).
ined. Of these, according to our agreed list, the site below ot 5 suppose that, starting from a particular site on a given
takes precedence, but as shown in Fig. 1 this is rejected. Thgget cluster shape, our algorithm has two distinct ways of
current position remains on the cell 2 and the neighboringq ming this cluster. Associated with each of these, a series
site (cell labeled 4 to the left of this position is tested. As it 4t 15 and zeros can be written down. in the same manner as
happens, this is accepted. A cluster of the desired sizg,a¢ ingicated above. The two ways of constructing the clus-
N=4 is achieved, bringing this particular attempt to & SUC+gr myst necessarily begin to differ from each other at some
cessful end. , S stage along the sequence, where we willhavl in onecase

For the subsequent discussion, it is useful to represent g,q 4 0 in theother. Now since up to this point the two series
sequence of acceptance and rejections by a series of 1 and{}e jgentical, the site being examined at this stage will be the
Thus, for the case shown in Fig. 1 we ha\®1,1,0,0,0.}.  same for both cases. This is rejected in one sequéreree
Note that at any stage throughout a series, the position of th@ whereas it is accepted in the oth@ence 1. It immedi-
current site and that of the neighbor to be examined, relativgye|y follows that these two differing ways of constructing
to the starting cell, are entirely specified by the decisions thage cluster cannot result in the same shape. Using this result,
have been made so far. In other words, given a sequence Rfgether with the previous one regarding the ergodicity of the
1s and zeros we can determine precisely the shape of th@yorithm, we are led to conclude that, starting from a given
cluster that was constructed. This is only possible because @fie on a cluster, the algorithm has one and only one way of

the manner in which the neighbors of the current position argonstructing the cluster. Hence, for a cluster of digethe
always tested in a strict predefined order. For an algorithmyegeneracy is simpli.

that considers the neighboring sites at random, the same will
clearly not be true.

The procedure described above needs to be repeated a
large number of times, to obtain the weights for the ensemble 1. Adjacent site stack
average defined in Eq1). In particular, using Eq(2), the
number of lattice animals of siZé can now be determined.

C. Refined algorithms

During the growth of the cluster a stack can be con-
structed of all the sites that are adjacent to the cluster and
still available for growth. When a new site is added to the
cluster, its neighbors are inspected in the predetermined se-

Let us now discuss the issue of the ergodicity of the al-quence and any available ones are added to the top of this
gorithm. We wish to see whether, starting from any particu-stack.(Note that this stack differs from that discussed in Sec.

B. Ergodicity and degeneracy of the algorithm
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Il A.) The choice of site to be occupied can be made from all 12.0

the adjacent sites in a single Monte Carlo decision. Thus, if :ig X<
we consider the underlying process in the method described 5 801 n X
above, at each step there is a probabititgf the site being 5 40 __++ -
accepted and a probability=1—p of the site being re- 3 ++++++++>< X
jected. We therefore need to generate a random number with 0.0 e OO
the same distribution as the number of attempts needed to 0.4 0.6 0.8
obtain an acceptance. The probability of makingttempts Probability, p
of which only the last is successful is
FIG. 2. Percentage errors for clusters of size 50.
P=0""'p (5)

rather than the expression given in E4).
where I<k<~ and 2,_,p=1. In order to sample from However, when this variable probability method was
this distribution we note that the associated cumulative distested it was found that, although it reduced the number of
tribution C,, is given by rejected clusters, it was inefficient at sampling the space of

possible clusters when compared with the method described
m o1 " in Sec. Il C 1. This inefficiency was measured by compari-
Cm=k21 q" (1-q)=1-q" (6)  son of the standard deviation in the estimated cluster number
for any given number of clusters in the sampling ensemble. It
is thought that the inefficiency of the variable probability
method arises because it gives too much weight to sites
lower in the stack, yielding many nonrepresentative clusters.
It is possible that this problem could be overcome by using a
(7) nonuniform sampling distributiofcf. [12]) but this was not
tested in this work and the method described in Sec. IIC 1

. . C was used to obtain the results described in Sec. lll.
will have been drawn from the required distribution. Thus

we generate the numbear according to Eq(7) and use this

to determine which site on the stack is selected, with 1 IIl. RESULTS

corresponding to the site at the top of the stack.nif ) ) )
>N,qj, WhereN,g; is the number of available adjacent sites, In order to test the z_ilgorlthm, the procedure_ desc_rlbed in
the cluster growth is terminated as explained in gigpin Sec. Il was used_to estlmatg the numper of Iattlpe ammals on
Sec. Il A. All the adjacent sites lying above the chosen site i Sduare 2D lattice and a simple cubic 3D lattice for which
the stack are transferred into the list of rejected sites. The lig¥X@ct results are known up to certain si¢és Before col-

of adjacent sites is then adjusted to include the new availabliécting data it was necessary to determine the optimum value
sites adjacent to the recently accepted site. As before, it i@f the probabilityp with which an adjacent site is accepted

crucial that these are added to the top of the list in the stricluring the cluster growth. The effect of changipgn the
predefined order. estimated error in the number of clusters of size 50 on the 2D

and 3D lattices can be seen in Fig. 2. It can be seen that there
2. Variable probability is a fairly broad range of values pffor which the error is a

. . minimum and a value op=0.6 was used to obtain the re-
An apparent disadvantage of the methods so far described s described below for the 2D lattice and 0.72 for the 3D

is that, with fixed choice of probability, occasions arise |5tice The distribution of weights is log normgl2] and
when a cluster growth will terminate before reaching a clusyacomes highly skewed for large cluster sizes; this is a stan-
ter of sizeN, simply because the Monte Carlo choice rejectedy,,q problem with Rosenbluth methods7]. The minimum

all the neighboring sites. This problem can be overcome if, the error achieved by the choice of the value of the prob-
the value ofp is allowed to vary as the cluster grows. The 4pijity  has the effect of minimizing the variance of the
simplest method is to determine the numbyy; of avail-  jistribution of the weights\/, .

able adjacent sites at each point in the cluster growth and |; is worth noting that the algorithm does not sample the
select one of these sites with uniform probability. This effec'space of cluster shapes uniformly. Rather, cluster shapes
tively makesp=1/N,q; and thereby increases the chances ofaye different probabilities of being sampled. However, the
growing a cluster of siz&l. Note that it is still possible for a opapility is known for each cluster shape and is corrected
cluster growth to become blocked. This happens when thg, ihrough the weight factors associated with each cluster
chosen site is the one at the bottom of the current ellglbl%hape as in Eq1). The likelihood of occurrence of a par-
neighbor list, thus causing all the other neighboring sites injc,jar cluster shape is crucially dependent on the strict order
the list to be rejected in one step. If the newly accepted sitg, \yhich the neighbors are examined, as described in first

has itself no unexamined neighbors to add to the list, th%aragraph in Sec. Il A. This may cause certain shapes to
algorithm is terminated prematurely. Modified in the mannetyave small probabilities, or effectively become “bottle-

described above the weight associated with a cluster is NOWacks” in the algorithm. The choice of the probabiliywill
N i influence the type of cluster that becomes a bottleneck and it
:Hileadj ®) is likely that the values fop identified above minimize the
“« N effect of these bottlenecks. Alternatively, if the order of

Hence, if we generate a random numbgruniformly dis-
tributed in the range € <1, then a numbem given by
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TABLE |. Degenerate Rosenbluth estimate of the number of lattice animals oNsirea three dimen-
sional square lattice using 230" sample clusters, each grown kb=50 with p=0.72; exact values from
[6]; estimated values and associated errors from incomplete enumeration method of Lam and[&amily
calculation of error estimate described in text; “true” error is fractional difference of Rosenbluth estimate
and exact valuey and ¢ are defined in the text.

N Rosenbluth Exact Ref6] gest True Ref.[6] X £
estimate value estimate (% erron (% errop (% errop
2 3.000< 1¢° 3
3 1.499< 10 15
4 8.600< 10" 86 8.594x 10 0.03 0.00 0.51 0.18 0.07
5 5.339< 107 534 5.32& 107 0.03 0.02 0.54 0.77 0.00
6 3.483< 10° 3481 3.47%10° 0.04 0.05 0.58 1.30 0.14
7 2.351x 10 23502 2.35% 10° 0.05 0.02 0.63 0.42 0.14
8 1.630< 10° 162913 1.63kx 10° 0.05 0.03 0.65 0.58 0.73
9 1.153<10° 1152870 1.15% 10° 0.06 0.03 0.73 050 0.62
10 8.30% 10° 8294738 8.29x 1¢° 0.06 0.09 0.86 1.40 0.16
11 6.054x 10° 60 494 540 6.04% 10 0.06 0.08 0.87 1.29 0.50
12 4.464<10° 446205905  4.44210° 0.07 0.05 0.87 0.70 0.12
13 3.326<10° 3322769129 3.29110° 0.08 0.11 0.97 1.34 0.48
14 2.496< 101 2.461x 101 0.07 1.09 0.35
15 1.887% 10" 1.862x 10t 0.07 1.16 -0.10
16 1.436< 107 1.416x 10" 0.10 1.22 0.25
17 1.098< 10 1.082x 10 0.10 1.27 -0.03
18 8.448< 10 8.329x 10'° 0.09 1.37 0.12
19 6.520< 10* 6.446x 10* 0.11 1.38 0.20
20 5.04810'° 5.002x 10'° 0.13 1.41 -0.07
21 3.929<10'° 3.897x 10'° 0.14 1.47 -0.21
22 3.063< 10" 3.052x 10" 0.14 1.49 -0.42
23 2.39% 108 2.391x 10'® 0.16 1.61 -0.11
24 1.882 10 1.877x 10%° 0.19 1.68 0.16
25 1.485< 10%° 1.480x 107° 0.21 1.70 -0.02
26 1.169< 101 1.168x 1071 0.21 1.75 -0.11
27 9.214x 107 9.209x 107 0.20 1.81 0.06
28 7.316< 107 7.290x 1072 0.21 1.88 0.18
29 5.790< 107 5.786x 107 0.24 1.96 -0.12
30 4.600< 10° 4.610x 107 0.25 2.01 0.44
31 3.674<107° 0.26 -0.28
32 2.929< 107 0.25 0.26
33 2.34% 107 0.27 0.54
34 1.87% 108 0.31 0.46
35 1.501x 10%° 0.31 -0.32
36 1.199%< 10% 0.32 0.33
37 9.631x 10°° 0.39 1.08
38 7.691x 10°*! 0.35 0.18
39 6.203< 10*? 0.40 0.27
40 4.984x 10° 0.45 0.54
41 3.99% 10** 0.43 0.35
42 3.205¢< 10°° 0.46 0.23
43 2.605< 10%¢ 0.49 0.35
44 2.100x 10*7 0.62 2.32
45 1.684< 10%® 0.71 0.43
46 1.353< 10%* 0.69 0.65
47 1.087% 10 0.58 0.36
48 8.892 100 0.68 0.53
49 7.223< 10" 0.79 0.02

5.78% 10*? 0.75 0.78

al
o
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TABLE II. Degenerate Rosenbluth estimate of the number of lattice animals oNstrea two dimen-
sional square lattice using 280" sample clusters, each grown kb=50 with p=0.60; exact results from
[5]; calculation of error estimate described in text; “true” error is fractional difference of Rosenbluth
estimate and true valug; and ¢ are defined in the text.

N Rosenbluth Exact e®st True X &
estimate value (% erron (% erron
2 1.999< 10° 2
3 6.000< 1¢° 6 0.02 0.01 0.22 -0.48
4 1.900x 10 19 0.03 0.00 0.00 -0.65
5 6.300< 10" 63 0.03 0.01 0.31 0.14
6 2.160< 107 216 0.03 0.00 0.00 0.36
7 7.601x 107 760 0.04 0.02 0.43 -0.27
8 2.724x 10° 2725 0.04 0.03 0.60 0.08
9 9.903< 10° 9910 0.05 0.07 1.48 -0.14
10 3.644<10* 36446 0.05 0.01 0.21 0.10
11 1.35% 10° 135268 0.06 0.04 0.69 0.09
12 5.056< 10° 505 861 0.07 0.04 0.66 -0.04
13 1.903 10° 1903 890 0.08 0.04 0.51 -0.24
14 7.205¢ 10° 7204874 0.09 0.01 0.06 -0.13
15 2.741x 10 27394 666 0.09 0.05 0.49 -0.33
16 1.046¢10° 104592 937 0.09 0.01 0.07 -0.09
17 4.00% 10° 400 795 844 0.11 0.03 0.29 0.74
18 1.543< 10° 1540820 542 0.12 0.13 1.09 0.44
19 5.94% 10° 5940738676 0.10 0.01 0.15 0.26
20 2.298< 10 0.13 -0.42
21 8.895¢ 1010 0.15 -0.02
22 3.451x 101 0.17 0.62
23 1.341x 10* 0.18 0.61
24 5.228<10% 0.20 1.61
25 2.03%< 10" 0.19 -0.04
26 7.970<10% 0.26 -0.05
27 3.122 10% 0.25 0.00
28 1.225¢ 10 0.24 0.33
29 4.831x 10'° 0.28 0.20
30 1.883< 10 0.30 -0.13
31 7.426< 10 0.33 0.97
32 2.945¢ 10" 0.45 0.59
33 1.160< 10'® 0.34 0.19
34 4.561x 108 0.47 0.44
35 1.800< 10%° 0.40 0.23
36 7.121x 10%° 0.52 0.29
37 2.823<10° 0.57 0.67
38 1.122 107 0.67 -0.03
39 4.417% 107 0.65 0.71
40 1.763< 1072 0.83 1.30
41 6.979% 1072 0.84 1.02
42 2.738< 107 0.78 0.37
43 1.088< 1074 0.82 -0.16
44 4.342x 107 0.93 2.12
45 1.704< 107° 0.97 0.52
46 6.802 10%° 1.10 0.73
47 2.673<10% 1.07 0.41
48 1.058< 1077 1.02 0.60
49 4.209% 1077 1.14 0.26
50 1.664< 1078 1.28 0.29
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examining the neighbors is altered, other shapes will become 1.5 |

bottlenecks, but the original shapes with low probability now *2D ®

become much more likely. Hence the presence of bottlenecks _ 10/l (s8P .'_'.'

in the algorithm could also be reduced by breaking up a large g (o‘.‘ al

run into a number of smaller runs each with a different order w o st

of neighbor lists. The problem of bottlenecks does not, how- ®* 05 ooy, ik

ever, appear to have been significant for the cluster enumera- .(,,mz;_%'ﬁz.@’“

tion results presented below, which were obtained with a 0.0 f—wmm‘l""l"’m‘l : :

single order of examining the neighboring sites. 0 10 20 30 40 50
In Table | we present results obtained using the algorithm Cluster size

defined in Sec. Il using the adjacent site stack method of Sec.
Il C to enumerate clusters on a simple cubic 3D lattice for FIG. 3. Variation of percentage error with cluster size.
clusters up to size 50. The results were obtained from an
ensemble of 2.5 10’ clusters. The data took 3.3 h to collect shown in Fig. 3, and it can be seen that the errors associated
on an R5000 Silicon Graphics workstation using code writ-with the method are beginning to diverge quite rapidly above
ten in the language but with no attempt to optimize the clusters of size 50. This behavior is to be expected with a
code. Only 30% of the clusters achieved a size of 50. Théechnique that is based on sampling from a log normal dis-
results are quoted together with a standard eefdtcalcu-  tribution. In a previous pap€r2], equivalent results were
lated by breaking the data into 50 blocks and determining th@btained for clusters up to size 30 with approximately the
variance of the block means for each cluster size. If the numsame sample size. The improvement up to clusters of size 50
ber of samples in each block is sufficient, it follows from the obtained by this method arises because the weight associated
central limit theorem that the sampling distribution of the with clusters of a certain size is generated from roughly half
means should become reasonably symmetrical. We therefofs many random numbers. This effectively halves the stan-
also quote skewnesg defined by[18] dard deviation of the log normal distribution of the weights
and allows larger clusters to be sampled before the method
becomes unusable.
g=mg/m3'?, 9

IV. CONCLUSIONS

wherem; is theith moment about the mean of the sampling We have described a simple Rosenbluth algorithm for the
distribution. It is expected that<0.5 for a symmetrical dis- Monte Carlo enumeration of lattice animals and clusters,
tribution andé>1 for a highly skew distribution. The statis- which can be applied to any lattice topology. A merit of the
tic ¢ should be treated with some caution, since it is likely toscheme is that for thermal systems it may be easily adapted
be subject to considerable error because it involves the cate include Boltzmann weightings following, for example, the
culation of a third moment from a limited number of data arguments used by Siepmann and Frehké] in the devel-

points. opment of the configurational bias technique. Similarly, the
Exact results are known for clusters up to size[@B In method can be applied to calculation of the averaged prop-
Table | we quote the values for the quantjtydefined by erties of a cluster of a given size, in the site percolation
problem. In this case we have
C&xact_ Cﬁﬂs
XM= |~ oxacgest | (10 Ne
M M <(1 P)to> E Wa(l_P)tuoa
- a=1
wherec,, is the number of clusters of si2éd. It can be seen (0)= : w_ Ng , (11
that all the values of areO(1). Hence we assume thats! (1=P)w S W, (1-P)ta
is an acceptable method of estimating the error in the a=1

method. However, it is likely tha®Stwill underestimate the

true error if the distribution becomes more skew. We alsavhereP is the probability of site occupation in the percola-
quote in Table | the values dfy calculated by Lam and tion problem of interest ant, the number of perimeter sites
Family [6] using a Monte Carlo incomplete enumeration[20] of the clustera. Preliminary results also indicate that
method together with the error estimates reported for thithe method may be useful in the study of the adsorption of
method. clusters onto solid surfaces.

In Table Il we quote data collected from a square two A possible numerical limitation of the method arises from
dimensional lattice by collecting data from X80’ clusters the highly skew probability distribution of Rosenbluth
up to size 50. This data took only 1.45 h to collect but onlyweights that occurs for large cluster sizes. However, the
2% of the clusters achieved a size of 50. Comparison isnethod presented in this work is able to work to consider-
given with exact resultgs] up to clusters of size 19. The rate ably higher cluster sizes than the one describdd 2hbefore
of growth of errors for the two and three dimensional data ighis becomes a problem.
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