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Improved Rosenbluth Monte Carlo scheme for cluster counting and lattice animal enumeration

C. M. Care1 and R. Ettelaie2
1Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield, S1 1WB, United Kingdom

2Colloids and Rheology Unit, ICI Wilton, P.O. Box 90, Wilton, Middlesbrough, Cleveland, TS90 8JE, United Kingdom
~Received 17 November 1999!

We describe an algorithm for the Rosenbluth Monte Carlo enumeration of clusters and lattice animals. The
method may also be used to calculate associated properties such as moments or perimeter multiplicities of the
clusters. The scheme is an extension of the Rosenbluth method for growing polymer chains and is a simplifi-
cation of a scheme reported earlier by one of the authors. The algorithm may be used to obtain a Monte Carlo
estimate of the number of distinct lattice animals on any lattice topology. The method is validated against exact
and Monte Carlo enumerations for clusters up to size 50, on a two dimensional square lattice and three
dimensional simple cubic lattice. The method may be readily adapted to yield Boltzmann weighted averages
over clusters.

PACS number~s!: 02.70.Lq, 05.50.1q
b
on

h
e

ac
a

e
h-
m

r

o
n
s
s.
la
th
a

he
d
a
of
r

m
ta
iz
tio

lik

th
an
di

t

in

ing

ro-

that
nd
ate

ers
ith

revi-
es

of
ach
e
ero
nd

with
gen-
me
it is
first
fy.
n-

han
ni-

re
e-
o
to
the

l as
es
m,
I. INTRODUCTION

The enumeration of lattice animals is an important pro
lem in a variety of physical problems including nucleati
@1#, percolation@2#, and branched polymers@3#. A lattice
animal is a cluster ofN connected sites on a lattice wit
given symmetry and dimensionality, and we seek to enum
ate all distinct animals with a given number of sites. Ex
enumeration has been carried out for small lattice anim
using a variety of methods@2,4,5# but the methods becom
computationally prohibitive for large animals. Many tec
niques have been used to enumerate larger lattice ani
including various Monte Carlo growth schemes@2,6–8#, a
constant fugacity Monte Carlo method@9,10#, an incomplete
enumeration method@11#, and reaction limited cluster-cluste
aggregation@3#.

In this paper we describe an improvement of a meth
proposed by one of the authors@12#, which was based on a
extension of the scheme proposed by Rosenbluth and Ro
bluth @13# for enumerating self-avoiding polymer chain
The central problem in using the Rosenbluth scheme for
tice animal enumeration is calculating the degeneracy of
clusters that are generated. In the method proposed by C
the cluster growth was modified in a way that forced t
degeneracy to beN! whereN is the number of sites occupie
by the lattice animal. However, the resulting algorithm w
fairly complicated to implement. An alternative method
correcting for the degeneracy had been proposed by P
@14#. In this latter scheme the correcting weight is more co
plicated to determine and must be recalculated at each s
of the cluster growth if results are sought at each cluster s
However, the Pratt scheme does not require any restric
on the growth of the cluster.

We show here that there is a class of Rosenbluth-
algorithms that yield a degeneracy ofN and are straightfor-
ward to implement. The method provides an estimate of
number of lattice animals and can also yield estimates of
other desired properties of the animals, such as their ra
of gyration or perimeter multiplicities@2#. We describe and
justify the algorithm in Sec. II and present results to illustra
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the use of the method in Sec. III. Conclusions are given
Sec. IV.

An alternative, and commonly used, method of estimat
the number of lattice animals of a given size is theincom-
plete enumerationmethod~e.g.,@11#!, which is based on an
exact enumeration scheme for which an algorithm was p
posed by Martin@15# and Redner@16#. Although effective,
the incomplete enumeration scheme has the problem
configurations produced in a single trial are correlated a
therefore averages must be taken over many trials to mitig
this effect. In the algorithm presented below, all the clust
of a given size are generated completely independently, w
no reference to the clusters that have been generated p
ously. This property of the algorithm may have advantag
for calculating some classes of cluster properties.

II. ALGORITHM

Any algorithm suitable for the purpose of enumeration
lattice animals using the Rosenbluth Monte Carlo appro
must satisfy two important criteria. First of all it has to b
ergodic. That is to say, the algorithm should have a nonz
probability of sampling any given cluster shape. The seco
criterion relates to the degeneracy that is associated
each cluster and requires this to be determinable. This de
eracy arises from the number of different ways that the sa
cluster shape can be constructed by the algorithm. While
easy to devise methods of growing clusters that meet the
requirement, the second condition is more difficult to satis
For many simple algorithms the calculation of the dege
eracy, for every cluster, can be a more complex problem t
the original task of enumerating the number of lattice a
mals.

In the original Rosenbluth Monte Carlo approach of Ca
@12#, this difficulty was overcome by ensuring that the d
generacy for all clusters of sizeN was the same and equal t
N!. However, to achieve this result the algorithm had
employ a somewhat elaborate procedure. This made
implementation of the method rather complicated, as wel
limiting its possible extension to enumeration of other typ
of clusters. Here we shall consider an alternative algorith
1397 ©2000 The American Physical Society
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1398 PRE 62C. M. CARE AND R. ETTELAIE
which, while satisfying both of the above criteria, is cons
erably simpler than the algorithm proposed by Care. In S
II A we describe the algorithm in its most basic form, befo
proving in Sec. II B that the ergodicity and degeneracy
quirements are both met. In Sec. II C we demonstrate h
the basic algorithm can be further refined to improve its
ficiency.

A. Basic algorithm

Having chosen a suitable lattice on which the clusters
to be grown~square and simple cubic lattices were used
this study for two~2D! and three dimensional~3D! systems,
respectively!, a probabilityp of acceptance andq5(12p)
of rejecting sites is specified. Although in principle any val
of p between 0 and 1 can be selected, the efficiency of
sampling process is largely dependent on a careful choic
this value, as will be discussed later. In addition, an orde
list of all neighbors of a site on the lattice is made. F
example, for a 2D square lattice this might read~right, down,
left, up!. While the order initially chosen is arbitrary, it i
essential that this remains the same throughout a given
In the basic algorithm, once chosen, the probabilityp re-
mains fixed during the Monte Carlo sampling procedu
However, in Sec. II C the effect of relaxing this requireme
is discussed.

We construct an ensemble ofNE clusters and for each o
these calculate a weight factor which we subsequently us
calculate weighted averages of various cluster properties.
a propertyO of the clusters, the weighted average is defin
as

^O&W5
1

NE
(
a51

NE

WaOa . ~1!

The weight associated with clustera with N sites is defined
to beWa51/(dNPa), wherePa is the normalized probabil
ity of growing the cluster anddN is a degeneracy equal to th
number of ways of growing a particular cluster shape. It c
be shown@12# that the weighted average can be used
estimate the numbercN of lattice animals of sizeN and other
properties such as the average radius of gyrationRN

2 :

E@^1&W#5cN , ~2!

E@^Rn
2&W#5 (

$n51%

cN

RNn
2 5cNRN

2 . ~3!

During the growth of each cluster we maintain a record
the sites that have been occupied, the sites that have
rejected, and a ‘‘last-in-first-out stack’’ of sites that is mai
tained according to the rules described below. Each clust
grown as follows.

~i! Starting from an initial position, the neighbors of th
site are examined one at a time according to the list spec
above. An adjacent site is accepted with a probabilityp or
else is rejected.

~ii ! If the adjacent site is rejected, a note of this is ma
and the next neighbor in the list is considered.

~iii ! If, on the other hand, it is accepted, then this becom
the current site and its position is added to the top of a sta
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as well as to a list of accepted sites. The examination of
sites is now resumed for the neighbors of this newly
cepted site. Once again this is done in the strict order
was agreed at the start of the algorithm.

~iv! Sites that have already been accepted or rejected
no longer available for examination. Thus, if such a site
encountered, it is ignored and the examination is moved
to the next eligible neighbor in the list.

~v! If at any stage the current site has no more neighb
left, that is, all its adjacent sites are already accepted or
jected, then the current position is moved back by one to
previous location. This will be the position below the curre
one in the stack. The current position is removed from
top of the stack, though not from the list of accepted site

~vi! The algorithm stops for one of the following tw
reasons. If ever the number of accepted sites reachesN, then
the algorithm is immediately terminated. In this case a cl
ter of sizeN is successfully produced. Note that, unlike som
of the other common cluster growth algorithms@8#, it is not
necessary here for every neighbor of the generated clust
be rejected. Some of these might still be unexamined be
the algorithm terminates. The second way in which the al
rithm stops is when it fails to produce a cluster of sizeN. In
this case, the number of accepted sites will beM,N, with
all the neighbors of theseM sites already having been re
jected, leaving no eligible sites left for further examinatio
From step~v!, it is clear that in cases such as this, the curr
position would have returned to the starting location.

~vii ! The probability of producing a cluster of sizeN, in a
manner involvingr rejections, is simplyp(N21)qr . Hence the
weightWa associated with the growth of the cluster is giv
by

Wa51/@dNp(N21)~12p!r #, ~4!

where the degeneracydN is shown below to be exactlyN.
Failed attempts have a zero weight associated with th
However, they must be included in the weighted average
Eq. ~1!.

~viii ! During the growth of a cluster of sizeN, we may
also collect data for all the clusters of sizeM whereM<N. It
must be remembered that the weights for these smaller c
ters must be calculated with a degeneracy ofM.

A specific example is helpful in demonstrating the alg
rithm. Figure 1 displays a successful attempt at forming
cluster of sizeN54, on a square lattice. The order in whic
the neighbors were examined was chosen to be right, do
left, and up. Let us now consider various steps involved
construction of this cluster in detail. Beginning from the in
tial position labeled cell 1, the adjacent site to the right
this position is examined. In this case the site is rejected
the current position remains on the cell 1. Such rejected c
are indicated by the letterX. The next neighbor in the list is
the one below, labeled cell 2. As it happens, this is accep
Thus, the current position moves to this site and its posit
is added to the top of the stack, ahead of the position of
1. The process of examining the neighbors is resumed
sites adjacent to cell 2. Once again, following the strict or
in the list, the site labeled 3 to the right of the current po
tion is considered first. This is also accepted and as befo
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placed at the top of the stack. At this stage the stack cont
the positions of cells 3, 2, and 1, in that order. The curr
position is now cell 3.

The site to the right of this, followed by the one belo
are tested and both rejected in succession. Since both
neighbors to the left~i.e., cell 1! and the one above hav
already been considered, the current position has no m
eligible neighbors left to test. Therefore, following rule~v!
above, site 3 is removed from the stack. This leaves
position of cell 2 at the top of the stack, making this t
current position again. The cell 2 has two neighbors,
adjacent sites below and to the left, which are still unexa
ined. Of these, according to our agreed list, the site be
takes precedence, but as shown in Fig. 1 this is rejected.
current position remains on the cell 2 and the neighbor
site ~cell labeled 4! to the left of this position is tested. As
happens, this is accepted. A cluster of the desired
N54 is achieved, bringing this particular attempt to a su
cessful end.

For the subsequent discussion, it is useful to represe
sequence of acceptance and rejections by a series of 1 a
Thus, for the case shown in Fig. 1 we have$0,1,1,0,0,0,1%.
Note that at any stage throughout a series, the position o
current site and that of the neighbor to be examined, rela
to the starting cell, are entirely specified by the decisions
have been made so far. In other words, given a sequenc
1s and zeros we can determine precisely the shape o
cluster that was constructed. This is only possible becaus
the manner in which the neighbors of the current position
always tested in a strict predefined order. For an algorit
that considers the neighboring sites at random, the same
clearly not be true.

The procedure described above needs to be repeat
large number of times, to obtain the weights for the ensem
average defined in Eq.~1!. In particular, using Eq.~2!, the
number of lattice animals of sizeN can now be determined

B. Ergodicity and degeneracy of the algorithm

Let us now discuss the issue of the ergodicity of the
gorithm. We wish to see whether, starting from any parti

FIG. 1. Sequence of accepted sites leading to a cluster of
N54. The sites examined but rejected along the way are indic
by X. In our notation this sequence can be represented
$0,1,1,0,0,0,1%.
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lar site on a given cluster, a series of acceptances and re
tions ~1 and 0! can always be determined that leads to th
cluster shape. We stress that we are not concerned about
probable such a sequence is likely to be, but merely tha
exists. We can attempt to construct such a sequence by
lowing the same rules as our algorithm described above, w
one exception; we accept and reject each examined site
cording to whether it forms part of the target cluster shape
not. Obviously, in the original algorithm, each such mo
has a nonzero chance of occurring, providedp is not set to
zero or 1. Since we accept only sites that belong to the c
ter in question, it follows that if the sequence is success
we will achieve the desired cluster shape. However,
might argue that for some choice of target cluster and st
ing position, a series started in this manner will always t
minate prematurely. That is to say, it will inevitably lead to
failure, with only part of the required cluster having be
constructed. Now, it is easy to see that this cannot be tru
the series fails, it implies that all the neighboring sites of t
subcluster formed so far are rejected. However, the res
the cluster must be connected to this subcluster at s
point. Hence, at the very least, one neighboring site of
subcluster must be part of the full cluster and could not h
been rejected. Starting from any of the sites belonging t
cluster, then, it is always possible to write down a seque
of 1s and zeros that will result in the formation of that clu
ter. Similarly, considering every starting point on a cluster
size N, another implication of the above result is that t
corresponding cluster shape can be generated in a minim
of at leastN distinct ways.

Next, we shall show that the degeneracy of a cluster
sizeN in our algorithm is in fact exactlyN ~unlike the origi-
nal algorithm of Care@12# which has a degeneracy ofN!).
Let us suppose that, starting from a particular site on a gi
target cluster shape, our algorithm has two distinct ways
forming this cluster. Associated with each of these, a se
of 1s and zeros can be written down, in the same manne
that indicated above. The two ways of constructing the cl
ter must necessarily begin to differ from each other at so
stage along the sequence, where we will have a 1 in onecase
and a 0 in theother. Now since up to this point the two serie
are identical, the site being examined at this stage will be
same for both cases. This is rejected in one sequence~hence
0! whereas it is accepted in the other~hence 1!. It immedi-
ately follows that these two differing ways of constructin
the cluster cannot result in the same shape. Using this re
together with the previous one regarding the ergodicity of
algorithm, we are led to conclude that, starting from a giv
site on a cluster, the algorithm has one and only one wa
constructing the cluster. Hence, for a cluster of sizeN, the
degeneracy is simplyN.

C. Refined algorithms

1. Adjacent site stack

During the growth of the cluster a stack can be co
structed of all the sites that are adjacent to the cluster
still available for growth. When a new site is added to t
cluster, its neighbors are inspected in the predetermined
quence and any available ones are added to the top of
stack.~Note that this stack differs from that discussed in S
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1400 PRE 62C. M. CARE AND R. ETTELAIE
II A. ! The choice of site to be occupied can be made from
the adjacent sites in a single Monte Carlo decision. Thus
we consider the underlying process in the method descr
above, at each step there is a probabilityp of the site being
accepted and a probabilityq512p of the site being re-
jected. We therefore need to generate a random number
the same distribution as the number of attempts neede
obtain an acceptance. The probability of makingk attempts
of which only the last is successful is

pk5qk21p ~5!

where 1<k,` and (k51
` pk51. In order to sample from

this distribution we note that the associated cumulative
tribution Cm is given by

Cm5 (
k51

m

qk21~12q!512qm. ~6!

Hence, if we generate a random numberh, uniformly dis-
tributed in the range 0,h,1, then a numberm given by

m5IntS ln~h!

ln~q!
11D ~7!

will have been drawn from the required distribution. Th
we generate the numberm according to Eq.~7! and use this
to determine which site on the stack is selected, withm51
corresponding to the site at the top of the stack. Ifm
.Nad j , whereNad j is the number of available adjacent site
the cluster growth is terminated as explained in step~vi! in
Sec. II A. All the adjacent sites lying above the chosen site
the stack are transferred into the list of rejected sites. The
of adjacent sites is then adjusted to include the new avail
sites adjacent to the recently accepted site. As before,
crucial that these are added to the top of the list in the s
predefined order.

2. Variable probability

An apparent disadvantage of the methods so far descr
is that, with fixed choice of probabilityp, occasions arise
when a cluster growth will terminate before reaching a cl
ter of sizeN, simply because the Monte Carlo choice rejec
all the neighboring sites. This problem can be overcom
the value ofp is allowed to vary as the cluster grows. Th
simplest method is to determine the numberNad j of avail-
able adjacent sites at each point in the cluster growth
select one of these sites with uniform probability. This effe
tively makesp51/Nad j and thereby increases the chances
growing a cluster of sizeN. Note that it is still possible for a
cluster growth to become blocked. This happens when
chosen site is the one at the bottom of the current elig
neighbor list, thus causing all the other neighboring sites
the list to be rejected in one step. If the newly accepted
has itself no unexamined neighbors to add to the list,
algorithm is terminated prematurely. Modified in the mann
described above the weight associated with a cluster is

Wa5
P i 51

N Nad j
i

N
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rather than the expression given in Eq.~4!.
However, when this variable probability method w

tested it was found that, although it reduced the numbe
rejected clusters, it was inefficient at sampling the space
possible clusters when compared with the method descr
in Sec. II C 1. This inefficiency was measured by compa
son of the standard deviation in the estimated cluster num
for any given number of clusters in the sampling ensemble
is thought that the inefficiency of the variable probabili
method arises because it gives too much weight to s
lower in the stack, yielding many nonrepresentative clust
It is possible that this problem could be overcome by usin
nonuniform sampling distribution~cf. @12#! but this was not
tested in this work and the method described in Sec. II
was used to obtain the results described in Sec. III.

III. RESULTS

In order to test the algorithm, the procedure described
Sec. II was used to estimate the number of lattice animals
a square 2D lattice and a simple cubic 3D lattice for wh
exact results are known up to certain sizes@5#. Before col-
lecting data it was necessary to determine the optimum va
of the probabilityp with which an adjacent site is accepte
during the cluster growth. The effect of changingp on the
estimated error in the number of clusters of size 50 on the
and 3D lattices can be seen in Fig. 2. It can be seen that t
is a fairly broad range of values ofp for which the error is a
minimum and a value ofp50.6 was used to obtain the re
sults described below for the 2D lattice and 0.72 for the
lattice. The distribution of weights is log normal@12# and
becomes highly skewed for large cluster sizes; this is a s
dard problem with Rosenbluth methods@17#. The minimum
in the error achieved by the choice of the value of the pr
ability p has the effect of minimizing the variance of th
distribution of the weightsWa .

It is worth noting that the algorithm does not sample t
space of cluster shapes uniformly. Rather, cluster sha
have different probabilities of being sampled. However,
probability is known for each cluster shape and is correc
for through the weight factors associated with each clus
shape, as in Eq.~1!. The likelihood of occurrence of a par
ticular cluster shape is crucially dependent on the strict or
in which the neighbors are examined, as described in
paragraph in Sec. II A. This may cause certain shapes
have small probabilities, or effectively become ‘‘bottle
necks’’ in the algorithm. The choice of the probabilityp will
influence the type of cluster that becomes a bottleneck an
is likely that the values forp identified above minimize the
effect of these bottlenecks. Alternatively, if the order

FIG. 2. Percentage errors for clusters of size 50.
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TABLE I. Degenerate Rosenbluth estimate of the number of lattice animals of sizeN on a three dimen-
sional square lattice using 2.53107 sample clusters, each grown toN550 with p50.72; exact values from
@6#; estimated values and associated errors from incomplete enumeration method of Lam and Fam@6#;
calculation of error estimate described in text; ‘‘true’’ error is fractional difference of Rosenbluth esti
and exact value;x andj are defined in the text.

N Rosenbluth Exact Ref.@6# eest True Ref.@6# x j

estimate value estimate ~% error! ~% error! ~% error!

2 3.0003100 3
3 1.4993101 15
4 8.6003101 86 8.5943101 0.03 0.00 0.51 0.18 0.07
5 5.3393102 534 5.3213102 0.03 0.02 0.54 0.77 0.00
6 3.4833103 3 481 3.4753103 0.04 0.05 0.58 1.30 0.14
7 2.3513104 23 502 2.3533104 0.05 0.02 0.63 0.42 0.14
8 1.6303105 162 913 1.6313105 0.05 0.03 0.65 0.58 0.73
9 1.1533106 1 152 870 1.1553106 0.06 0.03 0.73 0.50 0.62
10 8.3023106 8 294 738 8.2913106 0.06 0.09 0.86 1.40 0.16
11 6.0543107 60 494 540 6.0423107 0.06 0.08 0.87 1.29 0.50
12 4.4643108 446 205 905 4.4423108 0.07 0.05 0.87 0.70 0.12
13 3.3263109 3 322 769 129 3.2913109 0.08 0.11 0.97 1.34 0.48
14 2.49631010 2.46131010 0.07 1.09 0.35
15 1.88731011 1.86231011 0.07 1.16 -0.10
16 1.43631012 1.41631012 0.10 1.22 0.25
17 1.09831013 1.08231013 0.10 1.27 -0.03
18 8.44831013 8.32931013 0.09 1.37 0.12
19 6.52031014 6.44631014 0.11 1.38 0.20
20 5.04831015 5.00231015 0.13 1.41 -0.07
21 3.92931016 3.89731016 0.14 1.47 -0.21
22 3.06331017 3.05231017 0.14 1.49 -0.42
23 2.39931018 2.39131018 0.16 1.61 -0.11
24 1.88231019 1.87731019 0.19 1.68 0.16
25 1.48531020 1.48031020 0.21 1.70 -0.02
26 1.16931021 1.16831021 0.21 1.75 -0.11
27 9.21431021 9.20931021 0.20 1.81 0.06
28 7.31631022 7.29031022 0.21 1.88 0.18
29 5.79031023 5.78631023 0.24 1.96 -0.12
30 4.60031024 4.61031024 0.25 2.01 0.44
31 3.67431025 0.26 -0.28
32 2.92931026 0.25 0.26
33 2.34231027 0.27 0.54
34 1.87231028 0.31 0.46
35 1.50131029 0.31 -0.32
36 1.19931030 0.32 0.33
37 9.63131030 0.39 1.08
38 7.69131031 0.35 0.18
39 6.20331032 0.40 0.27
40 4.98431033 0.45 0.54
41 3.99931034 0.43 0.35
42 3.20531035 0.46 0.23
43 2.60531036 0.49 0.35
44 2.10031037 0.62 2.32
45 1.68431038 0.71 0.43
46 1.35331039 0.69 0.65
47 1.08731040 0.58 0.36
48 8.89231040 0.68 0.53
49 7.22331041 0.79 0.02
50 5.78931042 0.75 0.78
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TABLE II. Degenerate Rosenbluth estimate of the number of lattice animals of sizeN on a two dimen-
sional square lattice using 2.53107 sample clusters, each grown toN550 with p50.60; exact results from
@5#; calculation of error estimate described in text; ‘‘true’’ error is fractional difference of Rosenb
estimate and true value;x andj are defined in the text.

N Rosenbluth Exact eest True x j

estimate value ~% error! ~% error!

2 1.9993100 2
3 6.0003100 6 0.02 0.01 0.22 -0.48
4 1.9003101 19 0.03 0.00 0.00 -0.65
5 6.3003101 63 0.03 0.01 0.31 0.14
6 2.1603102 216 0.03 0.00 0.00 0.36
7 7.6013102 760 0.04 0.02 0.43 -0.27
8 2.7243103 2 725 0.04 0.03 0.60 0.08
9 9.9033103 9 910 0.05 0.07 1.48 -0.14
10 3.6443104 36 446 0.05 0.01 0.21 0.10
11 1.3523105 135 268 0.06 0.04 0.69 0.09
12 5.0563105 505 861 0.07 0.04 0.66 -0.04
13 1.9033106 1 903 890 0.08 0.04 0.51 -0.24
14 7.2053106 7 204 874 0.09 0.01 0.06 -0.13
15 2.7413107 27 394 666 0.09 0.05 0.49 -0.33
16 1.0463108 104 592 937 0.09 0.01 0.07 -0.09
17 4.0093108 400 795 844 0.11 0.03 0.29 0.74
18 1.5433109 1 540 820 542 0.12 0.13 1.09 0.44
19 5.9423109 5 940 738 676 0.10 0.01 0.15 0.26
20 2.29831010 0.13 -0.42
21 8.89531010 0.15 -0.02
22 3.45131011 0.17 0.62
23 1.34131012 0.18 0.61
24 5.22831012 0.20 1.61
25 2.03931013 0.19 -0.04
26 7.97031013 0.26 -0.05
27 3.12231014 0.25 0.00
28 1.22531015 0.24 0.33
29 4.83131015 0.28 0.20
30 1.88331016 0.30 -0.13
31 7.42631016 0.33 0.97
32 2.94531017 0.45 0.59
33 1.16031018 0.34 0.19
34 4.56131018 0.47 0.44
35 1.80031019 0.40 0.23
36 7.12131019 0.52 0.29
37 2.82331020 0.57 0.67
38 1.12231021 0.67 -0.03
39 4.41731021 0.65 0.71
40 1.76331022 0.83 1.30
41 6.97931022 0.84 1.02
42 2.73831023 0.78 0.37
43 1.08831024 0.82 -0.16
44 4.34131024 0.93 2.12
45 1.70431025 0.97 0.52
46 6.80231025 1.10 0.73
47 2.67331026 1.07 0.41
48 1.05831027 1.02 0.60
49 4.20931027 1.14 0.26
50 1.66431028 1.28 0.29
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examining the neighbors is altered, other shapes will beco
bottlenecks, but the original shapes with low probability no
become much more likely. Hence the presence of bottlene
in the algorithm could also be reduced by breaking up a la
run into a number of smaller runs each with a different or
of neighbor lists. The problem of bottlenecks does not, ho
ever, appear to have been significant for the cluster enum
tion results presented below, which were obtained with
single order of examining the neighboring sites.

In Table I we present results obtained using the algorit
defined in Sec. II using the adjacent site stack method of S
II C to enumerate clusters on a simple cubic 3D lattice
clusters up to size 50. The results were obtained from
ensemble of 2.53107 clusters. The data took 3.3 h to colle
on an R5000 Silicon Graphics workstation using code w
ten in the languageC but with no attempt to optimize the
code. Only 30% of the clusters achieved a size of 50. T
results are quoted together with a standard erroreest calcu-
lated by breaking the data into 50 blocks and determining
variance of the block means for each cluster size. If the nu
ber of samples in each block is sufficient, it follows from t
central limit theorem that the sampling distribution of t
means should become reasonably symmetrical. We there
also quote askewnessj defined by@18#

j5m3 /m2
3/2, ~9!

wheremi is the i th moment about the mean of the sampli
distribution. It is expected thatj&0.5 for a symmetrical dis-
tribution andj.1 for a highly skew distribution. The statis
tic j should be treated with some caution, since it is likely
be subject to considerable error because it involves the
culation of a third moment from a limited number of da
points.

Exact results are known for clusters up to size 13@6#. In
Table I we quote the values for the quantityx defined by

xM5UcM
exact2cM

est

cM
exacteM

est U , ~10!

wherecM is the number of clusters of sizeM. It can be seen
that all the values ofx areO(1). Hence we assume thateest

is an acceptable method of estimating the error in
method. However, it is likely thateest will underestimate the
true error if the distribution becomes more skew. We a
quote in Table I the values ofcN calculated by Lam and
Family @6# using a Monte Carlo incomplete enumerati
method together with the error estimates reported for
method.

In Table II we quote data collected from a square t
dimensional lattice by collecting data from 2.53107 clusters
up to size 50. This data took only 1.45 h to collect but on
2% of the clusters achieved a size of 50. Comparison
given with exact results@5# up to clusters of size 19. The rat
of growth of errors for the two and three dimensional data
e

ks
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shown in Fig. 3, and it can be seen that the errors associ
with the method are beginning to diverge quite rapidly abo
clusters of size 50. This behavior is to be expected wit
technique that is based on sampling from a log normal d
tribution. In a previous paper@12#, equivalent results were
obtained for clusters up to size 30 with approximately t
same sample size. The improvement up to clusters of siz
obtained by this method arises because the weight assoc
with clusters of a certain size is generated from roughly h
as many random numbers. This effectively halves the s
dard deviation of the log normal distribution of the weigh
and allows larger clusters to be sampled before the met
becomes unusable.

IV. CONCLUSIONS

We have described a simple Rosenbluth algorithm for
Monte Carlo enumeration of lattice animals and cluste
which can be applied to any lattice topology. A merit of th
scheme is that for thermal systems it may be easily ada
to include Boltzmann weightings following, for example, th
arguments used by Siepmann and Frenkel@19# in the devel-
opment of the configurational bias technique. Similarly, t
method can be applied to calculation of the averaged pr
erties of a cluster of a given size, in the site percolat
problem. In this case we have

^O&5
^~12P! tO&W

^~12P! t&W

5

(
a51

NE

Wa~12P! taOa

(
a51

NE

Wa~12P! ta

, ~11!

whereP is the probability of site occupation in the percol
tion problem of interest andta the number of perimeter site
@20# of the clustera. Preliminary results also indicate tha
the method may be useful in the study of the adsorption
clusters onto solid surfaces.

A possible numerical limitation of the method arises fro
the highly skew probability distribution of Rosenblut
weights that occurs for large cluster sizes. However,
method presented in this work is able to work to consid
ably higher cluster sizes than the one described in@12# before
this becomes a problem.

FIG. 3. Variation of percentage error with cluster size.
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