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Energy correction for isolated impurities under periodic boundary conditions
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The Coulomb energy of aperiodic systems was investigated. To treat completely isolated disorder in infinite
systems, energy correction for a supercell method is presented. We discuss a definition of the correction term,
and then consider a direct approach taking into account interactions between charge distribution and an indirect
approach based on a multipole expansion. In test calculations for isotropic-charged, anisotropic-charged, and
neutral impurities, impurity energies independent of supercell sizes were obtained. The present energy correc-
tion can be applied to arbitrary systems and is expected to realize more practical simulations for aperiodic
systems.

PACS numbdrs): 02.70—-c, 61.72-y

[. INTRODUCTION In this paper, we discuss correction terms more precisely

Computer simulations for complicated and large-sizedo deal with arbitrary systems where there is no constraint of
systems, e.g., amorphous structures, liquid crystals, anerystal lattices and charge distribution. We consider two ap-
polymers, are now increasingly sought for materials designproaches: one is a direct method treating charge distribution,
and molecular mechanicéMM) and molecular dynamics and the other is an indirect method based on a multipole
(MD) simulations are being applied as useful todlg]. In expansion. Impurity energies of ionic systems have been in-
many simulations for aperiodic systems, periodic boundaryestigated to ascertain the validity of the present scheme, and
conditions are imposed to remove surface effects and corihe energies independent of cell sizes were obtained.
struct infinite systems. This technique, a supercell method, is This paper is organized as follows. In the next section, the
known as an expedient approach and widely applied both téprmulation of the energy correction is described. To under-
ab initio and empirical calculations. For example, we canstand the physical meaning of the correction terms, a multi-
directly use well-developed schemes for periodic system®ole expansion is also discussed. In Sec. lIl, test calculations
such as energy band calculation methods. for charged and neutral impurities are presented. We con-

In order to simulate aperiodic systems containing locaisider isotropic and anisotropic charge distribution for the
disorder, large supercells are required to diminish artificiacharged impurities, and show that the three cases have essen-
interactions with impurities in the surrounding image cells.tial differences in cell-size dependence. We also compare the
Unfortunately, it is quite difficult to treat sufficiently large- two methods, i.e., the direct and the indirect approaches, for
sized cells, because of the restrictions on computational timé&omputational accuracy and efficiency. Finally, a short sum-
and thus numerical inaccuracy depending on system sizes f8ary is given in Sec. IV.
an unavoidable problem in the supercell method. This prob-
lem becomes most serious in systems with long-range inter-

actions typified by a Coulomb potential. Il FORMULATION
One of th_e skillful approaches to aperiodic sy_stems is a A. Definition
Green-function method to calculate the electronic states of ) ) ) o
deep levels in semiconducto3,4]. For more efficient cal- Our interest in this study is in the energy change due to

culations, an algorithm of empirical MM and MD simula- local disorder which is introc_juc_ed into an infinite host. Here,
tions has been recently devisd8]. The aim of these W€ regard the host as a periodic system s.uch as _perfect.crys-
schemes is to simulate isolated disorder in infinite systeml@!S- The energy change for the Coulomb interaction is given
directly. by

When we focus our attention on the Coulomb energy,
there is another approach in which we consider correctiong f fd P2(r)p* (r )__f fd P ADP AT (Np"(r)
terms for the supercell method. Actually, the importance of [r—r’|
the correction has been already pointed out for ionic systems (D)
[6,7]. In those studies, correction terms were given as
monopole-monopole and monopole-quadrupole interactions,

and impurity energies in some simple crystal lattices werel he symbolsp?(r) and p"(r) are the charge distribution in
analytically investigated. the aperiodic and the host systems, respectively. When im-

purity atoms are considered as the local disor@é(r) is
defined by
*Present address: Computer and Network Systems Laboratory,
Corporate Research and Development Center, Toshiba Corporation, as\_ imp b
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan. pi(r)=p " (r)+p" (r), 2
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where p™P(r) is the charge distribution of the impurity at- wherer . is the relative position in the unit cell and=0

oms, andp" (r) represents the charge distribution modifiedor /=0. We also accept
by lattice relaxation around the introduced impurity. All
fcypes.o.f impurities, e.g., substituti_onal impurities, interstitial p“(r):E pgc(f)5(f—rceu—f|) (8
impurities, and defects, are described by &). The energy s
changeE; is called the impurity energy, hereafter.

In the supercell method, the impurity energy is evaluate
from

cIor the host system which contains no local disorder.
Standing on Eq9g.7) and(8) and substituting Eq41) and
(3) into Eq. (6), the correction term is, finally, written as

a a !
Esc:EJ er ar’'S pdr)psdr’) AE=AE@)TAER)+AE®s). ©
2 J cell cell / |r—r’—r/|

The three terms are given by
[p"™(r)+ pPCILp"™(r") +p%]
[r—r"—r |

wherep?{r) means the charge distribution of an aperiodic 1 o) p™P(r ")
system under the periodic boundary condition, and is given — _f drf dr’L, (10
by 2J e Jeen Ir—r’|

1 /< NPT
_E,fcelldr,fcelldr E (3)

v

1
AE == drf dr’
1 2 cell cell 2/:

PP p™ ()

2 (1)=p™P(r)+ pl(r)+ pBC. (4)
psd)=psc(r)+psdr)+p AE(z):J’ er’ dr' > ——————
cel Jeel  /Fo |r—r'—r |

The background charg/aBG is required to keep the charge

neutrality per cell. The vectar, is the equilibrium position pBGph’(r/)
of the /'th unit cell, and the summations in E@) are taken +f er' dr’ > —_— (12)
for all cells. cel Jeell 7 |r—r'—r,|

Whereas the impurity enerdy; is the energy change in

the whole systent; ¢ is the energy change per cell. Consid- 1J J p™(r)p™(r")
i i i AEg==| dr| dr'> ———~ (12
ering the cell sizd, we obtain Oy A . Zo =t —r)] (12
LITLESC(L): Ei. ®) wherep™(r), which is defined by
Since the cell size is limited by computer capabilities, the p™(r)=p"(r)=p"(r), (13

supercell method needs a correction term to evaluate the im- ) ) S
purity energyE;. In fact, it has been shown that tf& of indicates the difference in charge distribution caused by the

ionic systems has very slow asymptotic behavior with thdattice relaxation. The subscript SC for the charge distribu-

cell-size dependend&]. In this study, we define the correc- tion is omitted in Eqs(10)—(13) and hereafter. _
tion energy as Equationg10)—(12) give the interactions between the dif-

ferent cells, andAE(;), AE(;), and AE 3, correspond to

AE(L)=EsdL)—E;. ®  p™-p"™, p™-p™ and p™-p™ interactions, respectively.
_ - The terms™(r)p"(r') in AE 5y andp™ (r)p"(r') in AE s,

Here, we note that the following condition is assumed a%riginate from the impurity energf; of the aperiodic sys-

a prerequisite for the correction terlyE : the size of super- tem. because™ (1) + o™ (1) of the cell/=0 interacts with
cells is taken to be large enough to describe lattice relaxationy,, ’ pr(r) +p7 (1) 4

h . .
caused by the impurity. Thus, the present correction aims t8 (r) of the surrounding cells as shown in E@).
obtain the impurity energy of a system where the optimized ) )
relaxation structure has been embedded in the host system. B. Multipole expansion

This prerequisite is supported from the fact that the Coulomb  |n this subsection, we discuss the physical meaning of the
forces acting on constituent atoms have rapid convergencgorrection terms. According to the electromagnetism, the po-
concerning the cell-size dependeri&¢. SinceAE depends tential atr’(|r’|>|r|) given by the local charge distribution
primarily on the lattice constait, the correction term for the  ,(r) around the origirO is generally described as the poten-
forces almost disappears in the differential. This fact bringsia| due to multipolegM .} (#=0,1,2 . ..) positioned at
about reliable results for crystal structures obtained by MMg, whereM ,(,;, the uth-order multipole momer# 5.,
and MD simulations based on finite-sized supercells. Thes defined by
prerequisite is explicitly written by

(2u—1N

Ma[M]_ ,LL' f drp(r)ra[,u,]v (14)

p2(r)=[ pTP(r) + P 1) 18(r =T cen)

; — 1\ = _ —3)...
+/§0 pgc(r)b\(r_rce"_r/)' (7) V:V|::’hr (Z,LL 1) (2,(,L 1)(2/.L 3) 1 and ra[M]
) Srolg .
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Whep the charge distributiop®(r) in each supercell is 47w 20
approximated by a set ¢M .1} (#=0, ... tmay atro, ¢ZQ:? - (22
the correction termAE is given by interactions between L
these multipoles located in different cells as follows:
27 P?
Mmax Mmax
=—— —, 23
AE=2 X ¢ (15) Pep 3 .3 (23
w=0 ,"=0
The multipole interactionp,, ., is written by[8,9] 3.73x10% 1 ,
e R > 2(Qua)
s 1 (—l)M’ E " " L a
M2 2u— D) (2 — D) dT Gy e ]
(ZrmDREaT= DR ol 21 ~ 3 {2Qup)* QuiQusl . (24
1 aFt B
X V V ! ! T 11y 16
alu Vo' lu') 24 T ] (16) ) )
where we defineP=|P| and Q=%,Q,,. The correction
With V o= 0#1r o r g- - - term ¢, is discussed in Ref6] and the factoi is given as
The multipole momenM ,;,; in Eq. (16) is given as 2.8373, 3.6392, and 4.5848 for sc, bcc, and fcc lattices, re-
_ spectively. The termp,o has been suggested in RET].
Ma[M]szffLﬁMffﬂ], (17) Here, let us make a comparison between E§$.and
(15). As mentioned above, the three terld&;), AE,),
whereM’(,; (X=imp or rlx) is calculated from and AE(; correspond to thep™-p™", p™P-p™  and
p™-p™ interactions. Since"™(r) never has a monopole, the
(2u—21)!! leading terms oAE;y, AE(;), andAE 3 are expected to
X X _ . e e
Meagu = Py Ce”drp (Dr=ro)agu- 18 peg,,, b20, andeoq for charged impuritiegif p™(r) has

dipole momentsgpp becomes the leading term AfE 5)].

As for neutral impuritiesgpp is expected to be the leading
term of all three terms. The energy correction based on Eq.
(9) where the charge distribution is directly taken into ac-
count is regarded as the calculation forNuparticle system.

In contrast, the indirect approach given by Ef5) corre-
sponds to a one-particle calculation, since only a set of mul-
tipoles is considered per cell.

The positionr g is usually chosen to be in the center of the
charge distributionp™(r). Generally, if p(r) has the
uth-order multipole momentM ,,;, M, +1) depends on
the choice ofr 5 which cannot be uniquely defined. We have
checked that th E obtained from Eq(15) does not show
serious dependence o as long as it is centered around
p"™P(r), because of the prerequisitg<|r’| for the muilti-
pole expansion, wherie’| has the order of the cell size.

In the present study, multipoles up to the second-order are C. Classical approach

tz;ken mtg_ aclcounté(max= dZ). VYe denote tmonop;olq:)om; It is straightforward to extend the present energy correc-
charge, dipole, and quadrupole moments By P,, and o 1o classical calculations, considering the point charge

Q.p, respectively. It has been numerically checked that s . . . . iy
higher-order multipole moments than quadrupoles contributt%r(/) which has the following relations with the charge dis

little to the correction energy, as discussed later. The ibution p(r):
monopole-monopole interaction is exceptionally calculated N
by pPrN=2 2 a*C)alr—r*()], (25
1 Z'(r)Z'(r")
¢ZZ:§f "drf ||dr,2 Ir—r'—r,| 19 N
cel cel - — Iy
p(N=2 2 a"C)alr—r")], (26)
instead of by Eq(16), andZ’(r) is defined as
Z'(r)=25(r—ro)+p°C. (20 N

p™(1) =2 2 d™(2)Slr—r3())], 27

In the case of orthorhombic supercells, the multipole in- 7
teraction¢,,» with odd u+u' becomes zero through the
symmetry constraint. On the other han#l, ,, with evenu  The notation }) indicates thesth atom in the/ th cell, and
+u' has a nonzero value and, particularly for cubic cellsN andN,, are the numbers of total atoms and impurity atoms
with the lattice constarit, they are analytically written as  per supercell, respectively. The atomic positiof6}) and
r"(S) are those in the aperiodic and the host systems.

In the classical approach, Eq40)—(12) and Eq.(18) are

(21) replaced by the following expressions:

ZZ
bz7=— T

N >
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Aec(5)A86 ()
s |ra(8)_ra(§/,)|

Yo J7 g5

! 1 (28)
I —r )

73 { A d™EIC)
Ao [ Ir@-r2 Gl Ira -l

N qBth(i',)

o S’

(29

A @) ")
AE(3):§2 2 2 s’ -2 hes'
s s /20 [ [r2Q) —r2C)] [rf@—r"C))|
hysyyh(s
a'(e)a’(;)
+ h so h/S' ’ 30
r"@—r"Cl
with
dsc ()
q™(>)+qB¢ for impurity atoms (o=1,... N,)
| gB¢  otherwise,
(31
and
NU'

im (2 _1)” imp oyreaso
M= 2 A E) olagu . (32

N
o _(2p-11

Ma[;/,] IU" - ES qh(g){[ra(g)_ro:la[u]

—[r"®) T ol agu}- (33

In Egs. (28)—(30), self-interactions are not included in the

summations the same as in the integrationspfir).

IIl. TEST CALCULATIONS

In order to check the validity of the present energy cor-
rection, we have calculated the impurity energies of some
ionic systems. As isolated impurity systems, NaCl alkali ha
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=—1andR(i)=1.85 A for Clions, are determined so as to
realize an fcc crystal structure with the experimental lattice
constant of 5.63 A. The convergence criteria of the MM
calculations are set for when the maximum force becomes
0.01 times that in the initial structure. We apply the Ewald
method to lattice sums both in the MM calculations and in
the energy correction.

The numerical results for three typical cases, isotropic-
charged impurity(point defec}, anisotropic-charged impu-
rity, and neutral impurity, are presented in this section. Be-
cause of the long-range Coulomb interaction, the
electrostatic energy sensitively depends on the lattice relax-
ation, even if its deviation under different simulation condi-
tions is less than 1% of the nearest-neighbor interatomic dis-
tance. To check clearly the cell-size dependence, the same
relaxation structure is embedded in different sized supercells
and their impurity energies are compared in this study. The
relaxation structure was optimized by using a small-sized
supercell in order to attain a comparison with larger-sized
supercells. We should note again that the purpose of the
present correction is to obtain the impurity energy of a sys-
tem where all the surrounding image cells are replaced by the
host system as shown in E€), and that the energy sensi-
tively depends on the lattice relaxation. Therefore, we also
have to carefully choose the size of supercells to optimize
relaxation structures before the energy correction.

In this section, the impurity energies of the three cases are
discussed, and the correction terms given by Efs.and
(15) are compared to each other. For convenience, we will
call the two approaches based on E§.and(15), methods
I and Il, respectively.

A. Case I: Isotropic-charged impurity

As the simplest example, an NaCl system containing a
point defect is discussed. First, the electrostatic impurity en-
ergy corrected by method | is shown as a function of the cell
size in Fig. 1a). The direct results of the supercell method
Esc (crossesshows very slow convergence with increase in
the size of the supercells. In contrastEg, the corrected
energies (open diamonds give the constant valueE;
=5.32 eV, independent of cell sizes. The rafi& /E; is
about 15% for the supercell with 216 constituent ions. We
have ascertained that this impurity energy of 5.32 eV agrees
with the result obtained by the algorithm for aperiodic sys-
tems[5], which means that method | gives the impurity en-
ergy of a completely isolated state.

The contributions from each term of method | are also
shown in Fig. 1a). The impurity energies corrected only by

lides containing local defects are considered. The equilibzhe first term are plotted as open circles, and those corrected

rium structures have been determined by empirical M
simulations in which the interatomic potential of NaCl is

given by the rigid-ion model

_ € q(i)q())
_4’77'80 rij

rij
vriy) R<i>+R<1>}'
(34

+Aex;{—B

The constanté\ andB in the Born-Mayer-type potential are

fixed at 1822 eV and 12.364, respectivEly)]. The potential
parametersg(i)=1 andR(i)=1.85 A for Na ions;q(i)

Mup to the second term are open squares. The first 2efy,

overcorrects the impurity energy and the second tatp,)
compensates for it. The contributions from the three terms to
the total correction energy show the relatidi1)>AE ;)
>AEs. In this case I, the correction is done well by con-
sidering onlyAE ;) andAE 5 for all cell sizes except for the
216-ion supercell. This result comes about since the third
term AE s, which is given as the"™-p"™ interaction, con-
tributes little to the total correction energy, because the point
defect does not strongly affect the lattice relaxation, ﬂrﬁﬂ

the change in charge distribution caused by the relaxation,
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58 | —X—'Esc ’ (a) ]
s 5.6 \\'o- _g_ Egg-AE:-AE:-AE3 O . O . O . O . O . O
e .| 0 TT/eaal
5 S By g CeCeCeCeo
g 52} ]
z . O®O
*é-._s.o: 1 0.0.0.0.0
= a8t 1
. O 0® 000 00O
46 |
e T —— ce 00 e0CeO0
15 20 25 30 35 40 (A)
216 512 1000 1728 2744 (atoms)
Size of supercells
581 o LB ()]
“~ --0-- Egc-072 T
__56F e —a— Egcdzz0z¢
S : ...
< saf 0 T hERELEE ]
&g Lo - itk 8 FIG. 2. Cross section of the equilibrium structure of case L.
g 52| i Open and closed circles are Na and Cl ions. A line indicates a
> 1000-ion supercell where four ions, one Na and three Cl ions, are
5 50 1 missing.
E- I ]
T 48 [ ] mentsM™ correspond to the fact that the point defect in a
a6 | | host system with homogeneous charge distribution brings

isotropic lattice relaxation and, in particular, no dipole mo-
ments appear. Because of the quadrupole mor@&ht the
quadrupole-quadrupole interactiapog also exists in this
system. We have checked thag g is negligibly small com-
FIG. 1. Coulomb energies of the isotropic-charged impurityPared to¢zz and ¢q. The corrected energy in Fig(d)
(case ] obtained by method (a) and by method I(b). Crosses are ~Which is not inferior to that in Fig. (B) suggests that method
the results of the supercell method. Open diamonds show the inl! is effective for simple cases such as a point defect.
purity energies corrected fully by method I, and open circles and Finally, we compare the two methods. Figure 1 shows
open squares show those correctedAy;, and AE;)+AE y), that the three terms of methodAE ), AE(3), andAE s,
respectively. Closed circles and closed squares for method Il are trere mainly derived from the multipole interaction8?-z"™",
impurity energies corrected by the multipole interactiehiy and ~ Z™P-Q™ and Q"™-Q"™, respectively. As mentioned above,
b2zt dz0- the lower-order term in method | makes the larger contribu-
tion to the total correction energy. This is explained from the

consequently remains small. The 216-ion supercell, howevefact that the three terms have the cell-size dependende
has a non-negligible contribution froME s, which indi- | =3 andL 5.

cates that the correction for the smaller-sized supercells
needs consideration up to the higher-order terms.

Secondly, the impurity energy obtained by method Il is ) ) S )
shown in Fig. 1b). Satisfactory correction is achieved for all  Anisotropic charge distribution is now considered as the
the cell sizes by considering; and ¢, (closed squargs second exa_mple. The equn!brlum str_uctl_Jre of an NaC! Sys-
The monopole-quadrupole interactiefyo compensates for tem contalmngl four defects is ;hown in Fig. 2. The multipole
the energy which is overcorrected by the monopole-mome”ts of this ‘T’%’Stem arf( given in Table I. _Ca_se Il has the
monopole interactiong,, (closed circles The multipole dipole moments?™" and P™ which do not exist in case I.
moments calculated for case | are given in Table I. This!© Make an easy comparison with the other cases by scaling
system has only a monopole f4™. The obtained mo- the monopol_e—monopc_)le interaction, we have obtalﬂw

=1 by substituting a divalent anion for the central @bn in

TABLE I. Multipole moments calculated for the three cases. the cell. o o
The result of method | is given in Fig.(@. Compared

15 20 25 30 35 40 (A)
216 512 1000 1728 2744 (atoms)

Size of supercells

B. Case ll: Anisotropic-charged impurity

Case | Case Il case Il with Fig. 1(a), the contribution from the third termE 3, to
imp rix imp rix imp rx the total correction energy increases remarkably. In case I,
where a large relaxation occurs as shown as the multipole
Z (e) 1.0 1.0 0.0 momentsP™ and Q", it is consequently important to take
P (eA) 0.0 00 137 -64 141 -65  account ofAE, which is given as the™-p™ interaction.
Q (eh?d 0.0 1029 2120 33.2 0.0 9.6 Figure 3b) shows the impurity energy calculated by

method Il. Since dipole and quadrupole moments exist in
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461 " o s E (@]
R OB, ]
s aaf o oT ETAETAELAE, - ON NON NON RON NON NO
~— - “'-~-°.____ -
) A s S C0e00e0eCeo
s = 1 ON NON NON XO O® O
£ 40 1
: oX NeX NoX NoX Ne

38x_x/x/></x .0.0.0.0.
se b~ . . . . . . 1 ON | JON NON NO

20 25 30 35 40 45 50 (A)

512 1000 1728 2744 4096 (atoms) ON NON JON NON NOK NO
Size of supercells O . O . O . O . O

a6 " ' ' ' ' ' ") ]
[ (®) ] ON NON RON NON NON NO
s 44| “e..
) ant SN .
- ST N i LT T, . e
S ot T S E FIG. 4. Cross section of the equilibrium structure of case Ill.
% - - —%— Egc 1 The line indicates a 1000-ion supercell where two ions are missing
> --e-- Egc-07z as a Schottky defect.
s 40 --8-- Egc077 7Q
3 | —— Esc0zz0z00pp |
£ --A-- Egc0z7-0z0-%pp-daq . . . .
= 38t i systems having dipole moments, even in the calculation us-
| x—/ | ing large-sized supercells.
36 k

20 25 30 35 40 45 50 (A) . . .
512 1000 1728 2744 4096 (atoms) C. Case lII: Neutral impurity

Size of supercells . .
In the last example, a Schottky defect shown in Fig. 4 was

FIG. 3. Coulomb energies of the anisotropic-charged impurityconsidered as the neutral impurity. Although the net charge
(case 1) obtained by method (g and by method li(b). Closed  per cell does not appear, this system has a dipole moment as
diamonds and closed triangles for method Il are the impurity enerymP and dipole and quadrupole moments\%‘. Their cal-
gies corrected by the multipole interactiotts;+ ¢+ ¢pp @and  ylated moments are listed in Table I.
b2zt dzqt dppt doq- The other symbols and the scale of the g6 5 shows the results obtained by methods | and 1.
vertical axis forE/E; are the same as Fig. 1. Whereas the ratid E /E; for the smallest-sized supercell is

about 15% in case | and 13% in case I, it is only 2% in case
this case, the higher-order multipole interactions, particularlyijl. This result is obvious because the monopole-monopole
¢z and ¢pp, play an important role. In contrast to them, and the monopole-quadrupole interactions are unable to exist
the contribution fromeqgq is still small, as in case I. An for the neutral impurity. However, if the impurity has the
accurate impurity energy was not obtained for the 512-iordipole moment, the dipole-dipole interaction gives the®
supercell. This result means that higher-order multipolesell-size dependence to the correction energy. Figure 5
than the quadrupole are required for a supercell of this sizeshows that the neutral impurity also needs the correction
where the cell size is relatively determined from a compariterm, although it is not as large as that of the charged impu-
son with the relaxation region. With respect to large-sizedities.
supercells, method Il gives a good correction whert and From the comparison between methods | and Il, the three
L~ multipole interactions are taken into account. Method literms of method | are found to come from the multipole
is expected to be combined with MM and MD simulations interactionsP™P-pPiMP pMP_prix andpP™_pX The results of
owing to its one-particle calculations, for example, it enablesases 1l and lll seem to suggest that the relatigft
us to perform the energy correction at each MM and MD~ —3P™P s satisfied in the present test calculations. This
simulation step. From the viewpoint of computational accu-relation leads t@\E ,)=—AE;), which is the reasoAE 4
racy, the energy correction bf,;, ¢, and¢pp (closed  and AE, cancel each othefi.e. crosses and open squares
diamond$ seems to be available for this purpose. overlap in Fig. 5a). Since the total correction energy is

From Fig. 3, it can be seen thAE ), AE(,), andAE 3, attributed only to the dipole-dipole interaction, the cancella-
in method | are derived from the multipole interactionstion prevents the correction energy from having a large con-
Zimp_zimp - 7imp_Qx - and P™-P"™ respectively. The differ- tribution, in spite of the long-range ™2 interaction. In cases
ence from case | is the third term. A large contribution fromwhere a host system has a heterogeneous charge distribution
AE 3 in Fig. 3(a) is attributed to the dipole-dipole interac- such as a molecular crystal, and thus the lattice relaxation
tion with the L2 cell-size dependence. Case Il shows thatenhance®™P+ P"™, the correction energy could have a more
method | is required to consider up to the third term forimportant contribution even for the neutral impurity.
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surrounding image cells. To exclude these artificial interac-

95 | Q\ :’é__ Esg_AE1 @ | tions and obtain the energy of a completely isolated state, the

) \\ --0-- Egc-AE;-AE correction terms were presented. We discussed the two ap-
S 94 oo O EscaEraEyak proaches: one calculates directly interactions between the
g 03| s S o charge distribution as the three terms, and the other describes
5 o the charge distribution based on a multipole expansion,
92 " == where multipole moments up to second order are considered,
E ooal == in this study.

3 In the test calculations, we considered the three typical
- 80 cases: isotropic-charged, anisotropic-charged, and neutral
8o | impurities. From the results obtained, the following charac-

. . . . . . . teristics have been found for the two approaches. For the
20 25 30 35 40 45 50 (R) energy correction given in the definitidmethod ), (i) the
512 1000 1728 2744 409 (@toms)  impurity energy can be evaluated for arbitrary sized cells, if
Size of supercells the supercells are large enough to describe the relaxation
region, (ii) the three terms contribute to the total correction
9.6 e E ") energy asAE(;)>AE ) >AE s, and(iii) consideration up
95| —— 522-¢pp 1 to the third term is required for systems having dipole mo-
S oal ments and for small-sized supercells, where the cell size is
o relatively determined from a comparison with the relaxation
5 region. As for the energy correction based on the multipole
g expansionmethod I)), (i) its one-particle calculation attains
> a more efficient correction than method I, which is regarded
é as anN-particle calculation(ii) it is indispensable for com-
E 00 | putational accuracy to consider up to the? interactions:
’ monopole-monopole, monopole-quadrupole, and dipole-
89| dipole, and (iii) satisfactory correction is likely to be
2'0 2'5 30 3'5 4'0 4'5 5'0 &) achieved fo_r isotropic-charged impu_rities and large-sized su-
512 1000 1728 2744 4096 (atoms) percells. With respect to the cell-size dependence, charged

and neutral impurities have the leading termsLof' and
L2 interactions, respectively.

FIG. 5. Coulomb energies of the neutral impurigase 1) ob- The present energy correction can be efficiently applied to
tained by method (a) and by method I(b). Closed diamonds for arbitrary systems by considering the two approaches, and is
method Il are the impurity energies corrected by the dipole-dipoleexpected to realize more practical computer simulations for
interaction ¢pp. The other symbols have the same meanings ag;periodic systems. Applications in which MM and MD cal-
Figs. 1 and 3. The vertical axis is enlarged three times the scale afulations are combined with the energy correction are now
Figs. 1 and 3 folE/E;. required for further important study.
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