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Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference
scheme: An application to trapped Bose-Einstein condensates
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We present the application of a fast, explicit time-marching scheme for the solution of the Gross-Pitaevskii
equation in cylindrical geometry. The scheme is validated on simple analytical tests and demonstrated for two
situations of physical interest in experiments on the Bose-Einstein condensation~BEC! of trapped alkali-metal
vapors. It is tested by reproducing known results on the free expansion of a BEC after removing a cylindrical
trap, and it is then used to address the formation of matter-wave pulses that result from gravity-induced
transport of a condensate in an optical potential.

PACS number~s!: 02.70.2c, 03.75.Fi
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I. INTRODUCTION

The observation of the Bose-Einstein condensation~BEC!
of trapped atomic vapors of87Rb, 23Na, and7Li @1–3# has
spurred great excitement in the atomic physics commu
and a renewed interest in the study of the collective dyna
ics of macroscopic assemblies of atoms in thesamequantum
state@4,5#. This state of matter, whose existence was p
dicted back in the 1920s, exhibits several characteristics
set it apart from other condensed-matter systems@6#. In fact,
besides internal interactions, the macroscopic behavio
BEC matter is highly sensitive to external conditions, a
primarily to the shape of the external trapping potential.

Trapped condensates of alkali-metal atoms are easily
cessible to theoretical predictions since the interactions
effectively modeled by a single parameter~the scattering
length!, and the external potentials are described by a
parameters that are accurately known from experiment.
progress on the experimental side is stimulating a co
sponding wave of activity on both theoretical and numeri
fronts. The present paper is a contribution to the latter.

II. IMPLICIT VERSUS EXPLICIT SCHEMES
FOR BEC PROBLEMS

To date, the numerical simulation of thetime-dependen
Gross-Pitaevskii equation~see below! describing the zero-
temperature mean-field dynamics of a dilute BEC has b
handled mostly by implicit time-marching techniques@7,8#.
The main merit of the implicit approach is to march in lar
time steps to the steady state without any stability constra
The price for stability is the need to solve a linear algebr
system at each time step, which is a rather expensive c
putational task. In addition, although harmless to stabil
the time-step size must nonetheless be carefully watched
reasons that regard the numerical accuracy of the time
lution. For steady-state problems, the latter is no conc
and implicit methods are certainly the method of choice.

Explicit methods have precisely opposite virtues a
drawbacks. They are stability bound, but much faster o
per-time-step basis. In addition, since the time step is
verely constrained anyway, they generally tend to prod
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time-accurate solutions. The general feeling is that expl
methods are the methods of choice for time-dependent p
lems with a rich, fast-moving dynamics. This seems inde
the case of Bose-Einstein condensates. In light of the ab
there appears to be a wide scope for exploring the appl
bility of explicit methods to problems in the area of Bos
Einstein condensation.

III. GROSS-PITAEVSKII EQUATION

The Bose-Einstein condensation of a dilute quantum
is a complex many-body problem, whose complete desc
tion would in principle require a fully quantum kinetic trea
ment @4#. However, the zero-temperature dynamics of a
nite, dilute system of weakly interacting bosons is w
captured by a mean-field approach whereby the condensa
described by a single global wave functionC(r ,t). The evo-
lution of the condensate wave function in an external pot
tial Vext(r ) is described by the Gross-Pitaevskii equati
~GPE! @9,10#:

i\] tC5F2
\2

2m
D1Vext~r !1NU0uCu2GC. ~1!

Here,N is the number of bosons,U0[4p\2a/m is the self-
interaction coupling, anda is the boson-bosons-wave scat-
tering length. In the earlier experiments, the external pot
tial is typically in the form of a harmonic well,Vext(r )
5 1

2 mv2(x21y21ez2), wherev is the frequency ande the
aspect ratio of the~cylindrical! trap. More recently, con-
densed vapors of87Rb atoms have been confined in a vertic
lattice of optical traps under the influence of gravity@11#,
the external potential being of the formVext(r )
5V0e2k2r 2

sin2(2pz/d)2mgzwith k a characteristic inverse
trapping length andd the lattice constant.

The numerical prediction of time-dependent BEC dyna
ics within the mean-field GPE picture presents a signific
computational challenge. To this end, a number of te
niques have been proposed in the recent past, ranging
implicit alternating-direction-implicit solvers@7# to custom-
ized versions of linear eigenvalue solvers@12# and functional
minimization techniques for the time-independent version
1382 ©2000 The American Physical Society
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PRE 62 1383NUMERICAL SOLUTION OF THE GROSS-PITAEVSKII . . .
Eq. ~1! @13#. In this paper, we present an alternative meth
to solve the time-dependent GPE using anexplicit time-
marching technique. The method is an extension to the B
context of a fast explicit, time-staggered scheme propose
Visscher@14# to solve the Schro¨dinger equation in an exter
nal potential. This extension is nontrivial on account of~i!
the cylindrical geometry, which requires careful near-a
treatment, and~ii ! the nonlinearity associated with the se
interaction potential. In fact, even though the theoretical a
numerical apparatus of Visscher’s scheme carries over n
rally to the GPE framework, the physical richness and co
plexities associated with the nonlinear potential can only
assessed by actual numerical experimentation.

IV. NUMERICAL SCHEME

Equation~1! is made dimensionless by adopting the sc
units

Sl5A\/2mv, St51/v, SE5\v ~2!

for length, time, and energy, respectively. Upon rescaling
wave function by a factorr, the dimensionless radial coo
dinate, we obtain the dimensionless form of the GPE:

i
]

]t
F5@T1V#F, ~3!

where

F5r~CSl
3/2!,

T52
]2

]2z2
2

]2

]2r2
1

1

r

]

]r
2

1

r2
,

V5 1
4 ~r21ez2!1

8pNa

r2
uFu2,

andr[r /Sl , a[a/Sl , z[z/Sl , andt[vt.
Centered differencing is the natural approach to the

proximation of the space derivatives appearing in the kin
energy operatorT. As to the approximation of the left-han
side of Eq.~3!, some care is necessary. As shown by Vi
cher for the one-dimensional case, an explicit approach
quires the definition of a staggered time grid to avoid n
merical instability and to assure the conservation of the w
function density. More specifically, the real and imagina
parts ofF are computed at even and odd time steps, resp
tively, according to the following scheme:

Re~F l , j
2k!5Re~F l , j

2k22!12Dt~T1V2k21!Im~F l,j
2k21!,

~4!

Im~F l , j
2k11!5Im~F l , j

2k21!22Dt~T1V2k!Re~F l,j
2k!, ~5!

whereF l , j
k [F( lDr, j Dz;kDt) and Re(Fl,j

0 ) and Im(Fl,j
1 ) are

supposed to be assigned att50. This time-staggered proce
dure is patterned after trajectory integration of Hamilton
dynamics, as suggested by the Hamiltonian structure of
Schrödinger equationd Re/dt5H Im and d Im/dt52H Re,
d
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Re, and Im being the real and imaginary parts of the wa
function andH5T1V the Hamiltonian operator.

The proper definition of the probability densityP5Re2

1Im2 is not obvious in the numerical scheme since the r
and imaginary components arestaggered, i.e., defined at al-
ternate times. However, as shown by Visscher@14#, either
choice P2k5Re2k

2 1Im2k21 Im2k11 or choice P2k11

5Re2k Re2k121Im2k11
2 ensures probability conservation wit

a time-independent potential.
Since our Hamiltonian does depend on time via the n

linear self-interaction term, probability conservation has
be checked carefully. To this purpose, and also for com
tational convenience, we turn to a slight modification of t
Visscher scheme whereby both real and imaginary part
the wave function are synchronized on the same serie
discrete time instants. For convenience, we shall refer to
version as the synchronous Visscher scheme.

A. Synchronous Visscher scheme

We analyze a simplified variant of the Visscher schem
based on the idea of nonstaggered explicit time march
The idea is to advance both real/imaginary components
units of two time steps using the intermediate, centered va
of the imaginary/real component. Namely,

Re~F l , j
k11![Re~F l , j

k21!12Dt~T1V k!Re~F l,j
k !, ~6!

Im~F l , j
k11!5Re~F l , j

k21!22Dt~T1V k!Re~F l,j
k !. ~7!

We shall now provide a few details on the following a
pects of the synchronous scheme, namely:~i! start-up proce-
dure, ~ii ! unitarity ~norm conservation!, and ~iii ! stability.
Before doing so, it is worth emphasizing that the synch
nous Visscher scheme is very similar to second-order dif
ence methods proposed by Kosloff@15# for the time-
dependent Schro¨dinger equation. To the best of ou
knowledge, this is the first time such a scheme has b
applied to the Gross-Pitaevskii equation in the context
BEC problems.

1. Start-up procedure

The scheme is initiated with a single Euler-forward st
@17# from k50 to k51 using the above equation~6! with a
time stepDt :

Re~F l , j
1 !5Dt~T1V 0!Im~F l,j

0 !, ~8!

Im~F l , j
1 !52Dt~T1V 0!Re~F l,j

0 !. ~9!

Once levelk51 is available, the time marching can proce
in steps of 2t as indicated in Eq.~6!.

2. Unitarity

As anticipated, due to the nonlinear nature of the Gro
Pitaevskii equation, it is crucial to show that the prese
scheme still preserves unitarity at each discrete timetk . By
defining the probability density at the discrete space loca
~l,j! and discrete timek11 as follows:

Pl , j
k11[Rel , j

k11 Rel,j
k 1Iml,j

k11 Iml,j
k , ~10!
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it is readily shown that the change in time of the over
probability integrated over the entire computational dom
is indeed zero:

(
l , j

~Pl , j
k112Pl , j

k !50, ~11!

provided boundary conditions are such that they annihi
surface terms. This is indeed the case with our applicatio
since we impose a vanishing wave function on the ou
boundaryr5rmax and periodicity alongz. The proof of uni-
tarity is given in the Appendix.

3. Stability

As for any explicit scheme, the main question is to ass
the largest time step that can be used without compromi
numerical stability. Standard analysis of the spectrum of
discretized evolution operator@16# shows that the stability
limit is

Dt~ u4/D21VMu!,2. ~12!

Here,D22[Dr
221Dz

22 whereDr andDz are the mesh spac
ings along the radial and axial directions andVM is the maxi-
mum value of the potential field.

The above relation identifies the largest acceptable t
stepDtc as

Dtc5
D2/2

11VMD2/4
. ~13!

This expression shows that interaction potentials below
numerical thresholdVM,VD[4/D2 do not affect the stan
dard Courant-Friedrichs-Lewy conditionDt;D2 for the dif-
fusion equation. This is a severe bound since it forces
time step to decrease with thesquareof the grid spacing.

Above VD , the time step is basically controlled by th
potential alone,Dt,1/VM , independently of the mesh siz
This regime implies certain limitations on the physical p
rameters characterizing the interaction potential and in p
ticular the maximum number of bosons allowed in the n
merical simulation.

Let us inspect the conditionV,VD for the case of the
self-interacting potential; that is, 8paNSl

3uCu2,4/D2. By
taking Sl

3uCu2;(pNr
2NzDr

2Dz)
21 we obtain

N,Nmax5
1

2

NzNr
2

a/D8
, ~14!

whereNr5Lr /Dr and Nz5Lz /Dz are the number of grid
points along ther and z directions,Lr and Lz being the
typical radial and axial size of the cylinder in length uni
andD8[Dr

2Dz /D2 is an effective linear scale.
Since the scattering lengtha is typically much smaller

than the characteristic radial lengthNrD8, we conclude that
the maximum time step is diffusion controlled, unless t
number of bosons significantly exceeds the number of g
points in the simulation.

Before moving on to Sec. V, we observe that the pres
analysis is appropriate to the GPE as well, since the non
ear term in this equation is local in configuration space. T
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nonlinearity may of course have a profound influence on
resulting physics, but as long as the stability criterion~12! is
fulfilled, perhaps including a safety factor~see below!, there
is every reason to believe that this physics is correctly rep
duced by the present numerical scheme. In order to secu
further margin of stability, we have adopted an empiric
safety factorkeeping the actual time step consistently belo
the marginal stability threshold, typically around 0.2.

V. NUMERICAL VALIDATION

The numerical scheme described above has been
dated in the following test cases:~i! ground state of the har
monic potential~no self-interaction!, ~ii ! free self-interacting
condensate~no external potential!, ~iii ! free expansion of a
self-interacting condensate,~iv! gravity-driven transport of a
condensate in a cylindrical optical potential. In cases~i!–~iii !
above we use the typical valuesSl51 mm and St52.9 ms
for length and time units.

A. Ground state of the harmonic potential

In cylindrical coordinates~r,z!, the ground state in a har
monic potential of the form

Vext~r,z!5 1
4 ~r21ez2! ~15!

is given by the following wave function:

F~r,z;t!5r
e1/8

~2p!3/4e~r21ez2!/4e2 i @~21e!/2#t, ~16!

with the normalization 2p* uFu2r21dr dz51. It is therefore
expected that by starting with Eq.~16! at t50 as an initial
condition, the numerical scheme would leave the conden
density basically unchanged as time unfolds.

This property has been tested on a@0,5#3@25,5# (r,z)
domain with 21321, 41341, and 81381 grid points. In the
two former cases, a time stepDt51023 has been imposed
whereas in the latter caseDt50.531023. In all cases, the
time span of the simulation coversT510 temporal units.
Visual inspection of the wave function does not reveal a
appreciable change of its square modulus with time.

To back up visual inspection with quantitative data, w
have also monitored the change in time of the global erroe
defined as

e2~t!5E uFA2FNu22pr21dr dz, ~17!

where the superscriptsA and N refer to the analytical and
numerical solutions, respectively. The time evolution of t
global error for the three grid resolutions is reported
Fig. 1.

From these curves we infer a quadratic error accumula
in time. However, the prefactor of the quadratic term is qu
small and rapidly decreasing with grid resolution. From t
present series at three different resolutions we infer a po
decaye2;D22p with p;2 ~note that thesquareerror is
shown in Fig. 1!.

The net result is that a moderate-resolution 81381 grid
already secures a global error below 1025 over a signifi-
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cantly long period of time; that is, ten oscillation periods.
closer inspection of the separate contributions from the
and imaginary components of the wave function to the glo
error eR

2 andeI
2 ~e25eR

21eI
21 interference terms! reveals an

interesting dip-tip anticorrelation: errors coming from t
real part peak at the minima of the errors coming from
imaginary one andvice versa~see Fig. 2!. The result is no
interference and hence systematic, though very slow, a
mulation in time.

B. Free self-interacting condensate

In the next series of tests we evaluate the evolution
time of a free self-interacting condensate~no external poten-
tial!, starting from a numerically convenient analytic soluti
of the free GPE for the initial wave functionF(r,z;t50).
The integration domain is@0,r,1.24#3@0.1,z,0.3# and

FIG. 1. Ground state of the harmonic potential. Square norm
the global errore2 as a function of the dimensionless timet, as
defined in Eq.~17!. The three curves refer to three different gr
resolutions~21321, 41341, 81381!.

FIG. 2. Ground state of the harmonic potential. Square norm
the errorseR

2 andeI
2 associated with the real and imaginary parts

the wave function as functions of the dimensional timet, as defined
in Eq. ~17!. The grid is 81381.
al
l

e

u-

n

the integration proceeds overT50.1 time units, correspond
ing to about three oscillation periods. Four different reso
tions, i.e., 21321, 41341, 81381, and 1613161 have been
adopted, the time step beingDt51026, 531027, 1027, and
531028, respectively.

In Fig. 3 we report the square norm of the error as
function of time, as defined by Eq.~17! using F(r,z;t)
5e28ipaNtF(r,z;t50) for the analytic wave function
From this figure, again, an excellent agreement with anal
cal results is obtained even on the very coarse 21321 grid.

C. Free expansion of a self-interacting condensate

We now turn our attention from purely numerical tests
physical applications. We consider here the free expansio
a cylindrical self-interacting condensate that is initially co
fined in a harmonic trap. Such a situation is commonly re
ized in the experiments as one of the steps needed in pro
the system by absorption imaging@1#. Numerical simulations
as well as analytical time-dependentAnsätze are available
@8,18#.

We start with an elongated condensate havinge58 and
let it freely expand by suddenly switching off the trap att
501. The simulation refers toN54000 87Rb atoms. The
numerical parameters are as follows: integration domain@0
,r,40&#3@220,z,20#, grid 1213121. The typical
time step isDt51025. Due to the large size of the compu
tational domain, a nonuniform mesh along the radial coor
nate has been adopted. Boundary conditions are peri
along z and Dirichlet-typeF50 at r540&. At r50 the
symmetry conditiondF/dr50 is imposed.

For illustrative purposes, the initial condition was chos
in the form of an elongated GaussianF(r,z;t)
5Ae2b(r21ez2) with A a normalization constant andb

f

f
f

FIG. 3. Free self-interacting condensate. The results of the si
lation are compared with the analytic formF(r,z;t)
5e28ipaNtF(r,z;0), whereF(r,z;0)5r(eA16paNz11)(eA16paNz

21)21 is merely a convenient solution of the free GPE for t
purpose of testing the scheme in a time-dependent scenario.
figure shows the square norm of the global error~real plus imagi-
nary part of the wave function! in the case 8paN5210, which
corresponds toa5110 Bohr radii andN5104. The four curves
refer to four different resolutions~21321, 41341, 81381, and
1613161!.
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FIG. 4. Free expansion of a self-interacting condensate.~a!–~d! Contour plots of the condensate density att50, 4.4, 8.8, and 17 ms. The
grid is 1213121.
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50.04, which is close to the initial condition inferred fro
the experimental data of Fig. 3 in@8#. A more accurate initial
condition would consist of an optimized matching betwe
the Thomas-Fermi solution near the center of the cloud an
Gaussian tail@8#.

Previous experimental and numerical data@8,19# show
that in the course of the expansion the condensate turns
a z-elongated to ar-elongated shape. Such a behavior
reproduced by our numerical method, as witnessed by
results shown in the sequence of Figs. 4~a!–4~d!. In Fig. 4~a!
the contour lines of the initial condensate are show
whereas Figs. 4~b!–4~d! show the same information at late
times t54.4, 8.8, and 17 ms, respectively.

Our data show good qualitative agreement with previo
numerical and experimental results given in@8#. To quantify
this statement we report in Fig. 5 the condensate wid
along r and z, defined as s r5A^(r 2^r &)2& and sz

5AŠ(z2^z&)2
‹, where brackets denote space averaging^ &

[2p* ...uCu2r dr dz).
Figure 5 shows that our results are basically consis

with the experimental data, although an underestimate~by
10–30 %! of the expansion rate appears in the long ter
Better agreement with the data requires a more real
model for the initial density profile, as used in the theoreti
analysis made in Ref.@8#.
n
a

m

e

,

s

s

nt

.
ic
l

In fact, as already mentioned, the evolution of the cond
sate is found to be rather sensitive to the initial conditio
and especially to its width: thin condensates expand fa
than thick ones and eventually develop double-humped p
files. In addition to more realistic choices of the initial co
ditions, the study of the dynamics of these thin condensa
requires a substantial increase in space and time resolu
with a correspondingly higher demand of computational
sources. Our actual results, ensuring norm conservation u
the fifth digit all along the simulation, are meant to repres
a fair compromise between accuracy and efficiency.

D. Gravity-driven transport in an optical potential

The present numerical scheme has been successfully
plied to the numerical simulation of a condensate in an
fectively one-dimensional periodic potential@20#. The study
of such a system is relevant in connection with the exp
ments by Anderson and Kasevich@11#, in which a nearly
pure condensate is poured from a magneto-optic trap into
optical lattice created by a detuned standing wave of lig
Tunneling from well states to the continuum is driven by t
gravitational field and interference between the condens
in different lattice sites manifests itself in the emission
falling drops. These are interpreted as coherent matter-w
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pulses in analogy with a mode-locked photon laser@11#. The
size of the drops is found to be 10% of the initial condens
size and the time interval between drops is estimated to
1.1 ms, in agreement with the expected period of Bloch
cillations.

The external potential, written in cylindrical coordinatesr
and z, is Uext(r ,z)5Ul(r ,z)2mgz, where the optical
trap Ul(r ,z) can be modeled asUl(r ,z)5Ul

0 exp(2r2/
rlb

2 )sin2(kz) andg is the acceleration of gravity.Ul
0 is the well

depth, scaling linearly with the intensity of the laser bea
r lb is the transverse size of the beam, andk52p/l is the
laser light wave number, the lattice period beingl/2.

Typical system parameters that are relevant to the exp
ment on 87Rb @11# are a5110a0 with a0 the Bohr radius,
N5104, l5850 nm, r lb580 mm, Ul

051.4ER , with ER

5\2k2/2m being the recoil energy. Finally, a numbernw
.30 wells are loaded initially.

The effect of the interactions can be studied in our sim
lations by varying the productaN with a consistent change i
the numbernw of occupied wells, sincenw depends on the
strength of the interactions at given confinement parame
The number of occupied wells is then given by the ratio
the size of the initial condensate to the size of each w
namely, nw52zSl /l where z5(32pNa/Sl)

1/5 and Sl

5A\/2mv with v the axial frequency of the magnetic tra
In Ref. @20# the system was made effectively on

dimensional~1D!, using a result by Jacksonet al. @21# to
renormalize the scattering length. The reduction of the tw
dimensional~2D! GPE with cylindrical geometry to a 1D
one was implemented by using an effective scattering len
ã5aAUl

0/(r lbl). Within this model an extensive study o
the emission, shape, and size of the pulses was given.
we treat explicitly the transverse confinement by solving
full 2D problem in cylindrical symmetry.

We turn to discuss the choice of the initial valu
C(r ,z;t50). The transverse part of the condensate w
function is taken as a Gaussian, with a width that is
harmonic approximation to the transverse shape of the o
cal potential. The corresponding frequency isv r

FIG. 5. Free expansion of a self-interacting condensate. Ra
(s r) and axial (sz) widths of the condensate as functions of tim
Solid line: axial, numerical. Dotted line: radial, numerical. Cross
axial, experimental. Circles: radial, experimental.
e
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5A2aER /(mrlb
2 ), wherea5Ul

0/ER . The overall shape of
the density profile along the axial direction reflects inste
the shape of the condensate inside the magnetic trap an
taken as a Gaussian with a widthA\/mveff renormalized by
the interactions, namelyveff5(4p3/5/z2)v @22#. Moreover,
we assume that the lowest state of each well is occupied
portion of condensate, whose Gaussian wave function is c
tered at the given site and is characterized by the freque
vz52AaER /\.

A reasonable choice of the initial conditionC(r ,z;t
50), taken to be centered atr 50 andz50 then reads

C~r ,z;t50!5Ae2mvr r
2/2\e2mveffz

2/2\(
l

e2mvz~z2 ll/2!2/2\.

~18!

Here,A is a normalization factor andl labels the occupied
sites, their total number beingnv . In Eq. ~18! we have as-
sumed equal phases of the condensate at each site.

Let us discuss now the results of the simulation. We us
grid resolution of 21316 on each single well, the time ste
being Dt5231026. The main body of Fig. 6 shows thre
pictures of drop emission for different coupling strengths,
plotting the density profiles atr 50 as functions of 2z/l,
taken withUl

051.4ER after 5.2 ms. The central condensa
has been subtracted away. Contour plots showing the ra
profiles are displayed in the inset. The dotted curve rep
the behavior of the noninteracting gas, namely the casa
50 andnv531. The dashed curve refers the interacting c
with a5110a0 , N5104, andnv531, while the solid curve
shows the results fora5110a0 andN5105 with nv549. All
the other parameters are as in the experiment~see above!.

The main qualitative features of the drops are very sim
to those resulting from the 1D simulation reported in@20#.

ial

:

FIG. 6. Gravity-driven transport of a self-interacting condens
in a periodic potential. Density profile of the condensate after
ms, as a function of 2z/l at r 50 ~l/2 is the spatial period! in the
interacting casea5110a0 and forUl

051.4ER . For comparison the
dotted curve reports the noninteracting casea50. Dashed curve:
N5104; solid curve:N5105. All other input parameters are liste
in the text. Inset: the same as in the main body of the figure in
noninteracting case, but showing contour plots. The abscissa r
to the transverse distance in micrometers.
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We first note that each drop extends over a number of w
equal to that occupied by the initial condensate. Second
all three cases the drops are equally spaced by 70 wells
center to center. This spacing corresponds to 1.1 ms of s
lation time, in agreement with the measured value@11# and
with the expected value of 1.09 ms for the periodTB of
Bloch oscillation~TB54p\/mgl, independently of the am
plitude of the periodic potential and of the strength of t
interactions!. Third, we systematically find that both th
width and the shape of each drop reproduces those of
parent condensate, giving proof of the coherent emission
suggesting a practical way to tailor matter-wave laser pul

Some differences between the 1D and the 2D simulati
show up after a quantitative analysis of the numberNdrop/N
of atoms per drop. We evaluateNdrop/N.12% , 9% , and
8% for the first three drops in all three cases~noninteracting,
interacting with N5104, and interacting withN5105!.
These values are to be contrasted with the results of the
simulation, which giveNdrop/N of the same order, but in
creasing with increasing repulsive interaction strength.

Of course, the interactions tend to lift the bound st
toward the continuum by an amount that may be measu
by the the mean interaction energy per particleEI . This is
proportional to the product of the effective scattering len
times the particle density and in the 1D simulation we ha
EI}ã/l}a/l2r lb . In the 2D case we have insteadEI

}a/lr lb
2 , which is significantly lower sincer lb@l. Namely,

in the 2D simulation an increase in coupling strength is m
readily compensated by a transverse spreading of the
densate and the value ofNdrop/N is insensitive to the inter-
actions in the present range of system parameters.

We conclude by remarking that an increase in the c
pling strength may eventually lead to disruption of the dro
for two main reasons:~i! the bound state is lifted up to merg
into the continuum, and~ii ! the drops increase in size unt
they overlap with each other, their separation being de
mined solely by the lattice constant and by the slope of
external potential~i.e., by l and g!. In the range of param
eters of the experiment of Anderson and Kasevich@11#, only
the second mechanism may be significant.

VI. COMPUTATIONAL PERFORMANCE
AND FUTURE PROSPECTS

Having shown that the synchronous Visscher scheme
vides a viable tool for the numerical investigation of Bos
Einstein condensate dynamics, a few comments on com
tational performance as well as some comparative rem
with existing methods are in order. The present code ta
about 10 ms/grid-point per step on a SUN-Ultra4 SPAR
processor~167 MHz!, with no specific optimization effort
On a typical 1003100 grid withDt51025, a typical simu-
lation lastingT510 time units takes approximately 104 CPU
seconds, namely, a few hours.

The key issue to performance is the size of the time s
Leaving aside very dense condensates with over tens of
lions of atoms in a characteristic trap volume, the time ste
limited by the spatial resolution. In fact, due to the expli
treatment of the diffusive kinetic-energy term, the time s
Dt scales approximately with the square of the size of
grid spacingDx. This is a severe bound, which can be r
ls
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laxed by either moving to a semi-implicit time-marchin
scheme, or by adopting modern explicit schemes such
those mentioned below.

The main distinction between implicit versus explic
methods has been already addressed in the opening of
paper. Obviously, one would like to get the best of the t
worlds: either a fast implicit method, or an unconditiona
stable explicit method. As far as we can judge, the gen
trend ~not just in BEC research! points rather to the latte
alternative.

For instance, modern research in numerical fluid dyna
ics is moving in the direction of unconditionally stable e
plicit schemes based on clever matrix representations of
discrete evolution operator~transfer matrix! @23#. The idea is
to decompose the transfer matrix fromt to t1dt in such a
way that each subsystem can be advancedanalytically in
time using exact exponential representations instead of fi
or second-order polynomial expansions thereof.

On a similar vein, lattice kinetic methods based on t
quantum generalization of the lattice Boltzmann scheme
fluid dynamics@24# have also been preliminarily applied t
the evolution of one-dimensional BEC’s@25#. These
schemes are very fast, ideally suited to parallel comput
but unfortunately they do not extend straightforwardly
multidimensional non-Cartesian geometries.

Finally, it is interesting to notice that the same idea
looking for analytical expressions of short-time numeric
propagators is also gaining popularity in the simulation
classical and quasiclassical condensed-matter systems
molecular dynamics techniques@26,27#. Here, the clever par-
titioning is reconduced to a Trotter representation of the e
lution operator:eiHDt5eiH 1Dt/2eiH 2DteiH 1Dt/2 where H5H1
1H2 is the total Hamiltonian, andH1 ,H2 is a pair of com-
muting operators typically associated with kinetic and pot
tial energy. One of the main virtues of these schemes is
they lead tosympletictime integrators, i.e., time-marchin
schemes preserving the phase-space volume elements~Liou-
ville theorem!. This secures numericalreversibility, which is
an excellent prerequisite for enhanced numerical stabi
Since the synchronous Visscher method is naturally hint
at an ensemble of lattice walkers, whose collective mot
describes the wave function dynamics, it would be intere
ing to explore whether the present work can be extende
the direction of producing unconditionally stable simple
integrators for BEC dynamics.

VII. CONCLUSIONS

In summary, we have presented the application of an
plicit scheme for the numerical solution of a Schro¨dinger
equation with local nonlinear interactions in two
dimensional cylindrical geometry. The present results in
cate that this explicit scheme provides a flexible and co
petitive tool for the numerical study of the dynamics
Bose-Einstein condensates. In particular, the case of B
transport in optical potentials highlights the need for a tim
accurate description of droplet ejection from the main co
densate and other fast dynamic events.

APPENDIX: PROOF OF UNITARITY

With the definition of discrete probability~10!, we obtain
~one-dimensional case for simplicity!
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dP[(
j

~Pj
k112Pj

k!

5(
j

Rej
k11 Rej

k1Imj
k11 Imj

k2Rej
k Rej

k21

2Imj
k Imj

k21, ~A1!

which is

dP5(
j

Rej
k~Rej

k112Rej
k21!2Imj

k~ Imj
k112Imj

k21!.

~A2!

Upon using the equations of motion~6!, the above expres
sion yields

dP5Dt(
j

Rej
k~Hj

k Imj
k!2Imj

k~Hj
k Rej

k!, ~A3!

whereHj
k[Tj1Vj

k is the total Hamiltonian, whose time de
pendence is entirely due to the nonlinear self-interaction
tential. Since this self-interaction islocal in space, it contrib-
utes zero to the above sumterm-by-term, i.e., Rej

kVj
k Imj

k

2Imj
kVj

k Rej
k50, which means that,like in the linear case,

we are only left with surface contributions due to the kinet
energy operator.
an

ys

n,
tt.

e

s

K

-

-

Reinstating the spatial bounds for clarity and omitting t
by now redundant temporal indexk, a direct calculation
yields

dP5
dt

dz2 (
j 50

J11

Rej~Tj Imj !2Imj~Tj Rej ! ~A4!

5Re1~ Im02Im1!1Im1~Re12Re0!

1ReJ~ ImJ112ImJ!1ImJ~ReJ2ReJ11!. ~A5!

It is readily checked that all of these terms vanish iden
cally under any of the three types of boundary conditions:~i!
von Neumann~zero derivative at the boundary!, F05F1 ,
FJ5FJ11 ; ~ii ! Dirichlet ~zero wave function at the bound
ary!, F150, FJ50; periodic~same wave function on inlet
outlet boundary!, F15FJ where F[Re,Im. The same
analysis carries over to a two-dimensional cylindrical geo
etry, with only a bit of lengthier algebra.
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