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Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference
scheme: An application to trapped Bose-Einstein condensates
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We present the application of a fast, explicit time-marching scheme for the solution of the Gross-Pitaevskii
equation in cylindrical geometry. The scheme is validated on simple analytical tests and demonstrated for two
situations of physical interest in experiments on the Bose-Einstein conden@#oh of trapped alkali-metal
vapors. It is tested by reproducing known results on the free expansion of a BEC after removing a cylindrical
trap, and it is then used to address the formation of matter-wave pulses that result from gravity-induced
transport of a condensate in an optical potential.

PACS numbegs): 02.70—c, 03.75.Fi

[. INTRODUCTION time-accurate solutions. The general feeling is that explicit
methods are the methods of choice for time-dependent prob-
The observation of the Bose-Einstein condensati®RiaC)  lems with a rich, fast-moving dynamics. This seems indeed
of trapped atomic vapors 6fRb, ?*Na, and’Li [1-3] has the case of Bose-Einstein condensates. In light of the above,
spurred great excitement in the atomic physics communitghere appears to be a wide scope for exploring the applica-
and a renewed interest in the study of the collective dynambility of explicit methods to problems in the area of Bose-
ics of macroscopic assemblies of atoms inshenequantum  Einstein condensation.
state[4,5]. This state of matter, whose existence was pre-
dicted back in the 1920s, exhibits several characteristics that [ll. GROSS-PITAEVSKII EQUATION
set it apart from other condensed-matter systghsin fact,

besides internal interactions, the macroscopic behavior of 1€ Bose-Einstein condensation of a dilute quantum gas
BEC matter is highly sensitive to external conditions, and'S & compléx many-body problem, whose complete descrip-

primarily to the shape of the external trapping potential. tion would in principle require a fully quantum kin_etic treat-

Trapped condensates of alkali-metal atoms are easily af€nt[4]. However, the zero-temperature dynamics of a fi-
cessible to theoretical predictions since the interactions ar@ite, dilute system of weakly interacting bosons is well
effectively modeled by a single parametéhe scattering captured byamgan-ﬂeld approach Whe_reby the condensate is
length, and the external potentials are described by a fevf€Scribed by a single global wave functitf(r,t). The evo-
parameters that are accurately known from experiment. Thi!tion of the condensate wave function in an external poten-
progress on the experimental side is stimulating a correlidl Vex(r) is described by the Gross-Pitaevskii equation
sponding wave of activity on both theoretical and numerical(GPB [9,10]:
fronts. The present paper is a contribution to the latter. 52

iho W= —ﬁA+Vex[(r)+NUO|\I'|2 v, (1)
Il. IMPLICIT VERSUS EXPLICIT SCHEMES

FOR BEC PROBLEMS Here,N is the number of bosonsl,=4=#%2a/m is the self-

To date, the numerical simulation of thiene-dependent interaction coupling, and is the boson-bosoe-wave scat-
Gross-Pitaevskii equatiofsee below describing the zero- tering Iength. In_the earlier experiments, the external poten-
temperature mean-field dynamics of a dilute BEC has beeHal is gyplzcall)zl in tzhe form of a harmonic wellVe(r)
handled mostly by implicit time-marching techniqugsg]. = zMe (X" +y“+ €z°), wherew is the frequency and the
The main merit of the implicit approach is to march in large@spect ratio of the(cylindrical) trap. More recently, con-
time steps to the steady state without any stability constrainglensed vapors dfRb atoms have been confined in a vertical
The price for stability is the need to solve a linear algebraidattice of optical traps under the influence of graviil],
system at each time step, which is a rather expensive conite ~external - potential - being of ~the formVe,(r)
putational task. In addition, although harmless to stability,= Ve " sir?(2nz/d)—mgzwith « a characteristic inverse
the time-step size must nonetheless be carefully watched farapping length andl the lattice constant.
reasons that regard the numerical accuracy of the time evo- The numerical prediction of time-dependent BEC dynam-
lution. For steady-state problems, the latter is no concerrics within the mean-field GPE picture presents a significant
and implicit methods are certainly the method of choice. computational challenge. To this end, a number of tech-

Explicit methods have precisely opposite virtues andniques have been proposed in the recent past, ranging from
drawbacks. They are stability bound, but much faster on amplicit alternating-direction-implicit solverf7] to custom-
per-time-step basis. In addition, since the time step is sezed versions of linear eigenvalue solvEtg] and functional
verely constrained anyway, they generally tend to produceninimization techniques for the time-independent version of
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Eq. (1) [13]. In this paper, we present an alternative methodRe, and Im being the real and imaginary parts of the wave
to solve the time-dependent GPE using explicit time-  function andH =7+ the Hamiltonian operator.

marching technique. The method is an extension to the BEC The proper definition of the probability densif=Rée?
context of a fast explicit, time-staggered scheme proposed by Im? is not obvious in the numerical scheme since the real
Visscher[14] to solve the Schidinger equation in an exter- and imaginary components astaggeredi.e., defined at al-
nal potential. This extension is nontrivial on account(iof ternate times. However, as shown by Visschibf], either

the cylindrical geometry, which requires careful near-axischoice P, =R&,+Imy_;Imy,; or choice Py,
treatment, andii) the nonlinearity associated with the self- = Re,, Rey, ,+Im3, ., ensures probability conservation with
interaction potential. In fact, even though the theoretical ang time-independent potential.

numerical apparatus of Visscher's scheme carries over natu- since our Hamiltonian does depend on time via the non-
rally to the GPE framework, the physical richness and comtinear self-interaction term, probability conservation has to
plexities associated with the nonlinear pOtential can Only bQ)e Checked Carefu”y_ To th|s purpose7 and a|so for Compu_

assessed by actual numerical experimentation. tational convenience, we turn to a slight modification of the
Visscher scheme whereby both real and imaginary parts of
IV. NUMERICAL SCHEME the wave function are synchronized on the same series of

discrete time instants. For convenience, we shall refer to this

Equation(1) is made dimensionless by adopting the Scaleversion as the synchronous Visscher scheme.

units

S = m S=1w, Se=tw 2) A. Synchronous Visscher scheme
We analyze a simplified variant of the Visscher scheme,
for length, time, and energy, respectively. Upon rescaling th@ased on the idea of nonstaggered explicit time marching.
wave function by a factop, the dimensionless radial coor- The idea is to advance both real/imaginary components in
dinate, we obtain the dimensionless form of the GPE: units oftwo time steps using the intermediate, centered value
of the imaginary/real component. Namely,

4
|- @ =[T+V]P, () RO =Re®f[ 1)+ 2A7(T+ VIR Df)),  (6)
where IM(®f ) =Re(®f 1) —2A7(T+ VR D).  (7)
O=p(VS¥?, We shall now provide a few details on the following as-

pects of the synchronous scheme, namejystart-up proce-
P 2 19 1 dure, (i) unitarity (norm conservation and (iii) stability.
- 4= Before doing so, it is worth emphasizing that the synchro-
R Pp? pap p? nous Visscher scheme is very similar to second-order differ-
ence methods proposed by Koslofi5] for the time-
o dependent Schdinger equation. To the best of our
|®|?, knowledge, this is the first time such a scheme has been
applied to the Gross-Pitaevskii equation in the context of
BEC problems.

87N

V=3(p*+el®)+—
p

andp=r/S, a=alS, (=2/S, and r=wt.
Centered differencing is the natural approach to the ap- 1. Start-up procedure

proximation of the space derivatives appearing in the kinetic L i _

energy operatof. As to the approximation of the left-hand The scheme is |n|t|ateq with a single Eule_r-forwgrd step

side of Eq.(3), some care is necessary. As shown by Viss{17] from k=0 tok=1 using the above equatidf) with a

cher for the one-dimensional case, an explicit approach rdime StepAT:

quires the definition of a staggered time grid to avoid nu-

merical instability and to assure the conservation of the wave

function density. More specifically, the real and imaginary

parts ofd are computed at even and odd time steps, respec-

tively, according to the following scheme:

Re(®)=A7(T+VO)Im(DP)), 8
IM(®] )= —Ar(T+VOReDP)). 9)

Once levek=1 is available, the time marching can proceed

Re(d)ﬁ‘})=Re(d)ﬁ'f’2)+2A T+ V2k71)|m(q)ﬁ]!<f1 , , in steps of 2 as indicated in Eq(6).
@ 2. Unitarity
M@ h =Im(®HH - 24 7(T+V*)Re(DF), (5) As anticipated, due to the nonlinear nature of the Gross-

Pitaevskii equation, it is crucial to show that the present
Wherecprjch(mp,jAg;kA 7) and Re(b,oj) and Im@llj) are scheme still preserves unitarity at each discrete timeBy
Supposed to be assigned7a:§ 0. This tim’e_staggered proce- defining the prObab|l|ty denSity at the discrete space location
dure is patterned after trajectory integration of Hamiltonian(l,j) and discrete timé&+1 as follows:
dynamics, as suggested by the Hamiltonian structure of the
Schralinger equationd Rett=7{Im and d Im/dt=—7 Re, P =Re [ ' Refj+Im{ HIm) (10
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it is readily shown that the change in time of the overallnonlinearity may of course have a profound influence on the
probability integrated over the entire computational domairresulting physics, but as long as the stability criteridB) is
is indeed zero: fulfilled, perhaps including a safety fact@ee below, there
is every reason to believe that this physics is correctly repro-
E (P+i_pky—p (11) duced by the_ present r!L_lmericaI scheme. In order to secure a
] hi L ' further margin of stability, we have adopted an empirical
safety factorkeeping the actual time step consistently below
provided boundary conditions are such that they annihilateghe marginal stability threshold, typically around 0.2.
surface terms. This is indeed the case with our applications,

since we impose a vanishing wave function on the outer V. NUMERICAL VALIDATION
boundaryp= pmax and periodicity alond. The proof of uni-
tarity is given in the Appendix. The numerical scheme described above has been vali-
dated in the following test case@) ground state of the har-
3. Stability monic potentialno self-interaction (ii) free self-interacting

ondensaténo external potentigl (i) free expansion of a
elf-interacting condensat@y) gravity-driven transport of a
ondensate in a cylindrical optical potential. In ca@gs(iii )
above we use the typical valu&=1um and S;=2.9ms
for length and time units.

As for any explicit scheme, the main question is to asses§
the largest time step that can be used without compromisin
numerical stability. Standard analysis of the spectrum of th
discretized evolution operatdd6] shows that the stability
limit is

A7(|4IA%+Vy|)<2. (12 A. Ground state of the harmonic potential

In cylindrical coordinate$p,{), the ground state in a har-

—2_A-2 -2 _
Here,A"“=A_ “+A, “ whereA, andA, are the mesh spac monic potential of the form

ings along the radial and axial directions ang is the maxi-

mum value of the potential field. Ve p, ) =2(p2+€l?) (15)
The above relation identifies the largest acceptable time
stepAr, as is given by the following wave function:
—AZIZ e 24 ef2)14n—i[(2+€)2
ATC=1+VMA2/4' (13 (I)(p,é";T):pﬁz’n_)B‘le(p g2+ el (16)

This expression shows that interaction potentials below thyith the normalization 2 f|®|2p~1dp d¢=1. It is therefore

numerical threshold{M<VAE4/A2 do not affect the stan-  expected that by starting with E¢16) at 7=0 as an initial
dard Courant-Friedrichs-Lewy conditianr~A? for the dif-  condition, the numerical scheme would leave the condensate
fusion equation. This is a severe bound since it forces th@ensity basically unchanged as time unfolds.
time step to decrease with tisguareof the grid spacing. This property has been tested ofi@&5] X[ —5,5] (p,{)
Above V,, the time step is basically controlled by the gomain with 21x 21, 41x 41, and 8k 81 grid points. In the
potential aloneA7<1Ny , independently of the mesh size. o former cases, a time stepr=10"2 has been imposed,
This regime implies certain limitations on the physical pa-hereas in the latter cager=0.5x10 3. In all cases, the
rameters characterizing the interaction potential and in parme span of the simulation covef&=10 temporal units.

ticular the maximum number of bosons allowed in the nu-yjsyal inspection of the wave function does not reveal any

merical simulation. N appreciable change of its square modulus with time.

Let us inspect the conditioN <V, for the case of the To back up visual inspection with quantitative data, we
self-interacting potential; that is,BaNS’|'W|*<4/A%. By  have also monitored the change in time of the global ezror
taking S| W[2~(mN2N,A2A ) ~* we obtain defined as

1 N5N§ 2\ A_ g N[2o_ —1
N<Nmax_§ a/A" (14) e(T)—f|® - | 27Tp dpdg, (17)

whereN,=L,/A, andN,=L,/A, are the number of grid where the superscriptd and N refer to the analytical and
points along thep and ¢ directions,L, and L, being the numerical solutions, respectively. The time evolution of the
typical radial and axial size of the cylinder in length units, global error for the three grid resolutions is reported in
andA’EAgAglA2 is an effective linear scale. Fig. 1.

Since the scattering length is typically much smaller From these curves we infer a quadratic error accumulation
than the characteristic radial lengthA’, we conclude that in time. However, the prefactor of the quadratic term is quite
the maximum time step is diffusion controlled, unless thesmall and rapidly decreasing with grid resolution. From the
number of bosons significantly exceeds the number of grigoresent series at three different resolutions we infer a power
points in the simulation. decaye?~A 2P with p~2 (note that thesquareerror is

Before moving on to Sec. V, we observe that the presenshown in Fig. 1.
analysis is appropriate to the GPE as well, since the nonlin- The net result is that a moderate-resolutiorx&IL grid
ear term in this equation is local in configuration space. Thealready secures a global error below 20over a signifi-
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FIG. 1. Ground state of the harmonic potential. Square norm of FIG. 3. Free self-interacting condensate. The results of the simu-
the global errore? as a function of the dimensionless timeas lation are compared with the analytic formd(p,{;7)
defined in Eq.(17). The three curves refer to three different grid =€ *™N"®(p,£;0), whered(p,{;0)=p(e 7N+ 1) (e 167N
resolutions(21x 21, 41x 41, 81x 81). —1)"' is merely a convenient solution of the free GPE for the

purpose of testing the scheme in a time-dependent scenario. The

cantly long period of time; that is, ten oscillation periods. A figure shows the square norm of the global efrel plus imagi-

closer inspection of the separate contributions from the redl2" Part of the wave functionin the case &aN=210, which

and imaginary components of the wave function to the globaf°/responds ta=110 Bohr radi andN=10". The four curves
2 2,0 2. 2 . refer to four different resolution§21x 21, 41x41, 81x81, and

errore; andej (e“=eg+ej +interference termsreveals an ;.o 161)

interesting dip-tip anticorrelation: errors coming from the '

real part peak at the minima of the errors coming from th

imaginary one andice versa(see Fig. 2 The result is no

interference and hence systematic, though very slow, acc

mulation in time.

Sthe integration proceeds ovér=0.1 time units, correspond-
ing to about three oscillation periods. Four different resolu-
Yions, i.e., 2121, 41x 41, 81x 81, and 16X 161 have been
adopted, the time step beidgr=106, 5x 107, 10/, and
5x 108, respectively.

B. Free self-interacting condensate In Fig. 3 we report the square norm of the error as a
In the next series of tests we evaluate the evolution ifunction of time, as defined by Ed17) using ®(p,¢;7)
time of a free self-interacting condensée external poten- = € @(p,£;7=0) for the analytic wave function.

tial), starting from a numerically convenient analytic solution P70 this figure, again, an excellent agreement with analyti-
of the free GPE for the initial wave functio®(p,; 7=0). cal results is obtained even on the very coarsg 21 grid.
The integration domain ig0<p<1.24]X[0.1<¢<0.3] and

C. Free expansion of a self-interacting condensate

x107

We now turn our attention from purely numerical tests to
physical applications. We consider here the free expansion of
a cylindrical self-interacting condensate that is initially con-
fined in a harmonic trap. Such a situation is commonly real-
ized in the experiments as one of the steps needed in probing
the system by absorption imagifitf. Numerical simulations
as well as analytical time-dependefhsdze are available
[8,18].

We start with an elongated condensate hawirg8 and
let it freely expand by suddenly switching off the trapat
=0". The simulation refers td\=4000 8’Rb atoms. The
numerical parameters are as follows: integration dorm@in
<p<4O2]X[—20<{¢<20], grid 121x121. The typical
time step isA 7=10"°. Due to the large size of the compu-
tational domain, a nonuniform mesh along the radial coordi-

% P 4 5 3 10 nate has been adopted. Boundary conditions are periodic
T along ¢ and Dirichlet-type® =0 at p=40v/2. At p=0 the

FIG. 2. Ground state of the harmonic potential. Square norm oisymme_try con_dltlordd)/dp=0 IS _'”_‘Posed- .
the errorse ande? associated with the real and imaginary parts of For illustrative purposes, the initial Cond't'_on was chosen
the wave function as functions of the dimensional timas defined 1N the zforT of an elongated Gaussia®(p,{;7)
in Eq. (17). The grid is 81X 81. =Ae AP e with A a normalization constant ang

1.2
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0.4
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FIG. 4. Free expansion of a self-interacting condengate(d) Contour plots of the condensate density-an, 4.4, 8.8, and 17 ms. The
grid is 121x121.

=0.04, which is close to the initial condition inferred from  In fact, as already mentioned, the evolution of the conden-
the experimental data of Fig. 3 [8]. A more accurate initial sate is found to be rather sensitive to the initial conditions
condition would consist of an optimized matching betweenand especially to its width: thin condensates expand faster
the Thomas-Fermi solution near the center of the cloud and ghan thick ones and eventually develop double-humped pro-
Gaussian tai[8]. files. In addition to more realistic choices of the initial con-
Previous experimental and numerical d@&19] show ditions, the study of the dynamics of these thin condensates
that in the course of the expansion the condensate turns fropaquires a substantial increase in space and time resolution,
a {-elongated to g-elongated shape. Such a behavior isyith a correspondingly higher demand of computational re-
reproduced by our numerical method, as witnessed by thgqrces. Our actual results, ensuring norm conservation up to
results shown in the sequence of Fige)44(d). In Fig. 48) e fifh digit all along the simulation, are meant to represent

the contour lines of the initial condensate are shown . . -
. . . a fair compromise between accuracy and efficiency.
whereas Figs. @)—4(d) show the same information at later P y y

timest=4.4, 8.8, and 17 ms, respectively.

Our data show good qualitative agreement with previous
numerical and experimental results giverf&. To quantify The present numerical scheme has been successfully ap-
this statement we report in Fig. 5 the condensate widthglied to the numerical simulation of a condensate in an ef-
along p and ¢, defined aso,=\((r—(r))?) and o, fectively one-dimensional periodic potent{@0]. The study
= {(z—(2))?), where brackets denote space averaging ( of such a system is relevant in connection with the experi-
=27[...|¥|?rdrdz). ments by Anderson and Kasevi¢hil], in which a nearly

Figure 5 shows that our results are basically consistenpure condensate is poured from a magneto-optic trap into an
with the experimental data, although an underestiniaje optical lattice created by a detuned standing wave of light.
10-30% of the expansion rate appears in the long term.Tunneling from well states to the continuum is driven by the
Better agreement with the data requires a more realistigravitational field and interference between the condensates
model for the initial density profile, as used in the theoreticalin different lattice sites manifests itself in the emission of
analysis made in Ref8]. falling drops. These are interpreted as coherent matter-wave

D. Gravity-driven transport in an optical potential
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FIG. 5. Free expansion of a self-interacting condensate. Radial FIG. 6. Gravity-driven transport of a self-interacting condensate
(o) and axial ;) widths of the condensate as functions of time. in a periodic potential. Density profile of the condensate after 5.2
Solid line: axial, numerical. Dotted line: radial, numerical. Crossesims, as a function of 2\ atr=0 (M2 is the spatial periodin the
axial, experimental. Circles: radial, experimental. interacting case=110a, and forUP:1.4ER. For comparison the

i ) dotted curve reports the noninteracting case0. Dashed curve:
pulses in analogy with a mode-locked photon Idddil. The  N—1¢%: solid curve:N=1CP. All other input parameters are listed
size of the drops is found to be 10% of the initial condensatgy, the text. inset: the same as in the main body of the figure in the

size and the time interval between drops is estimated to bgoninteracting case, but showing contour plots. The abscissa refers
1.1 ms, in agreement with the expected period of Bloch 0Stg the transverse distance in micrometers.
cillations.

The e.xternal potential, written in cylindrical coordinqtes - /ZaER/(mﬁzb), where o= UIO/ER- The overall shape of
and z, is Ue(r,z)=U(r,2) —mgz where tpe opt|(2:a| the density profile along the axial direction reflects instead
trap U,(r,z) can be modeled adJ(r,z)=Uyexp(-r/  the shape of the condensate inside the magnetic trap and is
rip)sin’(kz) andg is the acceleration of gravity)y is the well  taken as a Gaussian with a widfi/mwey renormalized by
depth, Scaling ”nearly with the intenSity of the laser beam,the interactions, name]y)eﬁ:(4773/5/§2)w [22] Moreover,

Mp is the transverse size of the beam, d&nd27/\ is the  we assume that the lowest state of each well is occupied by a
laser light wave number, the lattice period bein@. portion of condensate, whose Gaussian wave function is cen-

Typical system parameters that are relevant to the expertered at the given site and is characterized by the frequency
ment on®Rb [11] area=1108, with a, the Bohr radius, o, =2/aEq/4.

N=10", A\=850 nm, r,=80 um, UP=1.4Eg, with Eg A reasonable choice of the initial conditioW (r,z;t
=1#°k?/2m being the recoil energy. Finally, a numbey,  =0), taken to be centered at0 andz=0 then reads
=30 wells are loaded initially.

The effect of the interactions can be studied in our simu- 2 2 2
lations by varying the produeN with a consistent change in W(r,z;t=0)=Ae M e Mmeer /2h2| e Moz N,
the numbem,, of occupied wells, sinca,, depends on the (18)
strength of the interactions at given confinement parameters.

The number of occupied wells is then given by the ratio ofHere, A is a normalization factor antllabels the occupied
the size of the initial condensate to the size of each wellsites, their total number being, . In Eg. (18) we have as-
namely, n,=2{S /N where [=(32rNa/S)¥® and S sumed equal phases of the condensate at each site.

= Jhl2me with o the axial frequency of the magnetic trap.  Let us discuss now the results of the simulation. We use a

In Ref. [20] the system was made effectively one- grid resolution of 2k 16 on each single well, the time step
dimensional(1D), using a result by Jacksoet al. [21] to  beingA7=2x10"%. The main body of Fig. 6 shows three
renormalize the scattering length. The reduction of the twopictures of drop emission for different coupling strengths, by
dimensional(2D) GPE with cylindrical geometry to a 1D plotting the density profiles at=0 as functions of 2/,
one was implemented by using an effective scattering lengttaken WithU|0= 1.4ER after 5.2 ms. The central condensate
”é:a\/UF/(nb)\). Within this model an extensive study of has been subtracted away. Contour plots showing the radial
the emission, shape, and size of the pulses was given. Hepsofiles are displayed in the inset. The dotted curve reports
we treat explicitly the transverse confinement by solving theghe behavior of the noninteracting gas, namely the ease
full 2D problem in cylindrical symmetry. =0 andn,=31. The dashed curve refers the interacting case

We turn to discuss the choice of the initial value with a=110a,, N=10%, andn,=31, while the solid curve
W(r,z;t=0). The transverse part of the condensate wavehows the results faa=110a, andN = 10> with n,,=49. All
function is taken as a Gaussian, with a width that is thethe other parameters are as in the experinise¢ above
harmonic approximation to the transverse shape of the opti- The main qualitative features of the drops are very similar
cal potential. The corresponding frequency i®,  to those resulting from the 1D simulation reported]20].
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We first note that each drop extends over a number of welltaxed by either moving to a semi-implicit time-marching
equal to that occupied by the initial condensate. Second, ischeme, or by adopting modern explicit schemes such as
all three cases the drops are equally spaced by 70 wells froithose mentioned below.

center to center. This spacing corresponds to 1.1 ms of simu- The main distinction between implicit versus explicit
lation time, in agreement with the measured vdllig] and ~ methods ha_s been already ad_dressed in the opening of this
with the expected value of 1.09 ms for the periog of  Paper. Obviously, one would like to get the best of the two
Bloch oscillation(Tg= 47#/mg\, independently of the am- worlds: either a fast implicit method, or an unconditionally
plitude of the periodic potential and of the strength of theSt@Ple explicit method. As far as we can judge, the general
interactions. Third, we systematically find that both the €nd (not just in BEC researghpoints rather to the latter

width and the shape of each drop reproduces those of t@t?:rg?}:lvseténce modern research in numerical fluid dynam-
parent condensate, giving proof of the coherent emission and ’ y

. ; . Cs is moving in the direction of unconditionally stable ex-
suggestmg a practical way (o tailor matter-wave Ias_er DUI.S eg'Iicit schemgs based on clever matrix represer):tations of the
Some differences between the 1D and the 2D simulation

show up after a quantitative analysis of the numiigg,,/N tésg;itgrsvglslg'?ﬁeog Zg}gﬁj{?&?&% [tzf]('j tT ;es'ﬂiﬁ ';
of atoms per drop. We evaluate;,,,/N=12%, 9%, and P

8% for the first three drops in all three cagesninteracting, way th"?‘t each subsystem_ can be adva_naad!ytmally n-

. X . i . . . - time using exact exponential representations instead of first-
interacting with N=10%, and interacting withN=10). r second-order polvnomial expansions thereof

These values are to be contrasted with the results of the 18 Poly P )

. . : . . On a similar vein, lattice kinetic methods based on the
simulation, which giveNg,,/N of the same order, but in- o .
; o ) P ; guantum generalization of the lattice Boltzmann scheme for
creasing with increasing repulsive interaction strength.

. ; ) fluid dynamics[24] have also been preliminarily applied to
Of course, the interactions tend to lift the bound statet e evolution of one-dimensional BEC'$25] These
toward the continuum by an amount that may be measure

b?/othoertitgr?aniatrr:;nt?;?jﬁcl:?nof%irge);fgcetgvzagi‘t?e:i—gISIzasn thbut unfortunately they do not extend straightforwardly to
Fimgs the particle dFe)nsit and in the 1D simulation \?ve hgvemultidimensional non-Cartesian geometries.
b Y Finally, it is interesting to notice that the same idea of

E'o;i/)z‘ocaﬁ‘. L'b.' I_n t_?e 2t||3 lcase we h:}? 'I::Stea?' looking for analytical expressions of short-time numerical
a/Afp, WNICN 1S Signilicantly IOwer SINCe,>A. Namely, ropagators is also gaining popularity in the simulation of

n th? 2D simulation an increase in coupling strength IS MO assical and quasiclassical condensed-matter systems using
readily compensated by a transverse spreading of the CORolecular dynamics techniquf2s,27]. Here, the clever par-
densate and the value bly,/N is insensitive to the inter-

ions in th ¢ titioning is reconduced to a Trotter representation of the evo-
actions in the present range of system parameters. lution operator:eiHAt=gH1812giH2AgiH1AU2 \Where H=H,

We conclude by remarking that an increase in the cou—+H2 is the total Hamiltonian, an#i; ,H, is a pair of com-

;)Ilng strength may e\(enr:uakl)ly Iegd to d|_sr:4fpt)t|gn of the dropsy, sing operators typically associated with kinetic and poten-
or two main reasonsi) the bound state is lifted up to merge 4 anergy. One of the main virtues of these schemes is that

'?]to the c:)ntlnquhm, anhtﬂn) rt]he d;}ops Increase |nb3|;e udntll they lead tosympletictime integrators, i.e., time-marching
they overlap with each other, their separation being detely o mag preserving the phase-space volume elerfigots
mined solely by the lattice constant and by the slope of th

Sille theorem). This secures numericegversibility, which is
external potentiali.e., by A andg). In the range of param- " 4

fth . ¢ And dK ) | an excellent prerequisite for enhanced numerical stability.
eters of the experiment of Anderson and KaseyIchl, only  gjnce the synchronous Visscher method is naturally hinting
the second mechanism may be significant.

at an ensemble of lattice walkers, whose collective motion

describes the wave function dynamics, it would be interest-

VI. COMPUTATIONAL PERFORMANCE ing to explore whether the present work can be extended in
AND EUTURE PROSPECTS the direction of producing unconditionally stable simpletic

] ] integrators for BEC dynamics.
Having shown that the synchronous Visscher scheme pro-

vides a viable tool for the numerical investigation of Bose- VII. CONCLUSIONS

Einstein condensate dynamics, a few comments on compu- o

tational performance as well as some comparative remarks !N Summary, we have presented the application of an ex-

with existing methods are in order. The present code takeBliCit Scheme for the numerical solution of a Sctiirger

about 10 ms/grid-point per step on a SUN-Ultra4 SPARC1€duation with local ~nonlinear interactions in two-

processor167 MH2), with no specific optimization effort. dlmenS|onaI. cyImd.rlg:aI geometry. The present results indi-

On a typical 10X 100 grid withA 7= 10", a typical simu- cate that this explicit scheme provides a flexible and com-

lation lastingT = 10 time units takes approximately 40PU petmve_tool_for the numerical stud_y of the dynamics of

seconds, namely, a few hours. Bose-Einstein condensates. In particular, the case of BEC
The key issue to performance is the size of the time steg@nsport in optical potentials highlights the need for a time-

Leaving aside very dense condensates with over tens of miiccurate description of droplet ejection from the main con-

lions of atoms in a characteristic trap volume, the time step i€nsate and other fast dynamic events.

limited by the spatial resolution. In fact, due to the explicit .

treatment of the diffusive kinetic-energy term, the time step APPENDIX: PROOF OF UNITARITY

At scales approximately with the square of the size of the With the definition of discrete probabilit{10), we obtain

grid spacingAx. This is a severe bound, which can be re-(one-dimensional case for simplicjty

schemes are very fast, ideally suited to parallel computing,
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5PE; (PIF1—PY)

=> R Rd+Im !t Imf— R R !
J

k—1

Im Im (A1)

which is

sP=2 Re(Rd™—Rd™ ) —Imk(ImiH1—1mk ).
J
(A2)
Upon using the equations of motidB), the above expres-

sion yields

SP=A7Y, Re(HKIM)—Im{(HERE),  (A3)
J

wherer—T+ V" is the total Hamiltonian, whose time de-

NUMERICAL SOLUTION OF THE GROSS-PITAEVSHKL. . .

1389

Reinstating the spatial bounds for clarity and omitting the
by now redundant temporal indek a direct calculation
yields

7_.]+ZI.
5_&20 Rg(7; Im))—Im;(7; Rg) (Ad)
= Rey(Imo—Imy) +Imy(Re,— Rey)
+Rey(Imy,;—Imy) +1my(Re;—Rey,1).  (A5)

It is readily checked that all of these terms vanish identi-
cally under any of the three types of boundary conditidis:
von Neumann(zero derivative at the boundary®,=®,,
®,;=®,, ; (ii) Dirichlet (zero wave function at the bound-
ary), ®,=0, ®;=0; periodic(same wave function on inlet/
outlet boundary, ®;=®; where ®=Re,Im. The same
analysis carries over to a two-dimensional cylindrical geom-

pendence is entlrely due to the nonlinear self-interaction po€tTy, With only a bit of lengthier algebra.

tential. Since this self-interaction gcal in space, it contnb—
utes zero to the above suterm-by-term i.e., Rév Im

—ImV*R=0, which means thatike in the linear case
we are only left with surface contributions due to the kinetic-
energy operator.
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