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Dissipative high phase-lag order Numerov-type methods for the numerical solution
of the Schradinger equation
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A generator of families of explicit hybrid methods with minimal phase lag is developed in this paper. The
methods of the generator have algebraic order six. The main characteristic of the new methods is that they are
dissipative, i.e., they are not symmetric and they have not an interval of periodicity. The generator is of
dissipation order eight. Numerical results indicate that these new methods are more efficient than older ones,
i.e., the property of the phase lag is more crucial than the nonempty interval of periodicity for the construction
of the numerical methods for the numerical solution of the Sdinger-type equations.

PACS numbse(s): 02.70.Bf, 02.30.Hq, 02.30.Mv, 02.66x

[. INTRODUCTION numerical solution of the Schadinger equatiopnare genera-
tors of implicit and explicisymmetrianethods, i.e., methods
The radial Schrdinger equation has the form with nonempty interval of periodicity.
The purpose of this paper is to develop a generator of
y"(x)+f(X)y(x)=0, (1.2 families of explicit sixth algebraic order hybrid methods with

minimal phase lag. The methods are dissipative since they
wherex is the radius, &x<w, andf(x)=E—I(1+1)/x*  are not symmetric. The dissipation order of the methods is
—V(x). We call the terml (I +1)/x? the centrifugal poten- equal to eight. In Sec. Il we develop the basic theory of the
tial, and the functiorV(x) the potential, wher&/(x)—0 as  phase-lag analysis of two-step nonsymmetric finite differ-
x—. Based on the sign of the enerBythere are two main ence methods. In Sec. Il we develop the new generator of
categories of problems f@d..1) (for details se¢1]). In (1.1), methods. An embedded variable-step algorithm is developed
E is a real number denotiniipe energyl is a given integer, in Sec. IV and in Sec. V numerical results are presented.
and V is a given function that denotebe potential The
function W(x) =1(1+1)/x?+V(x) denotesthe effective po-
tential, which satisfiesW(x)—0 asx—o. The boundary
conditions are

Il. PHASE-LAG ANALYSIS FOR NONSYMMETRIC
TWO-STEP METHODS

We investigate the numerical integration of the problem
y(0)=0 (1.2
» , y'=1(x,y),y(X0) =Yo.y' (X0) = Yo (2.
and a second boundary condition, for large valuex,af
determined by physical considerations. In some scientific arry examine the numerical properties of methods for solving

eas §uch as nuclegr physics, physical c_:hemistry, theoreticale initial-value problen{2.1) Lambert and WatsofL4] in-
physics and chemistry, quantum chemistry, and moleculaj,yqce the scalar test equation

physics(see[2] and[3]), there is a real need for the numeri-
cal solution of the radial Schdinger equation.

In the last two decades there has been much activity in the
?sf::[Z]f ;?]Z [Sscilgﬂlznr gffetrr;i Cr:g;: esrgﬁngig%q_uﬁligll]g When we apply a nonsymme_tric tvyo-step method_ to the sca-
The most important characteristics of an efficient method fon!car test equation2.2) we obtain a difference equation of the
the solution of the problenil.l) are the accuracy and the orm
computational efficiency. The development of methods with
the above mentioned characteristics is an open problem. Yn+1+t Q(H)Yn+ C(H)Yn-1=0, 23

We mention here that the generators that have been de-
veloped in[4] and[5] by Avdelas and Simoéwhich are the where H=wh,h is the step lengthQ(H) and C(H) are
only generators of numerical methods in the literature of thepolynomials inH, andy, is the computed approximation to

y(nh),n=0,1,2,.... The characteristic equation associated
with (2.3) is

y"=—w?y. (2.2

*FAX: ++4+30541 29706,++301 9413189. Electronic address:
tsimos@mail.ariadne-t.gr 2+ Q(H)z+C(H)=0. (2.4
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Theorem 1 A method that has the characteristic equa- 1 h? _
tion (2.4) has an interval of periodicity (Bi2), if for all Yn-12=5 (Ynt¥n-1)+ 384(5fn+1_34fn,b_19fn71)1
H2e (0H3), |Q(H)|<1 andC(H)=1. (3.9

Definition 1 The method?2.3) is P stable if its interval of
periodicity is(0,) [14]. 1 h2 o

_Theorem 2For a nonsymmetric two-step method we can 9n+1,2=§(3yn—yn,l)+ @[—anJr A2+ 7T 1],
write

(3.9
Q(H)
codH)=~T7Cmy- (2.5 , 1 h?

Jn-12=5 (YT Yn-1)+ 7g5L(— 548D Fniy
Proof. The difference equatiai2.3) must be satisfied for
the analytical solution of2.2) (which is equal toe™). So +(—32-288f,+(—=7-48)f,_4

we have - -
+(20+21920) f 110+ 19295, _1)0], (3.9
Ynr1tQ(H)Y,+C(H)y, 1=0= 5
. 1 -
eV L Q(H)e"*+C(H)e" * M=0= Yn+12=5 (3Yn=Yn-1)+ g5l Tnsa + 481,
e+ Q(H)+C(H)e Wh=0= +3f,_1+20f_ 1], (3.7
Q(H) 2
co§H)=—+—~—-, H=whO. h® =
i ) 1+C(H) Yn+l_2yn+Yn71:a)[(fn+l+fnfl)+26fn+fn71
Based on the above theorem we have the following defini- 2 2
fion. ’ +16f 1t fod]. (39
Definition 2 For any method corresponding to the char- .
acteristic equatiori2.4) the quantity b is the number of the family angi, ;=y,. We note that
ap_+1/k=1(1)b are free parameters of the group of fami-
_,| Q(H) lies to be chosen in order for the phase lag of the group of
t=H-cos 1+ C(H) (2.6)  methods to be minimal. One can easily see that in each fam-

ily, say b, the total number of stagds is given by
is called the dispersion or the phase error or the phase lag of
the method. It=0(H9"1) asH—0 the order of phase lag N=b+7. (3.9
is g. The quantity
Using the Taylor series expansions of
Yn=1:Yn<12,Fne1,fne12 @boutx, in (3.1)—(3.8) we have the

. S .. ... following result for the local truncation errof ; of the
= p
is called dissipation. lt=O(HP), the order of dissipation is group of families(3.1~(3.9):

p. From Definition 2 and based on an analogous remark o
Coleman[15], we have the following remark.
Remark 11f the order of dispersion isr2 then Er=h8| —

Q(H) 1
1+C(H) 2880(1+16q 198, s 1)YSFF
=cogH)—cogH—t)=cH* "2+ O(H**%), (2.8

u=1—C(H) 2.7

(6)
130060~ 3840 1T 16Yn F

t=cH> "1+ O(H?* *3)=coqH)—

(3.10
wheret is the phase lag of the method. , _
where F,=df/dx, F,=dF/dx. We apply this group of
Ill. THE GENERATOR OF SIXTH ALGEBRAIC ORDER fam|I|es_ to the scalar test equati¢h 2). SettingH=wh, we
METHODS get a difference equation of the for(g.3).
Theorem 3For the method given b§B.1)—(3.8) the poly-
Consider the following family of explicit sixth algebraic nomialsQ(H) andC(H) in (2.3 are given by
order methods

Yni1= h*f H)=—2+H? AL : 1 lne
Yn+1=2Yn—Yn-1th*fy, 3.1 Q(H)=—-2+ ~ 12 380" | 27628 720
_ h? — 5 7 2
yn+1:2yn_yn_1+1—2(fn+1+10fn+fn_1), (32) +[—m4+%12 (768 32%)AD}H10
v v F T _ 35 23
yn,k_yn ab—k+1(fn+1 2fn,k—1+fn—1)i k—l(l)b, L 12
3.3 | 36864 " 3258 “oH (3.19
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5 . If a local phase-lag error ol is requested and theth
C(H)=1- 7628 (3.12  step of the integration procedure is obtained using a step size
equal toh,, the estimated step size for tha1)st step,
where which would give a local phase-lag error df must be
H2> b o A |\ Va
Apy=|1-— —2H?)7 1] a; 3.1 —h |2
; ( ) (28l 613 hnsa=hol 2| 42
with a,, |k=1(1)b, andb=1,2,... real numbers. For the )
proof see Appendix A. whereq is the order of the phase lag.
Based on definition 2 an¢B.12), it is obvious that the However, for ease _of programmin_g we have restricted all
dissipative order of the group of methods is equal to step changes to halving and doubling. Thus, based on the

procedure developed {®] for the local truncation error, the
step control procedure that we have actually used is

u=1-C(H)= HS, (3.14

27648

If&€ p <Ah, 1=2h,,
i.e., the group of methods is of dissipative order eight. With LPL e

the help of theorem 2 and remark 1 of Sec. Il we have the

following theorem. 1f10Q4>¢& p = A0, 1=, (4.3
Theorem 4In order to maximize the attainable order of

the phase lag of the group of methods defined®$)—(3.8)

the free parameterq and a,, k=1(1)b, b=1,2,... must if & p =1004, hnﬂzﬁ and repeat the step.
have the following optimum values: 2
=_ E (3.15 We note, here, that the local phase-lag error estimate is in
q 336’ ) PLL

the lower order solutiory, 7. However, if this error esti-
mate is acceptable, i.e., less thalh we adopt the widely

__Si-r used procedure of performing local extrapolation. Thus, al-
a= , 1=1(1)b, (3.16 . )
2s,_, though we are actually controlling an estimate of the local
_ o L error in lower phase-lag order soluti |+'Ii it is the higher
wheres_,=—1/2, ands;, [i=01,... are the coefficients of g, solutiony " which we actually accept at each point.
the Taylor series expansion of a known function. For the

Now our method to estimate the local phase-lag error in

roof see Appendix B. . .
P Then, it ispeasy that for a specific valuelw&1,2,... and yﬁkﬁ using the phase lag qﬁ?k'f Is clear. At every step we

for the corresponding values gfanday, k=1(1)b, which start withk=1 and go on increasinigand checking the local

. : . hase-lag errord p,) until £ p, be less than the bound
are given from relationship8.15 and(3.16), the phase lag P - .
_ ; 2Ny _ 2b+ 14 (1<k=Db). If there is ak for which & p <A then the step
&f:l;)i;nethod(s.l) (3.8) is O(H™)=O(H ), where size is doubled, otherwise we carry out the integration.

Moreover, when we applied our method to our computer
(1586 PQ we observed that if the value bfwas greater than
IV. ERROR ESTIMATION—LOCAL PHASE-LAG ERROR 6, then(because of the round-off errgrthe phase-lag be-

The estimation of the the local truncation ertE) for ~ ¢ame of higher order than the precision of the computer
the integration of systems of initial-value problems is ob-Used.
tained using several methodsee, for exampld,16]).

In this paper the local error estimation technique is based
on an embedded pair of integration methods and on the fact
that when the phase-lag order is maximal then the approxi- In the present section we will illustrate the efficiency of
mation of the solution for the problems with an oscillatory orthe new proposed embedded technique by applying it to a
periodic solution is better. We have the following defini- well known problem. We consider the numerical integration

V. NUMERICAL ILLUSTRATIONS

tion: of the radial Schrdinger equation(1.1) with one boundary
Definition 3 We define the local phase-lag error esti- condition y(0)=0, and a second boundary condition for
mate in the lower order solutioy, -} by the quantity large values ok determined by physical considerations. The
form of the second boundary condition depends crucially on
Ep=lyit T —yityl. (4.1)  the sign ofE. In the case wherE=k?>0, then, in general,

the potential functionvV(x) dies away faster than the term

wherey; '} is the solution obtained with higher phase-lagi(1+1)/x*, Eq. (1.1 effectively reduces toy”(x)+(k’
order method using the family+ 1 andy, ;; is the solution  —[|(I+1)/x?])y(x)=0, for largex. The reduced equation

obtained with lower phase-lag order method using the familyhas linearly independent solutiosj,(kx) and krn,(kx),
b. Under the assumption thhtis sufficiently small, the local wherej,(kx) andn,(kx) are the spherical Bessel and Neu-
phase-lag error iy}t can be neglected compared with that mann functions, respectively. Thus the solution of equation

in yhtt . (1.1) has the asymptotic form
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y(x)=Akxj;(kx)—Bkxn(kx) for r—o TABLE I. Real time of computatioriin seconds of the phase
shifts correct to seven decimal places B+ 1 obtained using the
. |7 |7 Methods M I-M VIII.
=A|sin kx—7 +tand, co kx—?
1 Exact phase shift Method M | Method M I
for  x—ee, 0 0.1544208 0.14 0.10
whered, is the phase shift, which may be calculated from the ! 1.2328816 0.34 0.26
2 —1.4296847 0.46 0.38
formula
3 0.7832088 0.34 0.26
ans Y(X2)S(X1) — Y(X1)S(X5) 51 4 0.1258708 0.14 0.10
ano;= . 5 0.0366527 0.24 0.16
X1)C(X5) —y(X5)C(X
e 6 0.0147209 0.34 0.26
for x, andx, distinct points in the asymptotic region with 7 0.0068469 0.10 0.08
S(x) =kxj,(kx) andC(x)= —kxn(kx). 8 0.0035729 0.34 0.26
We illustrate the performance of the new method derived 9 0.0020165 0.50 0.42

in Sec. lll by applying it to the solution dfL.1), whereV(x) 10 0.0012091 0.66 0.58
is the Lennard-Jones potential, which has been widely dis-

cussed in the literature. For this problem the potentiat) Method Ml Method M1V Method MV
is given by 0.07 0.04 0.28
B 12 6 _ 0.22 0.16 0.50
V(x)=m(1/x*—1/x°), where m=500. (5.2 0.34 0.26 0.59
We solve this problem as an initial-value one and, in or- 0.22 0.16 0.52
der to be able to use a two-step method, we need an extra 0.08 0.04 0.30
initial condition to be specified, e.gyy[ =y(h)]. This value 0.12 0.06 0.41
is computed using the Runge-Kutta-Nystronethod of Dor- 0.23 0.16 0.53
mandet al. [17]. 0.08 0.04 0.27
The problem we consider is the computation of the rel- 023 0.16 0.53
evant phase shifts correct to six decimal places. We will ~ 0-39 0.30 122
consider the following variable-step approaches: 0.55 0.40 1.30

(1) Method M I: based on the sixth algebraic order em-

bedded method of Avdelas and Sines; Method M VI Method M VII Method M VIl
Sirf]ngl[\/ll%?od M II: based on the variable step method of 0.24 0.20 0.02
(3) Method MIII: based on the variable step method of 0.44 039 0.03
Simos and Mousadigl3]; 0.54 0.50 0.07
(4) Method MIV: based on the generator Gtstable 0.46 0.42 0.03
methods of Avdelas and Sim@s]; 0.25 0.22 0.02
(5) Method M V: The Runge-Kutta-Nystm method de- 0.28 0.25 0.02
veloped by Dormand and Prin¢see Table 13.4 df18]) 0.49 0.43 0.03
(6) Method M VI: The extrapolation method described in 0.23 0.20 0.03
[18] (see Chapter 11.13 of18], pp. 271-273 and code 0.45 0.41 0.03
ODEX2); 1.11 1.06 0.06
(7) Method MVII: The Runge-Kutta Dormand-El- 1.23 1.14 0.08

Mikkawy-Prince 1210) [19];

(8) Method M VIII: based on the new group of families of note that the methods of this group of families of methods

methods developed in Sec. Ill. i ecinati ;
. . are nonsymmetriddissipativg. We note also that for this

The procedures1)—(7) are described if4], [13], [5],  group of families of methods we have proposed procedures
[12], [18], [19], respectively and are used without modifica- 15 gefine the parameters of the methods of the families in
tion. The method used |(8) is de\_/elop'ed in Sec. lll and the rger that the phase lag of the methods be minifuatil the
error control procedure is described in Sec. IV. _ phase lag becomes of the order of the precision of the com-

In Tables I-11l we present the real time of computation of puter usefi The numerical results show that the crucial
the phase shifts correct to six decimal places. We note thaproperty for a method for the solution of the Sttiirmer-
based or{9], the A we take for the application of the new type equations is the phase lag. It can be seen from the the-
methods is equal to IGM, whereM is the number of the oretical and numerical results that the new methods are con-

required correct decimal digits. siderably more efficient than the other numerical methods we
have considered for the numerical solution of the Sehro
VI. CONCLUSIONS dinger equation.

All computations were carried out on a PCi586 computer
We have constructed a new group of families of methodsuising double precision arithmetit6 significant digits accu-
with an embedded automatic error control procedure. Weacy).
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TABLE Il. Real time of computatioriin secondsof the phase TABLE lIl. Real time of computatior(in secondsof the phase
shifts correct to seven decimal places B+ 5 obtained using the shifts correct to seven decimal places o+ 10 obtained using the
Methods M I-MVIII. Methods M I-M VIII.

1 Exact phase shift Method M | Method M I 1 Exact phase shift Method M | Method M 11

0 0.4830254 0.33 0.24 0 0.4310044 0.80 0.70

1 0.9282463 1.13 1.04 1 1.0450084 1.20 1.10

2 —0.9635401 1.27 1.18 2 —0.7158077 1.20 1.10

3 0.1207370 1.20 1.10 3 0.5688067 1.60 1.50

4 1.0329037 1.00 0.90 4 —1.3857667 1.40 1.30

5 —1.3784055 1.27 1.18 5 0.2983425 1.40 1.32

6 —0.8439898 1.27 1.18 6 0.6868290 1.40 1.32

7 —0.5254397 0.33 0.26 7 1.5663027 1.60 1.52

8 —0.4574379 0.33 0.30 8 0.8594020 1.60 1.52

9 —0.7570240 0.33 0.30 9 —0.1524079 1.40 1.31

10 1.4148608 0.33 0.27 10 0.3778998 1.20 1.13
Method M I Method M IV Method MV Method M 111 Method M IV Method MV
0.22 0.13 1.04 0.68 0.54 1.55
1.00 0.88 1.45 1.09 0.95 2.30
1.14 1.01 1.57 1.09 0.93 2.30
1.07 0.92 1.52 1.49 1.28 2.71
0.87 0.73 1.40 1.29 1.10 2.42
1.16 1.02 1.58 1.31 1.10 2.43
1.14 1.01 2.00 1.30 1.10 2.40
0.24 0.13 1.05 1.48 1.28 2.73
0.27 0.18 1.10 1.50 1.28 2.75
0.26 0.18 1.08 1.27 1.07 2.45
1.12 0.90 1.10 1.12 0.90 2.31
Method M VI Method M VII Method M VIII Method M VI Method M VII Method M VIII
0.57 0.51 0.02 1.48 1.32 0.25
1.30 1.21 0.18 1.81 1.65 0.50
1.41 1.33 0.25 1.82 1.67 0.50
1.40 1.31 0.12 2.21 2.02 0.53
1.31 1.22 0.06 2.05 1.76 0.43
1.40 1.33 0.15 2.05 1.81 0.41
1.45 1.37 0.11 2.10 1.76 0.35
0.55 0.50 0.02 2.27 2.05 0.43
0.56 0.49 0.03 2.25 2.03 0.41
0.57 0.50 0.03 2.08 1.83 0.30
0.55 0.50 0.03 1.86 1.68 0.30

4

APPENDIX A _
Yn,k:yn+abk+1H2[ ( 2—H2%+ E Yn
(a) Proof of the Theorem.3o calculate the coefficients
and a, of the family b of the group of method$3.1)—(3.8) — 2Vr 1|k
we have applied the above mentioned algorithm to the test '
Eg. (2.2). So, we have the following formulas: —1(1)bV; 5 =Y (A1)
1 Yn,0) n-

The above relationships give
Yni1=(2— Hz)yn_ynfln
2

_ 41 -
1-a;H* 1- 15

%,b=

)(1—2a2H2
4

= _ N A _
yn+l_(2 H +12)yﬂ Yn-1, ><{1—2a3H2[~--(1—ZabH2)]'”})}Yn, (A2)
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or
H2
Ynp=1—a;H* -7 1—-2a,H?
+22a,a3H*—2%a,a3a,H%+ ...
b
+(=2H2) T a|y,, (A3)
i=1
or
Yob=(1—=H*Ap)y,, (A4)
where
2 1
Ay (1——)2( 2H2)i- H a. (A5)
Based on the above we have
o 1+H2+5H4 17H6A . °
Yn-12= 5716 384 192 “b Yn Yn-1:
. 3 5H? H* 21H° 1 H°
Yn+12=| 5~ 15 " 128" 62 Ap|Yn— > Yn-1

N 1 5 ¢ 1 3¢
|- _ g2 ot g2y - —1
y”—m_(z H [( 192 4>(2 H) 6 2

(53 5H? H4+21H6A
2879127 16 128" 64 b
EE 5H?2 17H6A )
972 16 384 102 D[ |Yn

+1H2 1+5+ 1 H?
2 7| 96" \287 Y "2 16

1 H?
>t 16/ [ |Yr-1

+q

[ H2 5H?[[ 5 ,
In 1= 16 192 48 _EZ_Z(Z H%)

1 3q 3 5H? H* 21H6A
6 2 —s+ 2 16 128" 64 b

1o 1 5H?2 17H6A }
TA127™ 16 38a zez o) [ P

1 He 1 5H?[ 1 |[5 1 H?
2716 a8 | 62879 T2 16

1 H?
+a| 5 +_ Yn-1-

)

Using the above relations if8.8) and based o1(2.3) it can
be seen, after straightforward manipulations, tQdH) is
given by(3.11) andC(H) is given by(3.12.

G. AVDELAS AND T. E. SIMOS
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APPENDIX B

(b) Proof of the Theorem.4From the relationrequire-
mend (2.5 we have that

Q(H)

" 1+C(H) (B1)

=coqH).

If we substitute cosf)=32;2H?/2i! and C(H), which is
given by(3.12), into (B1), we obtain

H4 HE 12MH®  260H1°
12 7360 967680 29030400

. 2885312 1751541
3832012800 697426329600

37536 H16 127626 H18
 83691159552000 25609494822912000

. 36741H%°
9731608032706560000

932661 H??
~ 2496002911110430720000

Q(H)=—2+H?-

(B2)

Q(H), however, is given by3.11). Therefore, from(3.11)
and(B2) we get explicitly the value

23

q=—- 3_36 (83)
If we substitute(B3) into (3.11), we obtain

H4 H6 12H®  151H™°
12 7360 967680 4644864

Q(H)=-2+H?-

114MH12
2322435lb

114M10

~ 2419200 " (B4)

Based on(B4), the requiremen(B2) gives

241920 23224321

_ 6661H™  2885H'* 175154
= 116121600 3832012800 697426329600

37536 H16 127626 H18
~ 83691159552000 25609494822912000

367411H%°
9731608032706560000

932661 H??
* 2496002911110430720000

2
( 1147 1147Hg 10y,

(B5)

or the equivalent relatiofusing the formula3.13]

b i

> (—2HY) ] aj=sp+sH2+s,H*+++, (B6)
. L
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TABLE IV. Initial five values of parameters;, j=0,1,2,... de- a.=s
) . - ! 1750,
fined in theorem 4 and the coefficients of the group of methqd
| = 1(1)b sl Sl
a2: =——,
s;j=0(1)4 a,i=1(1)5 2a;  2sp
6661 6661 —
So= 550650 a1= 550650 az= S2 _ S 259 _ S
39539 197695 - - -
S1= 58139136 A= — 7034016 (—2)2a2a1 (_2)250 S1 —2s;
_ 95820041 _ 95820041
S2= 1269758730240 a3 ~ 1727063520
_ __2224595489 _ _ 2224595489 and generally
SS_ 304742095257600 a3_ T 45993619680
_ 180082834933 _ 180082834933
S4= 228669549730201600 3= ~ 3630539838048 Sp_1 Sp_1 —2Sp_2 —2sg
ap= b—1 = b—1 c
(=2)° fap1ap-2ay (—2) Sp-3 S1
wheres; , |i=0,1,2,... are the coefficients of the Taylor series Sp—1
expansion which is obtained by dividing the right-hand side — 25, (B7)

of the relation (requirement (B5) by (1147/241920

—114M?2/2322432) (1 H?/12)H ™,
Obtaining successivelp=1,2,..., the requirementB6)
gives

and the theorem is proved.
Presumptively, in Table IV we present the initial five val-
ues ofs;, j=0(1)4 anda;, i=1(1)5.
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