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Dissipative high phase-lag order Numerov-type methods for the numerical solution
of the Schrödinger equation
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A generator of families of explicit hybrid methods with minimal phase lag is developed in this paper. The
methods of the generator have algebraic order six. The main characteristic of the new methods is that they are
dissipative, i.e., they are not symmetric and they have not an interval of periodicity. The generator is of
dissipation order eight. Numerical results indicate that these new methods are more efficient than older ones,
i.e., the property of the phase lag is more crucial than the nonempty interval of periodicity for the construction
of the numerical methods for the numerical solution of the Schro¨dinger-type equations.

PACS number~s!: 02.70.Bf, 02.30.Hq, 02.30.Mv, 02.60.2x
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I. INTRODUCTION

The radial Schro¨dinger equation has the form

y9~x!1 f ~x!y~x!50, ~1.1!

where x is the radius, 0<x,`, and f (x)5E2 l ( l 11)/x2

2V(x). We call the terml ( l 11)/x2 the centrifugal poten-
tial, and the functionV(x) the potential, whereV(x)→0 as
x→`. Based on the sign of the energyE there are two main
categories of problems for~1.1! ~for details see@1#!. In ~1.1!,
E is a real number denotingthe energy, l is a given integer,
and V is a given function that denotesthe potential. The
function W(x)5 l ( l 11)/x21V(x) denotesthe effective po-
tential, which satisfiesW(x)→0 as x→`. The boundary
conditions are

y~0!50 ~1.2!

and a second boundary condition, for large values ofx, is
determined by physical considerations. In some scientific
eas such as nuclear physics, physical chemistry, theore
physics and chemistry, quantum chemistry, and molec
physics~see@2# and@3#!, there is a real need for the numer
cal solution of the radial Schro¨dinger equation.

In the last two decades there has been much activity in
area of the solution of the radial Schro¨dinger equation~1.1!
~see@4# and@5# and references therein,@1,6–8,9–11,12,13#!.
The most important characteristics of an efficient method
the solution of the problem~1.1! are the accuracy and th
computational efficiency. The development of methods w
the above mentioned characteristics is an open problem

We mention here that the generators that have been
veloped in@4# and@5# by Avdelas and Simos~which are the
only generators of numerical methods in the literature of

*FAX: 1130541 29706,11301 9413189. Electronic addres
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numerical solution of the Schro¨dinger equation! are genera-
tors of implicit and explicitsymmetricmethods, i.e., method
with nonempty interval of periodicity.

The purpose of this paper is to develop a generator
families of explicit sixth algebraic order hybrid methods wi
minimal phase lag. The methods are dissipative since t
are not symmetric. The dissipation order of the methods
equal to eight. In Sec. II we develop the basic theory of
phase-lag analysis of two-step nonsymmetric finite diff
ence methods. In Sec. III we develop the new generato
methods. An embedded variable-step algorithm is develo
in Sec. IV and in Sec. V numerical results are presented

II. PHASE-LAG ANALYSIS FOR NONSYMMETRIC
TWO-STEP METHODS

We investigate the numerical integration of the proble

y95 f ~x,y!,y~x0!5y0 ,y8~x0!5y08 . ~2.1!

To examine the numerical properties of methods for solv
the initial-value problem~2.1! Lambert and Watson@14# in-
troduce the scalar test equation

y952w2y. ~2.2!

When we apply a nonsymmetric two-step method to the s
lar test equation~2.2! we obtain a difference equation of th
form

yn111Q~H !yn1C~H !yn2150, ~2.3!

where H5wh,h is the step length,Q(H) and C(H) are
polynomials inH, andyn is the computed approximation t
y(nh),n50,1,2,... . The characteristic equation associa
with ~2.3! is

z21Q~H !z1C~H !50. ~2.4!
1375 ©2000 The American Physical Society
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Theorem 1. A method that has the characteristic equ
tion ~2.4! has an interval of periodicity (0,H0

2), if for all
H2P(0,H0

2), uQ(H)u,1 andC(H)[1.
Definition 1. The method~2.3! is P stable if its interval of

periodicity is ~0,̀ ! @14#.
Theorem 2. For a nonsymmetric two-step method we c

write

cos~H !52
Q~H !

11C~H !
. ~2.5!

Proof. The difference equation~2.3! must be satisfied for
the analytical solution of~2.2! ~which is equal toeiwx!. So
we have

yn111Q~H !yn1C~H !yn2150⇒
eiw~x1h!1Q~H !eiwx1C~H !eiwx~x2h!50⇒

eiwh1Q~H !1C~H !e2 iwh50⇒

cos~H !52
Q~H !

11C~H !
, H5whh.

Based on the above theorem we have the following defi
tion.

Definition 2. For any method corresponding to the cha
acteristic equation~2.4! the quantity

t5H2cos21F Q~H !

11C~H !G ~2.6!

is called the dispersion or the phase error or the phase la
the method. Ift5O(Hq11) asH→0 the order of phase lag
is q. The quantity

u512C~H ! ~2.7!

is called dissipation. Ifu5O(Hp), the order of dissipation is
p. From Definition 2 and based on an analogous remar
Coleman@15#, we have the following remark.

Remark 1. If the order of dispersion is 2r , then

t5cH2r 111O~H2r 13!⇒cos~H !2
Q~H !

11C~H !

5cos~H !2cos~H2t !5cH2r 121O~H2r 14!, ~2.8!

wheret is the phase lag of the method.

III. THE GENERATOR OF SIXTH ALGEBRAIC ORDER
METHODS

Consider the following family of explicit sixth algebrai
order methods

ȳn1152yn2yn211h2f n , ~3.1!

y% n1152yn2yn211
h2

12
~ f̄ n11110f n1 f n21!, ~3.2!

ȳn,k5yn2ab2k11~ f% n1122 f̄ n,k211 f n21!, k51~1!b,
~3.3!
-

i-

-

of

of

ŷn21/25
1

2
~yn1yn21!1

h2

384
~5 f̄ n11234f̄ n,b219f n21!,

~3.4!

ŷn11/25
1

2
~3yn2yn21!1

h2

128
@2 f̄ n11142f̄ n,b17 f n21#,

~3.5!

y9 n21/25
1

2
~yn1yn21!1

h2

192
@~25248q! f̄ n11

1~2322288q! f n1~27248q! f n21

1~201192q! f̂ n11/21192q f̂n21/2#, ~3.6!

y9 n11/25
1

2
~3yn2yn21!1

h2

192
@ f̄ n11148f n

13 f n21120f9n21/2#, ~3.7!

yn1122yn1yn215
h2

60
@~ f% n111 f n21!126f n1 f n21

116~ f9n11/21 f9n21/2!#. ~3.8!

b is the number of the family andȳn,05yn . We note that
ab2k11uk51(1)b are free parameters of the group of fam
lies to be chosen in order for the phase lag of the group
methods to be minimal. One can easily see that in each f
ily, say b, the total number of stagesN is given by

N5b17. ~3.9!

Using the Taylor series expansions
yn61 ,yn61/2, f n61 , f n61/2 aboutxn in ~3.1!–~3.8! we have the
following result for the local truncation errorELT of the
group of families~3.1!–~3.8!:

ELT5h8F2
1

120960
yn

~8!2
1

3840
~1116q!yn

~6!Fn

2
1

2880
~1116q2192qab2k11!yn

~4!FnFn8G ,
~3.10!

where Fn5] f /]x, Fn85dF/dx. We apply this group of
families to the scalar test equation~2.2!. SettingH5wh, we
get a difference equation of the form~2.3!.

Theorem 3. For the method given by~3.1!–~3.8! the poly-
nomialsQ(H) andC(H) in ~2.3! are given by

Q~H !5221H22
H4

12
1

H6

360
1S 1

27648
2

q

720DH8

1F2
5

221184
1

q

6912
2S 7

768
1

23q

360DDbGH10

1S 35

36864
1

23q

3456DDbH12, ~3.11!
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C~H !512
5

27648
H8, ~3.12!

where

Db5S 12
H2

12D(
i 51

b

~22H2! i 21)
j 51

i

aj ~3.13!

with ak , uk51(1)b, and b51,2,... real numbers. For th
proof see Appendix A.

Based on definition 2 and~3.12!, it is obvious that the
dissipative order of the group of methods is equal to

u512C~H !5
5

27648
H8, ~3.14!

i.e., the group of methods is of dissipative order eight. W
the help of theorem 2 and remark 1 of Sec. II we have
following theorem.

Theorem 4. In order to maximize the attainable order
the phase lag of the group of methods defined by~3.1!–~3.8!
the free parametersq and ak , k51(1)b, b51,2,... must
have the following optimum values:

q52
23

336
, ~3.15!

ai52
si 21

2si 22
, i 51~1!b, ~3.16!

wheres21521/2, andsi , u i 50,1,... are the coefficients o
the Taylor series expansion of a known function. For
proof see Appendix B.

Then, it is easy that for a specific value ofb51,2,... and
for the corresponding values ofq andak , k51(1)b, which
are given from relationships~3.15! and~3.16!, the phase lag
of the method~3.1!–~3.8! is O(H2N)5O(H2b114), where
N5b17.

IV. ERROR ESTIMATION—LOCAL PHASE-LAG ERROR

The estimation of the the local truncation error~LTE! for
the integration of systems of initial-value problems is o
tained using several methods~see, for example,@16#!.

In this paper the local error estimation technique is ba
on an embedded pair of integration methods and on the
that when the phase-lag order is maximal then the appr
mation of the solution for the problems with an oscillatory
periodic solution is better. We have the following defin
tion:

Definition 3. We define the local phase-lag error es
mate in the lower order solutionyn11

PLL by the quantity

ELPL5uyn11
PLH2yn11

PLLu. ~4.1!

where yn11
PLH is the solution obtained with higher phase-l

order method using the familyb11 andyn11
PLL is the solution

obtained with lower phase-lag order method using the fam
b. Under the assumption thath is sufficiently small, the local
phase-lag error inyn11

PLH can be neglected compared with th
in yn11

PLL .
e

e

-

d
ct
i-

y

If a local phase-lag error ofA is requested and thenth
step of the integration procedure is obtained using a step
equal tohn , the estimated step size for the (n11)st step,
which would give a local phase-lag error ofA, must be

hn115hnS A
ELPL

D 1/q

, ~4.2!

whereq is the order of the phase lag.
However, for ease of programming we have restricted

step changes to halving and doubling. Thus, based on
procedure developed in@9# for the local truncation error, the
step control procedure that we have actually used is

I f ELPL,A,hn1152hn ,

I f 100A.ELPL>A,hn115hn , ~4.3!

i f ELPL>100A, hn115
hn

2
and repeat the step.

We note, here, that the local phase-lag error estimate
the lower order solutionyn11

PLL . However, if this error esti-
mate is acceptable, i.e., less thanA, we adopt the widely
used procedure of performing local extrapolation. Thus,
though we are actually controlling an estimate of the lo
error in lower phase-lag order solutionyn11

PLL , it is the higher
order solutionyn11

PLH which we actually accept at each poin
Now our method to estimate the local phase-lag error

yn11
PLL using the phase lag ofyn11

PLH is clear. At every step we
start withk51 and go on increasingk and checking the loca
phase-lag error (ELPL) until ELPL be less than the boundA
(1<k<b). If there is ak for which ELPL,A then the step
size is doubled, otherwise we carry out the integrati
Moreover, when we applied our method to our compu
~i586 PC! we observed that if the value ofb was greater than
6, then ~because of the round-off errors! the phase-lag be
came of higher order than the precision of the compu
used.

V. NUMERICAL ILLUSTRATIONS

In the present section we will illustrate the efficiency
the new proposed embedded technique by applying it t
well known problem. We consider the numerical integrati
of the radial Schro¨dinger equation~1.1! with one boundary
condition y(0)50, and a second boundary condition f
large values ofx determined by physical considerations. T
form of the second boundary condition depends crucially
the sign ofE. In the case whereE5k2.0, then, in general,
the potential functionV(x) dies away faster than the term
l ( l 11)/x2, Eq. ~1.1! effectively reduces toy9(x)1(k2

2@ l ( l 11)/x2#)y(x)50, for largex. The reduced equation
has linearly independent solutionskr j l(kx) and krnl(kx),
where j l(kx) and nl(kx) are the spherical Bessel and Ne
mann functions, respectively. Thus the solution of equat
~1.1! has the asymptotic form
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y~x!>Akx j1~kx!2Bkxnl~kx! for r→`

>AFsinS kx2
lp

2 D1tand l cosS kx2
lp

2 D G
for x→`,

whered l is the phase shift, which may be calculated from t
formula

tand l5
y~x2!S~x1!2y~x1!S~x2!

y~x1!C~x2!2y~x2!C~x1!
~5.1!

for x1 and x2 distinct points in the asymptotic region wit
S(x)5kx jl(kx) andC(x)52kxnl(kx).

We illustrate the performance of the new method deriv
in Sec. III by applying it to the solution of~1.1!, whereV(x)
is the Lennard-Jones potential, which has been widely
cussed in the literature. For this problem the potentialV(x)
is given by

V~x!5m~1/x1221/x6!, where m5500. ~5.2!

We solve this problem as an initial-value one and, in
der to be able to use a two-step method, we need an e
initial condition to be specified, e.g.,y1@5y(h)#. This value
is computed using the Runge-Kutta-Nystro¨m method of Dor-
mandet al. @17#.

The problem we consider is the computation of the r
evant phase shifts correct to six decimal places. We
consider the following variable-step approaches:

~1! Method M I: based on the sixth algebraic order e
bedded method of Avdelas and Simos@4#;

~2! Method M II: based on the variable step method
Simos@12#;

~3! Method M III: based on the variable step method
Simos and Mousadis@13#;

~4! Method M IV: based on the generator ofP-stable
methods of Avdelas and Simos@5#;

~5! Method M V: The Runge-Kutta-Nystro¨m method de-
veloped by Dormand and Prince~see Table 13.4 of@18#!

~6! Method M VI: The extrapolation method described
@18# ~see Chapter II.13 of@18#, pp. 271–273 and cod
ODEX2!;

~7! Method M VII: The Runge-Kutta Dormand-El
Mikkawy-Prince 12~10! @19#;

~8! Method M VIII: based on the new group of families o
methods developed in Sec. III.

The procedures~1!–~7! are described in@4#, @13#, @5#,
@12#, @18#, @19#, respectively and are used without modific
tion. The method used in~8! is developed in Sec. III and th
error control procedure is described in Sec. IV.

In Tables I–III we present the real time of computation
the phase shifts correct to six decimal places. We note t
based on@9#, the A we take for the application of the new
methods is equal to 1022M, whereM is the number of the
required correct decimal digits.

VI. CONCLUSIONS

We have constructed a new group of families of metho
with an embedded automatic error control procedure.
e

d

s-

-
tra

-
ll

-

f

f

f
t,

s
e

note that the methods of this group of families of metho
are nonsymmetric~dissipative!. We note also that for this
group of families of methods we have proposed procedu
to define the parameters of the methods of the families
order that the phase lag of the methods be minimal~until the
phase lag becomes of the order of the precision of the c
puter used!. The numerical results show that the cruc
property for a method for the solution of the Schro¨dinger-
type equations is the phase lag. It can be seen from the
oretical and numerical results that the new methods are c
siderably more efficient than the other numerical methods
have considered for the numerical solution of the Sch¨-
dinger equation.

All computations were carried out on a PCi586 compu
using double precision arithmetic~16 significant digits accu-
racy!.

TABLE I. Real time of computation~in seconds! of the phase
shifts correct to seven decimal places forE51 obtained using the
Methods M I–M VIII.

1 Exact phase shift Method M I Method M II

0 0.1544208 0.14 0.10
1 1.2328816 0.34 0.26
2 21.4296847 0.46 0.38
3 0.7832088 0.34 0.26
4 0.1258708 0.14 0.10
5 0.0366527 0.24 0.16
6 0.0147209 0.34 0.26
7 0.0068469 0.10 0.08
8 0.0035729 0.34 0.26
9 0.0020165 0.50 0.42

10 0.0012091 0.66 0.58

Method M III Method M IV Method M V

0.07 0.04 0.28
0.22 0.16 0.50
0.34 0.26 0.59
0.22 0.16 0.52
0.08 0.04 0.30
0.12 0.06 0.41
0.23 0.16 0.53
0.08 0.04 0.27
0.23 0.16 0.53
0.39 0.30 1.22
0.55 0.40 1.30

Method M VI Method M VII Method M VIII

0.24 0.20 0.02
0.44 0.39 0.03
0.54 0.50 0.07
0.46 0.42 0.03
0.25 0.22 0.02
0.28 0.25 0.02
0.49 0.43 0.03
0.23 0.20 0.03
0.45 0.41 0.03
1.11 1.06 0.06
1.23 1.14 0.08
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APPENDIX A

~a! Proof of the Theorem 3. To calculate the coefficientsq
andak of the family b of the group of methods~3.1!–~3.8!
we have applied the above mentioned algorithm to the
Eq. ~2.2!. So, we have the following formulas:

ȳn115~22H2!yn2yn21 ,

y% n115S 22H21
H4

12D yn2yn21 ,

TABLE II. Real time of computation~in seconds! of the phase
shifts correct to seven decimal places forE55 obtained using the
Methods M I–MVIII.

1 Exact phase shift Method M I Method M II

0 0.4830254 0.33 0.24
1 0.9282463 1.13 1.04
2 20.9635401 1.27 1.18
3 0.1207370 1.20 1.10
4 1.0329037 1.00 0.90
5 21.3784055 1.27 1.18
6 20.8439898 1.27 1.18
7 20.5254397 0.33 0.26
8 20.4574379 0.33 0.30
9 20.7570240 0.33 0.30

10 1.4148608 0.33 0.27

Method M III Method M IV Method M V

0.22 0.13 1.04
1.00 0.88 1.45
1.14 1.01 1.57
1.07 0.92 1.52
0.87 0.73 1.40
1.16 1.02 1.58
1.14 1.01 2.00
0.24 0.13 1.05
0.27 0.18 1.10
0.26 0.18 1.08
1.12 0.90 1.10

Method M VI Method M VII Method M VIII

0.57 0.51 0.02
1.30 1.21 0.18
1.41 1.33 0.25
1.40 1.31 0.12
1.31 1.22 0.06
1.40 1.33 0.15
1.45 1.37 0.11
0.55 0.50 0.02
0.56 0.49 0.03
0.57 0.50 0.03
0.55 0.50 0.03
st

ȳn,k5yn1ab2k11H2F S 22H21
H4

12D yn

22ȳn,k21G uk
51~1!b,ȳn,0,b5yn . ~A1!

The above relationships give

ȳn,b5F12a1H4S 12
H2

12D „122a2H2

3$122a3H2@¯~122abH2!#¯%…Gyn , ~A2!

TABLE III. Real time of computation~in seconds! of the phase
shifts correct to seven decimal places forE510 obtained using the
Methods M I–M VIII.

1 Exact phase shift Method M I Method M II

0 0.4310044 0.80 0.70
1 1.0450084 1.20 1.10
2 20.7158077 1.20 1.10
3 0.5688067 1.60 1.50
4 21.3857667 1.40 1.30
5 0.2983425 1.40 1.32
6 0.6868290 1.40 1.32
7 1.5663027 1.60 1.52
8 0.8594020 1.60 1.52
9 20.1524079 1.40 1.31

10 0.3778998 1.20 1.13

Method M III Method M IV Method M V

0.68 0.54 1.55
1.09 0.95 2.30
1.09 0.93 2.30
1.49 1.28 2.71
1.29 1.10 2.42
1.31 1.10 2.43
1.30 1.10 2.40
1.48 1.28 2.73
1.50 1.28 2.75
1.27 1.07 2.45
1.12 0.90 2.31

Method M VI Method M VII Method M VIII

1.48 1.32 0.25
1.81 1.65 0.50
1.82 1.67 0.50
2.21 2.02 0.53
2.05 1.76 0.43
2.05 1.81 0.41
2.10 1.76 0.35
2.27 2.05 0.43
2.25 2.03 0.41
2.08 1.83 0.30
1.86 1.68 0.30
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or

ȳn,b512a1H4S 12
H2

12D F122a2H2

122a2a3H4223a2a3a4H61...

1~22H2!b21)
j 51

b

aj Gyn , ~A3!

or

ȳn,b5~12H4Db!yn , ~A4!

where

Db5S 12
H2

12D(
i 51

b

~22H2! i 21)
j 51

i

aj . ~A5!

Based on the above we have

ŷn21/25S 1

2
1

H2

16
1

5H4

384
2

17H6

192
DbD yn1S 1

2
1

H6

16D yn21 ,

ŷn11/25S 3

2
2

5H2

16
2

H4

128
1

21H6

64
DbD yn2S 1

2
1

H6

16D yn21 ,

y9 n21/25X1
2

2H2F S 2
5

192
2

q

4D ~22H2!2
1

6
2

3q

2

1S 5

48
1qD S 3

2
2

5H2

16
2

H4

128
1

21H6

64
DbD

1qH 1

2
2H2S 2

1

16
2

5H2

384
1

17H6

192
DbD J GCyn

1F1

2
2H2H 2

1

96
1S 5

48
1qD S 2

1

2
2

H2

16D
1qS 1

2
1

H2

16D J Gyn21 ,

y9 n11/25F3
2

2H2H 5

16
2

H2

192
2

5H2

48 F S 2
5

192
2

q

4D ~22H2!

2
1

6
2

3q

2
1S 5

48
1qD S 3

2
2

5H2

16
2

H4

128
1

21H6

64
DbD

1qH 1

2
2H2S 2

1

16
2

5H2

384
1

17H6

192
DbD J G J Gyn

1F1
2

2H2H 1

16
2

5H2

48 F2
1

96
1S 5

48
1qD S 2

1

2
2

H2

16D
1qS 1

2
1

H2

16D G J Gyn21 .

Using the above relations in~3.8! and based on~2.3! it can
be seen, after straightforward manipulations, thatQ(H) is
given by ~3.11! andC(H) is given by~3.12!.
APPENDIX B

~b! Proof of the Theorem 4. From the relation~require-
ment! ~2.5! we have that

2
Q~H !

11C~H !
[cos~H !. ~B1!

If we substitute cos(H)[Si50
2N12H2i/2i ! and C(H), which is

given by ~3.12!, into ~B1!, we obtain

Q~H ![221H22
H4

12
1

H6

360
1

127H8

967680
2

2609H10

29030400

1
28859H12

3832012800
2

175159H14

697426329600

1
375367H16

83691159552000
2

1276267H18

25609494822912000

1
367411H20

9731608032706560000

2
9326617H22

4496002911110430720000
1¯ . ~B2!

Q(H), however, is given by~3.11!. Therefore, from~3.11!
and ~B2! we get explicitly the value

q52
23

336
. ~B3!

If we substitute~B3! into ~3.11!, we obtain

Q~H ![221H22
H4

12
1

H6

360
1

127H8

967680
2

151H10

4644864

2
1147H10

241920
Db1

1147H12

2322432
Db . ~B4!

Based on~B4!, the requirement~B2! gives

S 1147

241920
2

1147H2

2322432DH10Db

[
6661H10

116121600
2

28859H12

3832012800
1

175159H14

697426329600

2
375367H16

83691159552000
1

1276267H18

25609494822912000

2
3674117H20

9731608032706560000

1
9326617H22

4496002911110430720000
1¯ ~B5!

or the equivalent relation@using the formula~3.13!#

(
i 51

b

~22H2! i 21)
j 51

i

aj[s01s1H21s2H41¯ , ~B6!
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wheresi , u i 50,1,2,... are the coefficients of the Taylor ser
expansion which is obtained by dividing the right-hand s
of the relation ~requirement! ~B5! by (1147/241920
21147H2/2322432)(12H2/12)H10.

Obtaining successivelyb51,2,..., the requirement~B6!
gives

TABLE IV. Initial five values of parameterssj , j 50,1,2,... de-
fined in theorem 4 and the coefficients of the group of methodai ,
i 51(1)b.

sj j 50(1)4 ai , i 51(1)5

s05
6661

550650 a15
6661

550650

s15
39539

58139136 a252
197695

7034016

s25
95820041

1269758730240 a352
95820041

1727063520

s35
2224595489

304742095257600 a352
2224595489

45993619680

s45
180082834933

248669549730201600 a352
180082834933

3630539838048
o

al
e

a15s0 ,

a25
s1

22a1
52

s1

2s0
,

a35
s2

~22!2a2a1
5

s2

~22!2s0

22s0

s1
5

s2

22s1

and generally

ab5
sb21

~22!b21ab21ab22¯a1
5

sb21

~22!b21

22sb22

sb23
¯

22s0

s1

52
sb21

2sb22
~B7!

and the theorem is proved.
Presumptively, in Table IV we present the initial five va

ues ofsj , j 50(1)4 andai , i 51(1)5.
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