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Onset of fluidization in vertically shaken granular material
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When granular material is shaken vertically one observes convection, surface fluidization, spontaneous heap
formation, and other effects. There is a controversial discussion in the literature as to whether there exists a
threshold for the Froude numberG5A0v0

2/g, below which these effects cannot be observed anymore. By
means of theoretical analysis and computer simulation we find that there is no such single threshold. Instead,
we propose a modified criterion that coincides with the critical Froude numberGc51 for small driving
frequencyv0.

PACS number~s!: 45.05.1x, 46.40.2f, 81.05.Rm, 83.70.Fn
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I. INTRODUCTION

When granular material in a rectangular container is
posed to vertical oscillations under certain conditions o
observes a variety of effects, such as convection@1–3#, sur-
face fluidization@4–8#, spontaneous heap formation@9,10#,
surface patterns@11,12#, oscillons@13#, and others. The com
mon feature of all these effects is that particles change t
position with respect to each other. Provided the particles
not change their mechanical properties during the obse
tion time ~by polishing, comminution, etc.! the condition for
this motion is that neighboring particles separate from e
other at least for a small part of the oscillation cycleT
52p/v0.

There is a controversial discussion in the literature as
whether there is a critical value of the Froude number

Gc5A0v0
2/g, ~1!

below which the above mentioned effects vanish, withA0
andv0 being the parameters of the sinusoidal motion of
container. In many experimental observations~e.g.,
@1,6,7,10,11,14,15#! and computer simulations~e.g.,@15,16#!
such a critical numberGc was found. Several authors believ
that the value isGc51. In numerical simulations, howeve
surface fluidization and convection have been found foG
&1 @3,8,17#. Therefore, some authors believe thatG is not
the proper criterion to determine the degree of fluidization
a granular system@5,18#.

In this article we discuss the response of granular mate
to vertical oscillation in the limit of a one dimensional a
proach: the lowest bead of a vertical column ofN identical
spherical beads is shaken with periodicityz05A0cosv0t and
the other beads move due to their interaction force and g
ity g. We study the motion of the entire column and c
show that particles can lose contact with their neighbors e
whenG5A0v0

2/g is significantly less than 1.
Adjacent spheresk and k11 of radiusr and massm at

vertical positionszk andzk11 interact with their next neigh-
bors by

Fk,k1152Ar ~mjk,k11
3/2 1aj̇k,k11Ajk,k11! ~2!
PRE 621063-651X/2000/62~1!/1361~7!/$15.00
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being the elastic and dissipative material constants, i.e., fu
tions of the Young modulusY, Poisson ration, and dissipa-
tion rateA @for details of the derivation of Eq.~2! see@19##.
j is the compression 2r 2uzk2zk11u of the spheres. The
height of the column isL52Nr. Expression~2! is valid if
the typical relative velocities of adjacent spheres are far
low the speed of sound in the material of the spheres. C
tainly this condition holds for typical vibration experiment

Introducing new coordinatesuk5zk22rk (k50, . . . ,N),
the compression of two adjacent spheres is

jk,k115uk2uk11 . ~3!

Applying these definitions in Eq.~2! and adding gravityg we
get

z̈k5
1

m
~Fk,k112Fk21,k!2g, ~4!

Fk,k1152mAr ~uk2uk11!3/22aAr ~ u̇k2u̇k11!Auk2uk11.

The 0th sphere is fixed at the oscillating table; hence
position is

z0~ t !5u0~ t !5A0cosv0t.

We are interested in the critical parameters of drivi
(A0 ,v0) when theNth particle loses contact, i.e., whenuN
.uN21. We define the ‘‘response’’R(v0) as the ratio
AN /A0 where AN is the amplitude of theNth particle at
frequencyv0 and A0 is the amplitude of the driving vibra
tion. R(v0) can be calculated by convoluting the motio
zN(t) with exp(iv0t). SupposingANv0

2/g>1, the Nth par-
ticle separates from the (N21)st. If we foundA0,AN the
1361 ©2000 The American Physical Society
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1362 PRE 62PÖSCHEL, SCHWAGER, AND SALUEN˜A
critical Froude numberGc5A0v0
2/g would be less than 1

We will show that there is a range ofv0 where this is the
case.

In the next section we will formulate the problem in
continuum approach and derive a nonlinear partial differ
tial equation for the motion of the column of particles. Th
equation is solved in Sec. III in the limit of elastic materi
properties, i.e., by dropping the dissipative terms. Once
solution for the elastic case has been discussed in detail,
easier to study the influence of the dissipative term and
derive the solution of the full equation of motion, which
done in Sec. IV. Section V compares the analytical res
with a molecular dynamics simulation of the original~dis-
crete! problem stated in Eq.~4!. Finally, we discuss the re
sults.

II. CONTINUUM APPROACH

To study the system analytically we use a one dim
sional continuum approach. To this end we perform a Tay
expansion of the force with respect to the radiusr and con-
sequently consider the limitr→0, N→` with 2rN5L
5const. First we have to replace the displacementsuk by
u(2kr), introducing the displacement fieldu(z) which is a
continuous function ofz. With Eq. ~3! we find from Taylor
expansion

jk,k115u~2kr !2u~2kr12r !522r ~]u/]z!uz52kr .

The net force experienced by thekth particle is

Fk5Fk,k112Fk21,k52mAr ~jk,k11
3/2 2jk21,k

3/2 !

2aAr ~ j̇k,k11Ajk,k112 j̇k21,kAjk21,k!

522A2r 2mF S 2
]uk

]z D 3/2

2S 2
]uk21

]z D 3/2G
12A2r 2aF]2uk

]t]z
A2

]uk

]z
2

]2uk21

]t]z
A2

]uk21

]z G ,
with the abbreviations

uk5u~2kr !, ~5!

]uk

]z
5

]u

]z
uz52kr . ~6!

Both expressions in square brackets are expanded again
Eq. ~5! becomes

Fk

m
5

3A2

pr F2mS 2
]u

]zD 3/2

1a
]2u

]t]z
A2

]u

]zG .
With

k5
3A2m

pr
5

2Y

pr~12n2!
, ~7!

b5
3A2a

pr
5

2YA

pr~12n2!
, ~8!
-

e
is

to

ts

-
r

nd

the continuum formulation of Eq.~4! is

]2u

]t2
52g2

]

]z FkS 2
]u

]zD 3/2

2b
]2u

]t]z
A2

]u

]zG , ~9!

]u

]z
uz5L50,

whereg accounts for the gravitational force.

III. LIMIT OF ELASTIC PARTICLES

In the following we consider Eq.~9! in the limit of no
damping (b50). Using new variables

x512
z

L
, ~10!

t5S gk2

L5 D 1/6

t, ~11!

V5S L5

gk2D 1/6

v, ~12!

g5S g2L5

k2 D 1/6

, ~13!

Eq. ~9! becomes

]2u

]t2
52g21

1

g

]

]x F S ]u

]xD 3/2G , ~14!

]u

]x
ux5050. ~15!

Equation ~14! is defined in the rangexP@0,1#. The time
independent solutionU(x) of Eq. ~14! is

U~x!5
3

5
g2~x5/321!. ~16!

The solution of Eq.~14! can be considered as a superpositi
of the static solution~16! and a perturbationw(x,t). Insert-
ing u5U1w in Eq. ~14! we find

]2w

]t2
52g21

1

g

]

]x S ]U

]x
1

]w

]x D 3/2

'2g21
1

g

]

]x F S ]U

]x D 3/2

1
3

2
A]U

]x

]w

]x G
5

3

2

]

]x S x1/3
]w

]x D . ~17!

By separation of variablesw5T(t,V)X(x,V), i.e., a stand-
ing wave ansatz, we obtain two ordinary differential equ
tions for T andx:

T̈52V2T, ~18!
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3

2

d

dx S x1/3
dX

dxD52V2X, ~19!

with V being a real number. ForT(t,V) one gets

T;exp~ iVt!.

The solution of the spatial equation~19! can be found using
the Ansatz

X~x,V!5x1/3f ~y!, y5
2

5
A6Vx5/6,

which yields

y2
d2f

dy2
1y

d f

dy
1S y22

4

25D f 50. ~20!

Equation~20! is the Bessel equation of order 2/5. Hence t
solution of Eq.~19! is

X~x,V!5S 6

25D
1/5

GS 3

5DV2/5x1/3J22/5S 2

5
A6Vx5/6D .

~21!

An expression containingJ2/5 would be a solution too; how
ever, it does not satisfy the condition~15!. The prefactor in
Eq. ~21! has been chosen to assureX(0,V)51.

Hence the solution for a single vibrational modeuV is

uV5exp~ iVt!X~x,V!. ~22!

Without prior knowledge the full solution of Eq.~17! has to
be assumed to be a superposition of vibrational modes fo
real ~rescaled! frequenciesV:

u5E
2`

`

dV A~V!exp~ iVt!X~x,V!. ~23!

In the steady state of pure sinusoidal excitation of the ba
i.e., when all nonoscillatory perturbations that originate fro
the initialization have been damped out, Eq.~23! is the full
~steady state! solution of Eq.~17!.

The functionA(V) represents the excitation of the mod
at frequencyV. The boundary condition at the top of th
chain is automatically satisfied, whereas the boundary co
tion at the bottom reads

u~1,t!5E
2`

`

dV A~V!exp~ iVt!X~1,V! ~24!

5A0cosV0t. ~25!

One can see that the integrand of Eq.~24! can be nonzero
only for VÞV0. This means that forVÞV0 eitherA(V) or
X(1,V) has to be zero, i.e., for all frequencies for whi
X(1,V) is nonzero the amplitude must be zero, whereas
all frequencies that are a root ofX(1,V)50 the amplitude
can be nonzero. Therefore, we find that the full solution
Eq. ~17! is a superposition of the vibrational mode of th
frequency of shakingV0 and of a discrete set of frequencie
Vk (k51, . . . ,̀ ).
e

ll

e,

i-

r

f

Note thatVk are not rational multiples of each other sin
the roots of Bessel functions are incommensurable@see Eq.
~21!#. Therefore, to determine the maximum acceleration
the topmost particle it is sufficient to consider only the mo
of the external excitation. All other vibrational modes c
only further increase the maximal acceleration.

The above defined responseR is the ratioAN /A0. Since
the zeroth particle corresponds tox51 and theNth to x
50, we can write

R21~V0!5UX~1,V0!

X~0,V0!
U5uX~1,V0!u

5S 6

25D
1/5

GS 3

5DV0
2/5UJ22/5S 2

5
A6V0D U.

~26!

The responseR is an amplification factor; hence the valu
g/R(V0) is the critical acceleration of the driving vibratio
@20#. R is larger than 1 for all driving frequenciesv0. This
means that forany driving frequencyv0 and driving ampli-
tudeA0 the amplitude of the top particle of the columnAN at
frequency v0 will be larger than A0. Therefore, for
ANv0

2/g51, i.e., when theNth particle separates from th
(N21)st, we findA0v0

2/g5Gc,1.
According to the above arguments we have to replace

conditionG>1, which was supposed to be the preconditi
for surface fluidization, convection, etc., by

A0v0
2/g5G>R21~v0!. ~27!

The functionR21(v0) vs v0 is drawn in Fig. 1~dash-
dotted line,Rel

21). For the system parameters we usedA0

50.01 mm, elastic constantk52.83104 m2/sec2 ~rubber
with Young modulusY543107 Pa), andL50.6 m. The
curve reveals pronounced resonances at eigenfrequencievk
where R21 becomes minimal~only the first resonance is
shown in Fig. 1!.

All experiments on surface fluidization and convecti
that can be found in the literature were performed far bel

FIG. 1. The response functionRel
21 due to Eq.~26! for a column

of elastic particles~dash-dotted!. For dissipative particles (b
5127 m2/sec): circles,Rsa

21 , numerical integration of Eq.~4! at
small amplitude; full line,Rtheo

21 , analytical solution Eq.~36! of the
full Eq. ~9! including dissipation; dashed line,Gc(v0), result of a
direct simulation of Eq.~4! ~for explanation see text.!
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the first resonance, which for a 20 cm column of cast ir
beads (Y510.831010 N m22,r57.83103 kg m23,n
50.22) is at about 330 Hz. This value can be found from
root of Eq. ~26!, i.e., R21(V0)50, which yieldsV0'1.78,
together with definitions~12! and ~7!. Therefore, of particu-
lar interest for practical purposes is the limit of small fr
quencyv0, i.e., below the first eigenfrequency. The Tayl
expansion of Eq.~26! yields R21(V0) for small V0,

R21512
2

5
V0

21O~V0
4!

512
2

5 S L5

gk2D 1/3

v0
21O~v0

4!.

~28!

Given that the container vibrates with frequencyv0, for
the critical amplitudeA0 of the vibration when the top par
ticle separates, i.e., when the material starts to fluidize,
finds

A05
g

v0
2

2
2

5 S L5

gk2D 1/3

. ~29!

Surprisingly, even for very small frequencies whereR21

→1 one finds that the critical amplitude is reduced by
constant as compared withg/v0

2. So although the value o
the response function comes arbitrarily close to 1, the crit
amplitudediffers from the expected one by a constant. Ho
ever, this does not mean that the critical Froude number
comes a constant.

From the above equations~28! and ~29! one can see tha
the size of the effect~the amplification! depends onL5/3,
r2/3, andY22/3, i.e., it increases with the length of the co
umn and with the material density and decreases with
creasingY.

Equation ~21! describes the behavior of a column
grains for the case of purely elastic contact (a50). If the
dissipative material properties are taken into considera
the full equation~9!, has to be solved which will be dis
cussed in the following section.

IV. DISSIPATIVE PARTICLE INTERACTION

We will consider, as before, small perturbationsw about
the static deformation of the chain under gravity, whi
propagate from the bottom. The dissipative term is char
terized by the parameterb in Eq. ~9!. From this equation,
again introducing the static solution given by Eq.~16! and
using the same transformation for the spatial coordinatx
[12z/L, one obtains the corresponding linearized wa
equation for dissipative materials,

]2w

]t2
5S g

kL5D 1/3F3

2
k

]

]x S x1/3
]w

]x D1b
]

]x S x1/3
]2w

]t]xD G .
~30!

In this case it is less useful to introduce the rescaled t
variablet, while it proves convenient to define
n

e

e

al
-
e-

-

n

c-

e

e

S kL5

g D 1/6

[l , ~31!

the natural length scale coming out of the analysis. By me
of the Fourier transform

W~x,v!5
1

A2p
E

2`

`

e2 ivtw~x,t !dt, ~32!

Eq. ~30! becomes

2v2W5

3

2
k2 ivb

l 2

]

]x S x1/3
]W
]x D , ~33!

which has the same structure as Eq.~19!. Hence the same
transformations apply in this case and the general solu
reads finally

W~x,v!5x1/3F C1J2/5S 6

5
vl

A3

2
k2 ivb

x5/6D
1C2J22/5S 6

5
vl

A3

2
k2 ivb

x5/6D G . ~34!

The part of the solution depending onJ2/5 carries a diver-
gence atx50 (z5L), and thereforeC150 is required for
the solution to be physical. The condition of the free end
x50 (z5L) is satisfied automatically, as in the caseb50.
The solution has exactly the same structure as the solutio
the elastic problem, Eq.~21!, and the only change is that th
argument of the Bessel function has an imaginary part. If o
considers only the modev0, which propagates from the bot
tom (x51) with amplitudeA0, the solution reads

w~x,t !5Re5 A0eiv0tx1/3

J22/5S 6

5
v0l

A3

2
k2 iv0b

x5/6D
J22/5S 6

5
v0l

A3

2
k2 iv0b

D 6 .

~35!

The fluidization condition at the top of the cha
u]2w/]t2(x50,t)u.g can be written in general as
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R21~v0![GS 3

5DU S 3

5
v0l

A3

2
k2 iv0b

D 2/5

3J22/5S 6

5
v0l

A3

2
k2 iv0b

D U
,

A0 v0
2

g
. ~36!

Since the Bessel functions of the first class have zeros
on the real axis,R21(v0) can no longer be zero for an
frequency if bÞ0. This means that the sharp resonan
displayed byR(v0) whenb50 disappear and are replace
by more or less pronounced minima in dependence on
damping constantb. This can also be observed in Fig. 1~full
line!. Increasing values ofb make the response smoother,
deviates from that of the elastic case earlier, and the lo
minima translate along the frequency axis appreciably~see
Fig. 2!.

Analogously to the elastic case@Eq. ~28!#, for small fre-
quenciesR21(v0) can be expanded into a Taylor series:

R21.12v0
2 2

5 S L5

gk2D 1/3

1v0
4S L5

gk2D 2/3

3F 3

100
1

8

45
b2S g

k4L5D 1/3G . ~37!

The contribution due to the dissipative parameter enters
Taylor expansion at the fourth power of the frequen
Therefore, the analysis of the elastic case given by Eq.~28!
remains valid for small frequencies.

It is interesting to note that due to Eq.~37! therealways
exists a global minimum below the valueR21(v0)51, re-
gardless of the value of the dissipative parameter. We w
to study for what range of frequencies the inverse respo

FIG. 2. The response function over the frequency for differ
dissipative constants:b50,100,200, . . . ,1000 m2/sec ~bottom to
top!. With increasing damping the minimum becomes less p
nounced and shifts to lower frequencies.
ly

s

e

al

e
.

nt
se

R21 is smaller than 1 for varying damping constantb. The
lower boundary of this interval is obviouslyv50. To deter-
mine the upper boundaryvmax we solved numerically the
equationR21(vmax)51 for different values ofb. The result
of this calculation is shown in Fig. 3.

One can see that for high enough damping this freque
vmax varies only slowly withb. The curve almost saturate
at vmax'200 sec21 which is close to the first maximum o
the undamped inverse response~see Fig. 4, dash-dotted line!.
Although the valley of the inverse response function b
comes smaller with increasing damping~Fig. 3!, even for
larger dampingR21 is smaller than 1 in a finite frequenc
interval, i.e., the effect of amplitude amplification exists f
almost the entire range of frequencies between zero and
first maximum of the undamped inverse response.

For small enough damping the frequency range of am
tude amplificationR21(v0),1 extends beyond the positio
of the first maximum of the undamped inverse response. F
ure 4 shows the response function for different values of
dissipative parameterb together with the elastic case (b
50, dash-dotted!. The frequencyv0 at which R21(b)51

t

-

FIG. 3. The frequencyvmax at which the inverse response fun
tion becomes larger than 1 is almost constant with varying diss
tive parameterb as long as the damping is not too small. For ve
low dissipative parameterb one finds a nonsmooth function~inset!.

FIG. 4. The response function for different values of the dis
pative constantb510,20,30, . . . ,100 m2/sec ~bottom to top! to-
gether with the elastic curveb50 ~dash-dotted!. With decreasingb
the curves are influenced by higher order minima of the respo
function. This explains the steps in the curve drawn in Fig. 3
small values of the dissipationb.
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increases with decreasing damping. In Fig. 4 one can cle
see the widening of the range of amplitude amplification
we decrease the damping parameter, starting at high va
where the amplifying range is limited to the first ‘‘well,’’ we
cannot expect a large change since, as long as we re
limited to the first well, there is an upper bound~the fre-
quency of the first maximum ofR21) to this range. Reducing
b further we will eventually reach values for which the am
plifying range extends to the second well. Even for values
b that are only slightly below this threshold, the range w
now span again almost the entire range of the second we
to the frequency of the second maximum. So there will
rather sharp steps in the dependence of the upper range
of the damping instead of only gradual changes. This beh
ior explains the steps in the inset of Fig. 3.

V. NUMERICAL RESULTS

To check the analytical results and in particular the va
ity of the continuum approach, we calculatedR21 for a finite
value of dampingb from the numerical simulation of Eq
~4!. The circles in Fig. 1 display the reciprocal responseR21

vs v0 with fixed amplitudeA050.01 mm, elastic constan
k52.83104 m2/sec2 ~rubber with Young modulusY54
3107 Pa), andL50.6 m. Figure 1 shows that for sma
frequencyv0 and small dampinga the undamped theoretica
curve ~dash-dotted! agrees well with numerical data. If on
compares the numerical result with the damped solution
cording to Eq.~36! ~full line in Fig. 1! the agreement with
theory is very good.

To check the validity of our linear theory we also dete
mined directly by integrating Eq.~4! at what Froude numbe
Gc the particles start to jump. The results of this calculat
are shown in the dashed curve in Fig. 1 and agree well w
the linear theory. To obtain the value ofGc for a given fre-
u

e-

J

ly
f
es

ain

f
l
up
e
mit
v-

-

c-

n
th

quencyv0, we determined an upper boundA0
1 for the criti-

cal amplitude where one observes jumping and a low
boundA0

2 where no jumping occurs. Then we narrowed t
interval A0

12A0
2 by testing an amplitude betweenA0

1 and
A0

2 until (A0
12A0

2)/A0
1,1023.

VI. DISCUSSION

For the case of a vertical column of viscoelastic sphe
we derived a linear wave equation in a one dimensional
proximation. We have shown that the sphere on top of
column,N, can separate from the (N21)st even if the con-
tainer is oscillated withA0v0

2/g,1. As the main result we
derived a modified condition for the topmost particle to se
rate from its neighbor. We showed that instead of the wid
accepted conditionGc[A0v0

2/g.1 one has to satisfy
A0v0

2/g.R21, where R21 is a function of v0. We have
shown that independent of the material properties thereal-
waysexists a rangev0P@0,vmax# for which the amplitude of
vibration A0 is amplified, i.e., for which the top particle ca
separate~the material fluidizes! even ifA0v0

2/g,1. Numeri-
cal calculations agree well with the analytical results.

Whereas the critical Froude numberGc>1 is certainly the
proper criterion to predict whether a single rigid particle w
jump on a vibrating table, we suspect that this number is
suited to describe the behavior of a vibrated column
spheres, and even less is it a criterion for surface fluidiza
of a three dimensional granular material.
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