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Onset of fluidization in vertically shaken granular material
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When granular material is shaken vertically one observes convection, surface fluidization, spontaneous heap
formation, and other effects. There is a controversial discussion in the literature as to whether there exists a
threshold for the Froude numbﬂ:Aowglg, below which these effects cannot be observed anymore. By
means of theoretical analysis and computer simulation we find that there is no such single threshold. Instead,
we propose a modified criterion that coincides with the critical Froude nurfiberl for small driving
frequencywy.

PACS numbgs): 45.05:+x, 46.40—f, 81.05.Rm, 83.70.Fn

I. INTRODUCTION with
When granular material in a rectangular container is ex- \/5 Y
posed to vertical oscillations under certain conditions one K="3 2
observes a variety of effects, such as convedtior3], sur-
face fluidization[4—8], spontaneous heap formati$®,10],
surface patterngl1,12, oscillons[13], and others. The com- = E YA
mon feature of all these effects is that particles change their 3 1—2

position with respect to each other. Provided the particles do

not change their mechanical properties during the observaseing the elastic and dissipative material constants, i.e., func-
tion time (by polishing, comminution, etcthe condition for  tions of the Young modulu¥, Poisson ratiov, and dissipa-
this motion is that neighboring particles separate from eaction rateA [for details of the derivation of Eq2) see[19]].
other at least for a small part of the oscillation cydle ¢ is the compression r2-|z,—z., 4| of the spheres. The

=27 wg. height of the column id =2Nr. Expression(2) is valid if
There is a controversial discussion in the literature as tahe typical relative velocities of adjacent spheres are far be-
whether there is a critical value of the Froude number low the speed of sound in the material of the spheres. Cer-
tainly this condition holds for typical vibration experiments.
I'.=Aqw3lg, 1) Introducing new coordinatas,=z,— 2rk (k=0, ... N),
the compression of two adjacent spheres is
below which the above mentioned effects vanish, wih B 3
and wg being the parameters of the sinusoidal motion of the Sk k1= Uk— Uk 1- )
container. In many experimental observations(e.g., Applying these definitions in Eq2) and adding gravitg we

[1,6,7,10,11,14,15 and computer simulation®.g.,[15,16)
such a critical numbeF . was found. Several authors believe
that the value id".=1. In numerical simulations, however, 1
surface fluidization and convection have been foundIfor zkza(Fk,kH—Fk,l,k)—g, 4
=<1 [3,8,17. Therefore, some authors believe thais not
the proper criterion to determine the degree of fluidization of L
a granular systerfb,18]. Froks 1= — 4T (U= U 1) ¥2— ar (U= Ups 1) VU= U1

In this article we discuss the response of granular material o o ]
to vertical oscillation in the limit of a one dimensional ap- The Oth sphere is fixed at the oscillating table; hence its
proach: the lowest bead of a vertical columnNfdentical ~ POsItion Is
spherical beads is shaken with periodidty Agcoswgt and
the other beads move due to their interaction force and grav-
ity g. We study the motion of the entire column and can
show that particles can lose contact with their neighbors eve
wheanAowélg is significantly less than 1.

Adjacent sphereg andk+1 of radiusr and masan at
vertical positionsz, andz,, ; interact with their next neigh-
bors by

get

Zo(t)=ug(t)=AgCoswt.

We are interested in the critical parameters of driving
PAO,wO) when theNth particle loses contact, i.e., whery
>un_1. We define the “response’R(wg) as the ratio
An/Ag where Ay is the amplitude of theNth particle at
frequencyw, and A, is the amplitude of the driving vibra-
tion. R(wg) can be calculated by %onvoluting the motion
. Zn(1) with explwgt). SupposingAywg/g=1, the Nth par-
Freri=— \/F(Mgﬁ,EHJF“Ek,k+1V§k,k+1) (2 ticle separates from theN(—1)st. If v(\)/e foundAy<Ay the
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critical Froude numbel .= Ayw3/g would be less than 1. the continuum formulation of Eq4) is
We will show that there is a range af, where this is the

case. Fu d au\¥2  52u [ 4u
In the next section we will formulate the problem in a F__g_ 9z "\ T 5z _'Bawz 9zl ©)
continuum approach and derive a nonlinear partial differen-
tial equation for the motion of the column of particles. This Ju
equation is solved in Sec. Il in the limit of elastic material EIZ:L=O,
properties, i.e., by dropping the dissipative terms. Once the
solution for the elastic case has been discussed in detail, it {§hereg accounts for the gravitational force.
easier to study the influence of the dissipative term and to
derive the solution of the full equation of motion, which is Il LIMIT OF ELASTIC PARTICLES
done in Sec. IV. Section V compares the analytical results '
with a molecular dynamics simulation of the originalis- In the following we consider Eq(9) in the limit of no
crete problem stated in Eq4). Finally, we discuss the re- damping (3=0). Using new variables
sults.
z
Xx=1-—, (10
Il. CONTINUUM APPROACH L
To study the system analytically we use a one dimen- g2 1/6
sional continuum approach. To this end we perform a Taylor 7= ( —5> t, (11
expansion of the force with respect to the raditend con-
sequently consider the limit—0, N—o with 2rN=L e
=const. First we have to replace the displacementby B LS
u(2kr), introducing the displacement fielo(z) which is a Q= aK? w, (12)
continuous function ok With Eq. (3) we find from Taylor
expansion ) E 1/6 .
Exkr1=U(2Kr) —u(2kr+2r) = —2r (du/ dz)| ;= o - v P ' (13
The net force experienced by thkéh particle is Eg. (9) becomes
FkIFk,k+1_Fk—1,k:_M\/F(fﬁ,liﬂ_fa/flk J%u , 10 (au>3/2 14
— === |,
; y 2 Ix |\ dx
— aVr (& 1 VEokr 1~ E-1xVE— 1) T Y
au, | 32 FITAEL au
__ 2 125k} | —_ =
2\2r ’u{( &z) 9z 7 [x=0=0: (19
2.2 J?uy [ Uk U1 | 9Uk-1 Equation (14) is defined in the rang&e[0,1]. The time
rra ooz 9z ooz Jz | independent solutiob) (x) of Eq. (14) is
with the abbreviations 3
U= g7 (x**-1). (16
ux=u(2kr), 5
The solution of Eq(14) can be considered as a superposition
duy  du of the static solutior{16) and a perturbatiom(x, 7). Insert-
9z Elz:Zkf' ©) ingu=U-+w in Eq. (14) we find
Both expressions in square brackets are expanded again and 7w 2y 19 (U ow\3?
Eq. (5) becomes g2V Ty ax|ax | ax
Fo 3\2 u\¥ - Pu [ au 1 9[[au\*2 3 [a0 aw
—=—|—ul——=| +ta—=——\/——| ~—2r = ] 4242
m  7p 9z dtoz 9z YTy ax| | ox 2 V gx ox
With 34 aw
A VAV S
2 x| % x)' (7
3\V2u 2y
K= (7 By separation of variables=T(7,Q)X(x,Q), i.e., a stand-

™ mp(l-1)’
mp(1= %) ing wave ansatz, we obtain two ordinary differential equa-

- 3\2a _2YA tions for T andx:

mp mp(1—1?) ’

® T=-07, (18)
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3d dX
2 dx dx

13- - _ 2

> ax| ) O°X, (19

with Q) being a real number. Fdr(,()) one gets
T~expiQ7).

The solution of the spatial equatigh9) can be found using
the Ansatz

2
X(x,Q)=x"H(y), y=z\60x,

0.0

0 50 100 150 200

which yields o,[1/sec]
d?f df 4 FIG. 1. The response functich;1 due to Eq.(26) for a column
y2—2+yd—+( 2_ 2—)f=0. (20 of elastic particles(dash-dotted For dissipative particles 4
dy y 5 =127 nf/sec): circlesR,!, numerical integration of Eq4) at

. . . small amplitude; full line Ry,2,, analytical solution Eq(36) of the
Equation(20) is the Bessel equation of order 2/5. Hence they, Eq. (9) including dissipation: dashed lin&(wo), result of a

solution of Eq.(19) is direct simulation of Eq(4) (for explanation see text.
6\ (3 2 i i i
X(x Q):(_) F(_)QZ/5X1/3J2/5(_\/69)(5/6)_ Note that(), are not rational multiples of each other since
’ 25 5 5 the roots of Bessel functions are incommensurabée Eq.

(21 (21)]. Therefore, to determine the maximum acceleration of
the topmost particle it is sufficient to consider only the mode
of the external excitation. All other vibrational modes can
only further increase the maximal acceleration.

The above defined responBeis the ratioAy/A,. Since
the zeroth particle corresponds xe=1 and theNth to x

An expression containingd,;s would be a solution too; how-
ever, it does not satisfy the conditigh5). The prefactor in
Eqg. (21) has been chosen to ass€0,())=1.

Hence the solution for a single vibrational modlg is

Ug=exp(i QT)X(X,0). (29 =0, we canwrite

Without prior knowledge the full solution of E¢17) has to -1 _ X(1.80) _
o o R™H Qo) |X(1,00)]
be assumed to be a superposition of vibrational modes for all X(0.0)
real (rescaled frequencie):
15
6 3 25 2
0 = 2_5 r g QO J,2/5 g\/gﬂo .
u=f dQ A(Q)expiQr)X(x,Q). (23)

In the steady state of pure sinusoidal excitation of the base,he respons& is an amplification factor; hence the value
i.e., when all nonoscillatory perturbations that originate fromgd/R({o) is the critical acceleration of the driving vibration
the initialization have been damped out, E2p) is the full ~ [20]. Ris larger than 1 for all driving frequencies,. This
(steady statesolution of Eq.(17). means that foany driving frequencyw, and driving ampli-

The functionA(Q) represents the excitation of the mode tudeA, the amplitude of the top particle of the columAg at
at frequencyQ). The boundary condition at the top of the frequency wo will be larger than A,. Therefore, for
chain is automatically satisfied, whereas the boundary condiyw3/g=1, i.e., when theNth particle separates from the
tion at the bottom reads (N—1)st, we findA0w§/g=FC<1.

According to the above arguments we have to replace the
_[” ; conditionI'=1, which was supposed to be the precondition
u(Lm Jloon AQ)expiQ7)X(1.0) (24) for surface fluidization, convection, etc., by

= A,cosQT. (25) Agwilg=T=R Y wy). 27)

One can see that the integrand of E24) can be nonzero The functionR™*(wp) Vs w is drawn in Fig. 1(dash-
only for Q# Q. This means that fof) # Q, eitherA(Q) or  dotted line,R;"). For the system parameters we uskgl
X(1,0Q) has to be zero, i.e., for all frequencies for which =0.01 mm, elastic constant=2.8x10* m?/seé (rubber
X(1,Q) is nonzero the amplitude must be zero, whereas fowith Young modulusY=4x10" Pa), andL=0.6 m. The

all frequencies that are a root &f(1,Q2) =0 the amplitude curve reveals pronounced resonances at eigenfrequangies
can be nonzero. Therefore, we find that the full solution ofwhere R™* becomes minimalonly the first resonance is
Eqg. (17) is a superposition of the vibrational mode of the shown in Fig. 1.

frequency of shaking), and of a discrete set of frequencies  All experiments on surface fluidization and convection
Qp (k=1,... ). that can be found in the literature were performed far below
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g (31)

beads ¥=10.8<10° Nm 2,p=7.8x10° kgm 3,v
=0.22) is at about 330 Hz. This value can be found from the
root of Eq.(26), i.e., R"1(Q,)=0, which yieldsQ,~1.78,
together with definitiong12) and (7). Therefore, of particu- the natural length scale coming out of the analysis. By means
lar interest for practical purposes is the limit of small fre- of the Fourier transform

guencywy, i.e., below the first eigenfrequency. The Taylor

expansion of Eq(26) yields R™1(Q,) for small Q,,

the first resonance, which for a 20 cm column of cast iron (KL5)1/6
=/,

1 (=
W(x,w)=—ﬁ e~ 'ehw(x,t)dt, (32

V2w

2
R™=1-£05+0((p)

5\ 13 Eq. (30) becomes
2( L
21——(9—) wg+O(wp).

5\ gx2 3
(28 , EK—Iw,B T
. o . —wPW=——— | X, (33)

Given that the container vibrates with frequensy, for /2 X IX
the critical amplitudeA, of the vibration when the top par-
ticle separates, i.e., when the material starts to fluidize, one .
finds which has the same structure as E49). Hence the same

transformations apply in this case and the general solution
g 2/ LS 13 reads finally
Ao=—=~ 5|73 (29)
wq gk
6
i . —w/

Surprisingly, even for very small frequencies where? Wix,0)=x¥3 C,J S 506
—1 one finds that the critical amplitude is reduced by a ’ 172 3
constant as compared witjﬂwé. So although the value of EK—Iwﬂ
the response function comes arbitrarily close to 1, the critical
amplitudediffers from the expected one by a constant. How- 6
ever, this does not mean that the critical Froude number be- g“’/
comes a constant. +CoJ s 3—x5’6 . (39

From the above equatior{28) and(29) one can see that A /_K_iwlg
the size of the effectthe amplification depends orL%?, 2

p?®, and , i.e., it increases with the length of the col-

umn and with the material density and decreases with in
creasingy.

Equation (21) describes the behavior of a column of
grains for the case of purely elastic contaat<0). If the
dissipative material properties are taken into consideratio
the full equation(9), has to be solved which will be dis-
cussed in the following section.

Y—2/3

The part of the solution depending dn,5 carries a diver-
gence atx=0 (z=L), and thereforeC,;=0 is required for

the solution to be physical. The condition of the free end at
x=0 (z=L) is satisfied automatically, as in the cg8e 0.

%he solution has exactly the same structure as the solution of
the elastic problem, Eq21), and the only change is that the
argument of the Bessel function has an imaginary part. If one
considers only the mode,, which propagates from the bot-

IV. DISSIPATIVE PARTICLE INTERACTION tom (x=1) with amplitudeA,, the solution reads

We will consider, as before, small perturbationsabout
the static deformation of the chain under gravity, which ( 6 \
propagate from the bottom. The dissipative term is charac- gwo/
terized by the paramete® in Eq. (9). From this equation, J | ——— x5
again introducing the static solution given by E#6) and § .

. ; : . K—lwof
using the same transformation for the spatial coordinxate _ (ot 13 2
=1-17/L, one obtains the corresponding linearized waveW(x,t) =Re{ Age!o'x 6 &
equation for dissipative materials, 5“’0/

Jo25
1/3
Fw_ (g EKi(Xl/sﬁ_W n i(xm‘?z_w> EK—iwo,B
a2 L els) 125\ ox ) TP ax Y atax) || \ 2 -

(30

In this case it is less useful to introduce the rescaled time The fluidization condition at the top of the chain
variable 7, while it proves convenient to define |>w/ 9t?>(x=0,)|>g can be written in general as
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FIG. 2. The response function over the frequency for different
dissipative constants3=0,100,200. ..,1000 nf/sec (bottom to
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FIG. 3. The frequencw,, at which the inverse response func-
tion becomes larger than 1 is almost constant with varying dissipa-

top). With increasing damping the minimum becomes less prolive paramete3 as long as the damping is not too small. For very

nounced and shifts to lower frequencies.

3 2/5

5 wo/

3
EK_“UO,B

6

5 (,00/

XJ_25 3—
\/EK—iwoﬁ

AO (1)2

g

3
R—%am)zr(g)

(36)

Since the Bessel functions of the first class have zeros onl
on the real axisR™*(wy) can no longer be zero for any

low dissipative parametg® one finds a nonsmooth functidgimsey.

R™1 is smaller than 1 for varying damping constaghtThe

lower boundary of this interval is obviousty=0. To deter-
mine the upper boundary,,., we solved numerically the
equationR™ }(wna)=1 for different values of3. The result
of this calculation is shown in Fig. 3.

One can see that for high enough damping this frequency
wmax Varies only slowly with3. The curve almost saturates
at wma=200sec! which is close to the first maximum of
the undamped inverse resporisee Fig. 4, dash-dotted line
Although the valley of the inverse response function be-
comes smaller with increasing dampiiigig. 3), even for
larger dampingR ™! is smaller than 1 in a finite frequency
interval, i.e., the effect of amplitude amplification exists for
almost the entire range of frequencies between zero and the
first maximum of the undamped inverse response.

For small enough damping the frequency range of ampli-

frequency if 8#0. This means that the sharp resonancedude amplificatiorR™*(wo) <1 extends beyond the position

displayed byR(w,) when 8=0 disappear and are replaced
by more or less pronounced minima in dependence on th
damping constanB. This can also be observed in Fig(full

line). Increasing values g8 make the response smoother, it

of the first maximum of the undamped inverse response. Fig-
gre 4 shows the response function for different values of the
dissipative parameteB together with the elastic cases(
=0, dash-dotted The frequencyw, at whichR™%(B8)=1

deviates from that of the elastic case earlier, and the local

minima translate along the frequency axis apprecidbbge
Fig. 2.
Analogously to the elastic ca$&qg. (28)], for small fre-
quenciesR ™ 1(w,) can be expanded into a Taylor series:
|_5 1/3 L5
_) vt £

(9K2 (9K2
3 8
K

1/3
100 45 ) 1

The contribution due to the dissipative parameter enters th
Taylor expansion at the fourth power of the frequency.
Therefore, the analysis of the elastic case given by(E8§).
remains valid for small frequencies.

It is interesting to note that due to E7) therealways
exists a global minimum below the vallR 1(wy)=1, re-

2/3

2
— 2
R 1:1—(1)0€ 4

0

g

X 4L5

(37

1.0

0.8

06 r

R

0.4

0.2 r

0.0

400 600

o,[1/sec]

e 200
FIG. 4. The response function for different values of the dissi-
pative constani3=10,20,30...,100 nf/sec (bottom to top to-

gether with the elastic curv@= 0 (dash-dotted With decreasingd
the curves are influenced by higher order minima of the response

gardless of the value of the dissipative parameter. We warttinction. This explains the steps in the curve drawn in Fig. 3 for
to study for what range of frequencies the inverse responssmall values of the dissipatio.
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increases with decreasing damping. In Fig. 4 one can clearljuencyw,, we determined an upper boudd for the criti-
see the widening of the. range of amplitude_ amplific_:ation. Ifcal amplitude where one observes jumping and a lower
we decrease the damping parameter, starting at high valuggundA, where no jumping occurs. Then we narrowed the

where the amplifying range is limited to the first “well,” we interval A{ — A, by testing an amplitude betweek and
cannot expect a large change since, as long as we rema)'_(g until (AZ —Ag)/A; <1072,

limited to the first well, there is an upper boufihe fre-
quency of the first maximum d® 1) to this range. Reducing

B further we will eventually reach values for which the am-
plifying range extends to the second well. Even for values of
B that are only slightly below this threshold, the range will . . o : .
now span again almost the entire range of the second well u € qe”"?d a linear wave equation in a one dimensional ap-
to the frequency of the second maximum. So there will b roximation. We have shown that the sphere on top of the

rather sharp steps in the dependence of the upper range linip!Umn: N, can separate frozm theN-1)st even if the con-

of the damping instead of only gradual changes. This beha@iner is oscillated withAqwg/g<1. As the main result we

ior explains the steps in the inset of Fig. 3. derived a modified condition for the topmost particle to sepa-
rate from its neighbor. We showed that instead of the widely
accepted conditionFCEAowﬁ/g>1 one has to satisfy

V. NUMERICAL RESULTS Agwilg>R™1, whereR™! is a function of w,. We have

To check the analytical results and in particular the valig-Shown Fhat independent of the materlal propertlgs tabre
ity of the continuum approach, we calculated* for a finite waysexists a range [O.""max] for V\.’h'Ch the amp"t!’de of
value of damping from the numerical simulation of Eq. vibration A, is amp.|lfled{ e, for wr_uch thze top particle can
(4). The circles in Fig. 1 display the reciprocal respoRsé separatéthe:- material fIU|d|ze)s_even lonwo/9<1- Numeri-

VS wg with fixed amplitudeA,=0.01 mm, elastic constant cal calculations agree well with the analytlpal resglts.
«k=2.8x10" mP/se@ (rubber with Young modulusy =4 Where_as _the critical _Froude numliét_gzl is c_ertaml_y the _
X107 Pa), andL=0.6 m. Figure 1 shows that for small Proper criterion to predict whether a single ngld partlcle_wnl
frequencyw, and small damping: the undamped theoretical 1UMP On & vibrating table, we suspect that this number is not
curve (dash-dotteflagrees well with numerical data. If one Suited to describe the behavior of a vibrated column of
compares the numerical result with the damped solution acspheres, an_d even lessisita cnterlon.for surface fluidization
cording to Eq.(36) (full line in Fig. 1) the agreement with ©f & three dimensional granular material.

theory is very good.

To check the validity of our linear theory we also deter-
mined directly by integrating Eq4) at what Froude number
I, the particles start to jump. The results of this calculation The authors wish to thank E. @tent, N. Gray, H. J.
are shown in the dashed curve in Fig. 1 and agree well withtderrmann, H. M. Jaeger, S. Luding, S. Roux, and L.
the linear theory. To obtain the value Bf for a given fre-  Schimansky-Geier for helpful discussion.

VI. DISCUSSION

For the case of a vertical column of viscoelastic spheres
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