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Acoustic energy and momentum in a moving medium
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By exploiting the mathematical analogy between the propagation of sound in a nonhomogeneous potential
flow and the propagation of a scalar field in curved space-time, various wave “energy” and wave “momen-
tum” conservation laws are established in a systematic manner. In particular, the acoustic energy conservation
law due to Blokhintsev appears as the result of the conservation of a mixed covariant and contravariant
energy-momentum tensor, while the exchange of relative energy between the wave and mean flow, first noted
by Longuet-Higgins and Stewart in the context of ocean waves, appears as the covariant conservation of the
doubly contravariant form of the same energy-momentum tensor.

PACS numbes): 43.28+h, 43.20+g, 43.25+y, 67.40.Mj

[. INTRODUCTION ploiting Unruh’s ingenious identificatiofl9,2Q of the wave
equation for sound waves in such a flow with the equation

Many discussions of the “energy” and “momentum” as- for a scalar field propagating in curved space-time, | extract
sociated with waves propagating through moving fluids carthe conservation laws from the principle of general covari-
be found in the physic§l], engineering2—-6|, and math- ance. Deriving the conservation laws in this way may seem
ematical fluid mechanics literatuf@—16]. Various defini- like a case of taking a sledgehammer to crack a nut, but the
tions are proposed, some of which lead to conserved quantfermalism is familar to most physicists, automatic in appli-
ties, and some to quantities that are not conserved but insteagtion, and the ambiguities in defining the conserved quanti-
exchanged between the wave and the mean flow. In part, thes turn out to lie in the choice of whether to identify the
multlp|ICIty of definitions is due to d|ff|CU|ty in deciding energy_momentum tensor &%’ or asTlV" . AlSO, when quan-
what fraction of the energy or momentum of the systeMties are not conserved, as is the case of the wave momen-
properly belongs to the wave and what fraction should bqum in a shear flow, their sources arise naturally from the
associated with the moving medium. It is also often uncleaggnnection terms in the covariant derivative.
how to divide equations expressing conservation laws into |5 Sec. |1, | discuss the action describing the irrotational
terms relating to the conserved quantity, and terms acting g otion of a homentropic fluid. In Sec. IlI, | derive Unruh’s
sources for this quantity. Related to these primarily cosmeti%quaﬂon from the action principle. In Sec. IV, | explain why
problems are more fundamental issues as to whether thge often need information beyond the solutions of the lin-
“energy” or “momentum” under discussion is the true earized wave equation, and in Sec. V derive the conservation
Newtonian energy or momentum, or instead pseudoenergyquations that follow from the linearized equation. Section
and pseudomomentum. Thus we have the question “What ig| interprets these equations in terms of the motion of

the momentum of a sound wave?” raised by Peierls in hig;nonons. In the discussion section | consider the connection

book Surprises in Theoretical Physi¢47], and the salutary petween the conservation laws and forces.

polemic “On the Wave Momentum Myth” by Mcintyre  The work reported here was motivated by a desire to bet-

[18]. . ter understand the role of acoustic radiation stress in the two-
The most extensive analyses of conserved wave propefy,ig model. It may be relevent to the recent controversy

ties have bgen carried out by the fluid mechanics communithz_za over thelordanskii forceacting on a vortex moving

[7-15. Typically these papers adopt a Lagrangiéollow-  ith respect to the normal fluid component. The use of the

ing individual particles in the flowor mixed Lagrangian- ynruh formalism in this context was suggested by Volovik
Eulerian approach, as opposed to the purely Eulefibn [26].

scribing the flow in terms of a velocity fieldpproach which
would be most familiar to a physicist. In addition, a physicist
reading this literature feels the lack of a general organizing
principle behind the definition and derivation of the conser-
vation laws. The present paper is intended to remedy some of The most straightforward way of deriving conservation
these problems—at least for the special case of sound wavésmws starts with an action principle. From this, Noether’s
propagating through an irrotational homentropic flow. Al-theorem provides us with an explicit formula for a conserved
though a rather restricted class of motions, this is still one ofjuantity corresponding to each symmetry of the action. In
considerable interest in condensed matter physics as it irfluid mechanics unfortunately—at least when we restrict our-
cludes phonon propagation in a Bose condensate, and so ligslves to a eulerian description of the flow field—action prin-
at the heart of the two-fluid model of superfluidity. By ex- ciples are in short supply. Of course there must esgshe
action principle because ultimately the fluid can be treated as
a system of particles. A particle-based action, however, re-
*Electronic address: m-stone5@uiuc.edu quires a Lagrangian description of the flow. When it is reex-

Il. THE ACTION PRINCIPLE

1063-651X/2000/6@)/1341(10)/$15.00 PRE 62 1341 ©2000 The American Physical Society



1342 MICHAEL STONE PRE 62

pressed in Eulerian terms, constraints appear, and these limianslation ¢(r)— ¢(r—a), p(r)—p(r—a). This is not a

its utility. trivial point because there are two similar, but distinct, no-
If we restrict ourselves to flows that are both irrotationaltions of “momentum.” True momentum is associated with

and homentropic—the latter term meaning in practice thathe symmetry of the action under a simultaneous translation

pressure is a function of the fluid density only—then theof all the particles in the system. Its conservation requires an

number of degrees of freedom available to the fluid is dragbsence of external force®seudomomenturf2l] is the

matically reduced. In this case the Eulerian equations of moguantity that is preserved when the action is left invariant

tion are derivable from the actiofi27] when thedisturbancein the medium is relocated, but the
reference position of each individual particle is left un-

S:f d*X[pd+Lp(Ve)2+u(p)]. (2.1  changed. Conservation of pseudomomentum requires homo-

geneity of the medium rather than of space. Replacing the

. . . . field ¢(r) by ¢(r—a) would normally correspond to the
Herep is the mass d ensityp t_he ve!ocny potential, and the latter symmetry, but, because of the absence of explicit par-
overdot denotes differentiation with respect to time. The,. : S : . :

: . - ) . . ticles, at this point in our discussion the two concepts coin-
functionu may be identified with the internal energy density. cide
Equating to zero the variation d& with respect to¢ ‘
yields the continuity equation
Ill. THE UNRUH METRIC

p+V-(pv)=0, (2.2 We now obtain the linearized wave equation for the

wherev=V ¢. Varying p gives Bernoulli's equation propagation of sound waves in a background mean flow. Let

b+ 32+ u(p)=0, (2.3 ¢=do)t b
(3.1
whereu(p)=du/dp. In most applicationg. would be iden- P=po)TPQ)-
tified with the specific enthalpy. For a superfluid condensate
the entropy densitys is identically zero andw is the local  Here oy and p(g) define the mean flow. We assume that
chemical potential. they obey the equations of motion. The quantitigs, and

It is worth nqt_ing that our _action couldot_have arisen p(1) represent small amplitude perturbations. Expan@ng
from some rewriting of the action for the motion of a systemquadratic order in these perturbations gives

of individual particles. We are allowing variations @fwith-

out requiring simultaneous variations @f and such varia- . 1/ c?
tions conjure new matter out of nothing. S=So+f d*x| pyby+ > —> P
The gradient of the Bernoulli equation is Euler’s equation P(o)
of motion for the fluid. Combining this with the continuity 1
equation yields a momentum conservation law + EP(O)(V b))+ payV- V|- (3.2

apvi)+ i (pvivi) + pdim=0. 2.4
poi)Fd)(poju)+pdin 24 Herev=v5=V . The speed of soundis defined by

We simplify Eq.(2.4) by introducing the pressure, which

is related tou by P(p)=[pdu. Then we can write C_Z_d_,u 33
=3 , )
an(pvi)+ 311 =0, 2.9 PO TP log
wherell;; is given by or more familiarly
H”:pU|UI+5”P (26) dpP
c’=—-. (3.9
This is the usual form of the momentum flux tensor in fluid dp
mechanics.

The relationsu=du/dp andp=dP/du show thatP and ~ The terms linear in the perturbations vanish because of our
u are related by a Legendre transformati®he= pu— u(p). assumption that the zeroth-order variables obey the equation

From this and the Bernoulli equation we see that the pressui@ motion. _ . _
is equal to minus the action density: The equation of motion fop ;) derived from Eq(3.2) is

~P=pp+1p(Ve)2+u(p). 2.7

Py, -
Pa)=— — (da)ytVv- Vo). (3.9
Consequently, we can write c

1L, = pdi pd; p— 5ij[P¢+ i1p(Ve)2+u(p)]. (2.8  Ingeneral we are not allowed to substitute a consequence of
an equation of motion back into the action integral. Here,
This is the flux tensor that would appear were we to usehowever, becausg ;) occurs quadratically, we may use Eqg.
Noether’s theorem to derive a law of momentum conserva¢3.5 to eliminate it and obtain an effective action for the
tion directly from the invariance of the action under the potential ¢4 only,
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. g, The idea of writing the acoustic wave equation in this

—2(¢(1)+V-V¢(1))2 . way is due to Unrulj19,20. I will therefore refer tog,,, as

2c the Unruh metric.

(3.6 As is customary in general relativity, the symhgplde-
notes the determinant of the covariant form of the metric,
Qv SO deg#’=g 1. Taking the determinant of both sides
of Eq. (3.10 thus shows that the four-volume measyre g

£+V-v)@(£+v-v)¢(1)=V(p(0)v¢(1)). is equal t0p(20)/c. Knowing this, we may then invert the

1 P
S'(2):J’ d4x(§P(0)(V¢(1))2_ 9

The resultant equation of motion fa(,) is [19,20

ot c? \at matrix g#” to find the covariant components of the metric,
3.7

. N _ _ P c2—p2 T
Note that in deriving this equation we hamet assumed that W:(— ) (3.12
the background flowv is steady, only that it satisfies the ¢ v -1
equations of motion. Naturally, in order for our waves to be ) . )
distinguishable from the background flow, the latter should! "€ associated space-time interval is therefore
be slowly changing and have a longer length scale than the
wave motion. PO 2.0 P P

Equation(3.7) can be rewritten so as to contain convec- dSZ_T[C dt*= §;(dx —v'dt)(dx' —vldD)].

tive time derivatives: (3.13

J 1(0 1 Metrics of this form, although without the overall conformal
EH"V c2 E“"V ¢(1)_%V(p(0)v¢(1))' factor pgy/c, appear in the Arnowitt-Deser-Misn¢ADM)
(3.8  formalism of general relativity29]. There,c and —v' are
refered to as théapse functionandshift vector repectively.
The equivalence of Eqg3.8) and (3.7) is established by They serve to glue successive three-dimensional time slices
using the mass conservation equati@p )+ V-pv=0.  together to form a four-dimensional space-tif3€]. In our
At this point it is worth noting that an equation having the present case, providet,/c can be regarded as a constant,
appearance of Eq3.8) was derived by Pierci28] without  each three-space is ordinary fRRf equipped with the rect-
any restriction to irrotational motion—but only as an ap- angular Cartesian metrigi(jspacezéij_but the resultant
proximation valid for slowly varying background flows. In space-time is in general curved, the curvature depending on
Pierce’s derivation, the dependent variable, which he callghe degree of inhomogeneity of the mean flow
®, is no longer exactly the velocity potential, and the rela- |n the geometric acoustics limit, sound will travel along
tion v )=V has corrections OD(L71)+O_(T71), where  the null geodesics defined twy,,. Even in the presence of
L and T are the characteristic Iength and time of the baCk'Sana”y Varyingp(o) we would expect the ray paths to de-

ground flow inhomogeneities. N pend only on the local values ofandyv, so it is perhaps a bit
Although Eq. (3.8) may seem more familiar, the form gsyrprising to see the density entering the expression for the
(3.7 has the advantage that it can be writteh as Unruh metric. An overall conformal factor, however, does
not affectnull geodesics, and thus variations g,y do not
1 — influence the ray tracing. For steady flow, and in the case that
\/—_g&” ~99%0,¢1)=0, (3.9 only v is varying, it is shown in the Appendix that the null
geodesics coincide with the ray paths obtained by applying
where Hamilton’s equations for rays,
1 vl . do . Jw
gg=0 Xi=——, ki=——, 3.1
99""= 2 (v va—czl)' (3.10 ak; ! Ix' (314

This is perhaps most easily seen by observing that the actidi? the appropriate Doppler shifted frequency

(3.6) is equal to— S where
o(x,k)=c|k|+Vv-k. (3.15

S:J d'x3 _ggw"uqs(l)‘?vd’(l):j d*xy—gL. Whenv lies in thex direction only, we can also rewrites?
311 as
Equation(3.9) has the same form as that of a scalar wave P(0) 5
propagating in a gravitational field with Riemann metric dSZZT{_[dX_(U+C)dt][dx_(v_c)dt]—dy —dz?}.
(3.16
1| use the convention that greek letters run over four space-timd his shows that the-t plane null geodesics coincide with

indices 0,1,2,3 with &t, while roman indices refer to the three the expected characteristics of the wave equation in the back-
space components. ground flow.
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IV. SECOND-ORDER QUANTITIES It is reasonable to define the momentum density and the
- . momentum flux tensor associated with the sound field as the
The fluid in a sound wave has average velocity zero, but

since the fluid is compressed in the half cycle when it iSSecond—order terms

moving in the direction of propagation and rarefied when it j(ph"“"“):<p(l)v(l))+v<p(2)>, (4.6)
is moving backward, there is a net mass curfand hence a

momentum densitywhich is of second order in the sound and

wave amplitudeay. This becomes clearer if one solves the

equation =poXvwivw) Trileapwp toileap i)

dé +3j(P2)) Tvivi{p(z))- (4.7
azv(f)zaocoskg—wt) (4.1

Hi(jphonon)_

(The angular brackets indicate that we should take a time
] ) ) ] __ average over a sound wave period. There is no need to con-
for tr_le trajectoryx= §(t) of a fluid parth|e- Thl$ equation Is - sjder terms first order in the amplitude because these average
nonlinear and, solving perturbatively, one finds a seculagy zerp) We see that we need to consider the second-order

drift at second order imy: contributions to bottP andp.
1 (K We can computeP, in terms of first-order quantities
£(t)= &(0) + oscillationst Eag —Jt+ (42 from
dpP 1d?P ) .
Although the time average of the Eulerian fluid veloaitys AP= @AMJF > d_,uz(A’“) +0((Aw)®) (4.9

zero, the time average of tHeagrangianvelocity v, = ¢ is . o

not. The difference beweeen the two average velocities is thend Bernoulli's equation in the form

Stokes drift The Stokes drift isO(ag) while the wave equa- . L 5

tion is accurate only t®(a), so care is necessary before Ap=—=¢1)= (Vo) —V- Vo, (4.9

using its solutions to evaluate the mass current. Similar prob- ether with

lems occur in defining the energy density and energy an(tjog

momentum fluxes, which also require second-order accu- dp d?P  dp

racy. =
We can expand the velocity field as

_, 2r_fr_r
a_pv dMZ_dM CZ' (410
Expanding out and grouping terms of appropriate orders

V:V+V(1)+V(2)+ ceey (43) giveS

where the second-order correctiop, arises as as conse- .

quence of the nonlinearities in the %zquations of motion. This Pw==ro (¢ tV-Véa)=cpu, (41D
correction will possess both oscillating and steady compoynich we already knew, and

nents. The oscillatory components arise because a strictly

harmonic wave with frequencw, will gradually develop 1 p) -

higher frequency components due to the progressive distor- P )= —p(o)%(VqS(l))z-i—E —2(¢(1)+V-V¢(1))2.

tion of the wave as it propagatd@ plane wave eventually ¢

degenerates into a sequence of shgckisese distortions are (4.12

usually not significant in considerations of energy and MOyve see thaP (5= J=gL whereL is the Lagrangian density
mentum balance. The steady terms, however, represepl. o ur sound wave equation

O(ag) alterations to the mean flow caused by the sound ', extractp(,) in this manner we need more information
waves, and these often possess energy and momentum coffjo ¢ the equation of state of the fluid than is used in the
parable to that of the sound field. _linearized theory. This information is most conveniently pa-
Even if we temporarily ignore these effects and retain;metrized by the logarithmic derivative of the speed of
only v(;) as determined from the linearized wave equationggng with pressuréa fluid-state analog of the CGmaisen
the density and pressure will still have expansions parameter Using this together with the previous results for

P/, , we find that
p=poyteyteet: - @

(4.4) 1, 1 , dinc 413
P=P+ P+ P+ --. ==Poy——pi T —| - :
0T P F@) P~ 2 @ p(o)p(l)d Inp oo

As before, the gradinn) refers to the number of powers of
the sound wave amplitude in an expression. The small pa- V. CONSERVATION LAWS
rameter in these expansions is the Mach number given by a
typical value ofv ;) divided by the local speed of sound. While we cannot compute the “true” energy and momen-

Consider, for example, the momentum dengityand the  tum densities and fluxes without including nonlinear correc-
momentum flux tions to the motion, it is often more useful to find closely

related quantities whose conservation laws are a conse-
ITjj=pvjv;+ 6 P. (4.5 quence of the linearized wave equation, and therefore pro-
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vide information about the solutions of this equation. OUrThe last two equa"ties serve as a def|n|t|om/mrf andB(z) .
“general relativistic” formalism provides a sytematic way of The quantityW, is often decribed as the acoustic energy

finding such conserved quantities. It is well knoy&1] that
any actionS automatically provides us with a covariantly
conserved and symmetric energy-momentum teiiggrde-

fined by

The functional derivative is here defined by
5S= j d*xy—g

It follows from the equations of motion derived froBithat

(5.7

(5.2

(5.3

whereD , is the covariant derivative. For example,

D AL =g A+ T

TheT'%  are the components of the Levi-Civitmnnection
compatable with the Unruh metric, viz.,

where

[By.p]l=

For our scalar field

EAY T ALY ALY

I's,=9*[By.pl,

J J
+ gﬁp_ Osy _

(5.4)

(5.9

(5.6

TH'= 9 1) b1y~ 9*"(39"Pdad(1)dpbay). (5.7)

The derivatives with raised indices in E(.7) are defined

by

1 .
b= 90”07#¢(1):ﬁ(¢(1)+ V-Véiy) (5.9

and

. ) 1 .
d' puy= 9'“(9ﬂ¢(1):T[Ui(¢(1)+V' V1)) — C2di byl

Thus

(5.9

1 1 1peo) .
TOO=T(P(0)§(V¢(1))2+§ ?(¢(1)+V'V¢(1))2

P(o)
o cf (Wr
_£ -

c? .
= %P(Z)-

"2

|

(5.10

density relative to the frame moving with the local fluid ve-
locity [11]. Because its conservation requires a steady flow,
rather than the absence of time-dependent external forces, it
is more correctly a pseudoenergy density.

Using Eq.(4.11), and Eq.(4.12) in the form

c
%gaﬁ%éf’(l)aﬁ:(ﬁ(l):TP(z), (5.11
P(0)

we can express the other components of (Bd) in terms of
physical quantities. We find that

TiOZTOi
c? (1
=5 | @PapitviVy)
P(o)
c? 5
=5 (papitvire)- (5.12
P(o)

The first line in this expression shows that, up to an overall
factor, T'? is the energy flux—the first term being the rate of
working by a fluid element on its neigbour, and the second
the advected energy. The second line is written so as to sug-
gest the usual relativistic identification ¢&nergy fluy/c?
with the density of momentum. This interpretation, however,
requires thaﬁ(z) be the second-order correction to the den-
sity, which it is not.

Similarly,

2
. Cc
T =5 (P @iv @i+ viPa)P )
P(0)
+oip@p @it 8P tuivipe). (513

We again see that if we identify,) with p(z) thenT' has
the exactly the form we expect for the second-order momen-
tum flux tensor.

The reason why the linear theory makes the erroneous

identification of p(,) with }3(2) is best seen if we set
=const. Then the equation

8, T%+ 4, T%=0 (5.19
holds. This reads

2

c . -
pT[&tP(Z)Jr di(pywyitvipe)l=0.  (5.19
(0)

This looks very much like the second-order continuity equa-
tion

2yt di(v 2Pt Paw@)itriee)=0, (5.1

since the linear theory ignoreg,,. When we retain its/,)
term, however, Eq(5.16) ceases to be an equation determin-
ing pz), and instead, after time averaging, shows that
V-{p©)V(2))#0 in an inhomogeneous sound fig¢&L].
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We can also write the mixed covariant and contravariant rgoz 1(v-V)|vl|?,
components of the energy momentum teriBpe T# g, ,, in
terms of physical quantities. This mixed tensor turns out to roh=—1%av|?+ 30(dv;—djvy),
be more useful than the doubly contravariant tensor. Because _
we no Ionger enforce a symmetry bgtween the indicemnd 0o=13vi(v-V)|v]?—34i|v|?,
v, the quantityW, is no longer required to perform double
duty as both an energy and a density. We find I’ﬂ = %(aiijr&jvi),

c o= —30i0;[v|?+ 3(;v— IV ;) (Vv — €2y
0= "2 2(dju—dk k k)
To=—— (Wi +payVia) V), ) o : ) ' '

P(0) = 30i(uit ;). (5.20
. c [P
() From Eq.(5.6) we have
TIO:T(_+V'V(l)>(P(O)U(l)i+p(l)v(0)i) (5.17) 9.6
Po) \ PO 1 avg
=——, (5.21)
and “E g axP
TO=_ ° Vi so, with y—g=const., the trac&’/, ; is zero. One may verify
' p(ZO)p(l) i that the above expressions B, obey this identity.
(5.18 We now evaluate
. C n0_ 10 © 170 0 Tuv
Tj=- pT(Pm)U(l)iU(l)j+UiP(1>U<1)j+5ijp<2))- D, T =0, T T, T LT
© =3, THO+T0 Tr, (5.22
We see thaﬁ(z) does not appear here, and all these terms, ¢ ; -
. (2 ) . " : er a little algebra we find
may be identified with physical quantities that are reliably 9
computed from solutions of the linearized wave equation. o Ter= 3G+ 30D (poyw (1) 1) + GiP2)-
The covariant conservation law can be written either . (5.23

D,T#"=0 or D,T/=0. The two equations are consistent ~
with each other because the covariant derivative is defined sdote the nonappearence gqf;) and p, in the final
that D,g,,=9,,D). To extract the physical meaning of expression—even though both quantities appearih
these equations we need to evaluate the the connection forms The conservation law therefore becomes
re.
. . 1

In what follows I will consider only a steady background IW,+ 3Py 1y +0i W) + 5 3 (30 + 30;) =0,
flow, and, further, one for whictpy, ¢, and hencey—g 2
= p(zo)/C can be treated as constant. To increase the readabil- (5.24
ity of some expressions | will also choose units so that \ypere
andc become unity and no longer appear as overall factors in
the metric or the four-dimensional energy-momentum ten- i =P it @it dijPe)- (5.25
sors. | will, however, reintroduce them when they are re-

quired for dimensional correctness in expressions such a&his is an example of the general form of energy law derived
p(oV(1) OF W, /c2. by Longuet-Higgins and Stuart, originally in the context of

From the Unruh metric we find ocean wave$l4,15. (See alsd4] for a slightly earlier, but
less general, cageThe relative energy densitw,=T% is
[ij,k]=0, not conserved. Instead, an observer moving with the fluid
sees the waves acquiring energy from the mean flow at a rate
[ij,0]1=3(dv;+djvi), given by the product of a radiation stresg with the mean-
flow rate of strain. Such nonconservation is not surprising.
[10,j1=3(dv;—djvi), Seen from the viewpoint of the moving frame, the mean flow
(5.19 is no longer steady, antpseudgenergy conservation re-
[0i,0]=[i0,0]= —34;|v|? quires a time-independent medium.
Note that, since we are assuming thg4, is a constant,
[00j]=34di|v]|? we should for consistency requile-v=0. Thus thesotro-
pic part of the radiation stredghe part proportional ta5;;)
[00,0]=0. does no work. This is fortunate because the nonlinear theory
shows that the isotropic radiation stress contains a part de-
| have retained the expressiél(l&ivj—&jvi) in[i0,j], since  pendent ord Inc/dIn p that is missed by the linear approxi-
the previously cited paper by Pier€28] indicates that our mation.(See, however33].)
wave equation also applies to weakly inhomogeneous rota- We now examine the energy conservation law coming
tional flows. from the zeroth component of the mixed energy-momentum
We therefore find tensor. We need
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B g TH_TP TH VI. PHONONS AND CONSERVATION OF WAVE ACTION
D, To=3,T6—T5oTh
=9, TE—[u0,p]TH If the mean flow varies slowly on the scale of a wave-
w10 ! length, the sound field can locally be approximated by a
=9, Th—[10,0]T°~[00j T —[i0,j]T". plane wave,
(5.29 d(x,t)=ay cogk-x— wt). (6.2)

We now observe that'°=T% while [00j]=—[i0,0], and The frequencyw and the wave vectdk are here related by
that [i0,j]=—[j0,i], while T'=TI". Thus the connection the Doppler-shifted dispersion relatian= w,+k-v, where
contribution vanishes. This form of the energy conservatiorthe relative frequency, =c|k| is that measured in the frame
law is therefore moving with the fluid. A packet of such waves moves at the

group velocity
P
( W +v-v(1))
P(o)

><(l"(o)v(l)i"'P(l)v(o)i)} =0. (5.27) As the wave progresses through regions of varyinthe
parameter& anda, will slowly evolve. The change ik is
given by the ray tracing formulgEq. (A16)]

(W, +p(1)V(1)- V) + J;

: k
U=x=cm+v. (6.2

Here we see that the combinativ + p(1)v(;)- v doescor-

respond to a conserved energy. This conservation law was dk. P
originally derived by BlokhintseV[2] for slowly varying —J=—ki—:—, (6.3
flows, and more generally by Cantrell and HE8{ in their dt 24
ggg)_/[g]f ;22 [?L%(])LIJ:_S(;'_C(;?E;_';”)/ of rocket engin¢See also where the time derivative is taken along the ray:
Now we turn to the equation for momentum conservation. d o
Working as for the energy law we find Gt +U-V. (6.9

D, Tf=0,Tf = [pi,p]TH The evolution of the amplitude, is linked with that of the
=3,T+~[0] 0] T%—Tij ,0]Ti°~[0j,i]TO relative energy densityV, , through
2

= M U 1 0]
ﬁMTJ p(l)U(1)|(9]U| ’ (52& <Wr>: Ea%p(o)c_gr- (65)

Again note the cancellation of the terms containfng).
The covariant conservation equati@n),T{*=0 therefore
reads

For a homogeneous stationary fluid we would expect our
macroscopic plane wave to correspond to a quantum coher-
ent state whose energy is, in terms of {qeantum average

honon densityN and total volumeV,
P (1) T 3 (P )iv () FLipP (1) T 8ijP2) P N

+p(yv(1yid;vi=0. (5.29 Eror=V(W,)=VNA o, . (6.6)
The connection terms have provided a source term for th&ince it is a density of “particles,™N should remain the

momentum density. Thus, in an inhomogeneous flow fieldsame when viewed from any frame. Consequently, the rela-
momentum is exchanged beween the waves and the me&on

flow.
If we accept that our wave equation continues to be valid N/ = (W) 6.7)
for weakly inhomogeneous rotational flows, then from Eg. ; '
(5.29 we can derive an expression for the time average of
the divergence of the radiation stress tensor: should hold true generally. In classical fluid mechanics the
quantity (W, )/, is called thewave action9,11,13.
(3i(poy )iV (1 FViPaY ()i T PaW )i+ P2y8))) The time averages of other components of th_e energy-
momentum tensor may also be expressed in ternis. ¢ior
=—{paw@i)(dvi=dvp)+ui{dipp - (5:30  the mixed tensor we find
The sound wave therefore exerts a body force on the back- <T8>=<Wr+v-p(l)V(1)>=miw,

ground flow, one part of which is analogous to the Lorentz

force, the role of the magnetic field being played by the . P .
<Tb>:<<% +V'V(1))(P(O)U(1)i+P(1)Ui):Nﬁwui1

vorticity. The relation between this body force and the lor-

danskii force on a line vortex is the same as that between the
conventional Lorentz force and the Aharonov-Bohm force on 0 _
a narrow flux tubg24,25. (—=T)=(payu)y)=Nhki,
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—Thy= DD i 00D v+ 8 Proty =Nk U . fprtunately for this simple idea, it is_equally obv.iogs that the
(=T=(popwivaitvicmrwit diPey ! ('3 g lime average center-of-mass velocity of the fluid in the tube
(6.8 vanishes, so the true momentum density in the beam is ex-
In the last equality we have used th@))=0 for a plane actly zero. Thep(;)v(1)) contribution to the momentum den-
progressive wave. sity is exactly cancelled by a.(Vv,) counterflow. This Eu-
If we insert these expressions for the time averages intéerian streaming is driven by the fluid source term fay;))

the Blokhintsev energy conservation 18&27), we find that ~ implicit in Eq. (5.16 [32]. (In a Lagrangian description the
particles merely oscillate back and forth with no secular

INB o . drift.) The momentunflux however is exactly the sanass if
+V-(NiwU)=0. (6.9  (the italics are from[18]) there were no medium and the
phonons were particles possessing momenfikm This is
frequently true: the flux of pseudomomentum is often equal
to the flux of true momentum t@(a?) accuracy. Pseudomo-
mentum flux can therefore be used to compute forces. On the
other hand, the density of true momentum in the fluid and the
density of pseudomomentum are usually unrelated.

It should be said that thg ) (v,) counterflow will not
The first term is proportional tdw/dt taken along the rays always cancel thp;y(v;) wave pseudomomentuf85]. The
and vanishes for a steady mean flow as a consequence of ttw,) flow depends the geometry. It is found from the source
Hamiltonian nature of the ray tracing equations. The seconéquation(5.16) and from the force the sound field applies to
term must therefore also vanish. This vanishing representhe fluid. The latter will be small when there is no dissipa-
the conservation of phonons, or, in classical language, thgon, as is the case in a superfluid, and for an isolated sound
conservation of wave action. Conservation of wave action i$seam source in an infinite mediufa,) will consist of a flow
an analogue of the adiabatic invarianceEst» in the time-  directed radially inward toward the transducer of sufficient

ot

We can write this as

N7

Jw

+U-
pr U-Vo

+ho —0. (6.10

(ﬂvﬁu
- TV-(NU)

dependent harmonic oscillator. magnitude to supply the mass flowing out along the sound
In a similar manner, the time average of E§.28 may  beam[32]. In the presence of dissipation the force becomes
be written important, leading to acoustic streaming.

Consider our closed cylinder further. From E4.13 we

aﬁkj _ — v, see that in a system with fixédP), and in the presence of the
0= 5 + V- (Nk;U) + NK; o sound wave, the mean density of the fluid will be reduced by
[k LI N _ (o) = — (W) dinc 7.
=N W"‘UV ]+ i&l’ + i E‘FV(NU) . (2) C2 d|np "o :
(6.11

Since our cylinder has fixed volume, this density reduction
We see that the momentum law becomes equivalent tgannot take place. Instead, it is opposed by a pressure on the
phonon-number conservation combined with the ray tracingylinder wall
equation(A16).

dinc

AP=<W,>—d np| (7.2

P(o)

VII. DISCUSSION

The possibility of interpreting the time average of the mo- ) . ]
mentum conservation law in terms of quantum quasiparticle¥/hich must be added to the isotropic pressure in the absence
warns us that we are dealing with pseudomomentum and n&f the sound wave. The complete radiation stress tensor is
with Newtonian momentuni18]. Nonetheless, the quantity therefore

(p)V(1))=Nrk is reliably computed from the linearized KK
wave equation and igart of the true momentum. It is simply (Siy=(W, ><'_21 +5
not all of it. Even in the absence of a mean flow with its N 1k
(p(2)v) contribution we still have to contend Wiy (V(2)).

and this can be important. As an examplé], consider a  This result goes back to Brillouifi34]. The true radiation
closed cylinder filled with fluid. At one end of the cylinder a stress therefore differs from the pseudomomentum flux ten-
piston is driven so as to generate plane sound waves whicsor in its isotropic part. Forces computed from pseudomo-
completely span the cross section of the tube. At the other

end a second piston is driven at the same frequency with itS—

phase adjusted so as to absorb the sound waves without "€2This does not mean that the attribution of momentum to a phonon

flection. It easy to see that an extra pressure equUAM? iS iy the two-fluid model for a superfluid is incorrect. In superfluid
exerted on the ends of the tube over and above whatevegqrodynamics th@ 0)(V2) counterflow is accounted for separately
isotropic pressure acts on the ends and sides equally. It is, | the(p(yV(1y) = Nhk normal component mass flux. The coun-
“obvious” that this is the force per unit arddzikc required  terflow is included in the supercurrent needed to enf&fcép,V,

to generate and absorb the phonon beam “momentum.” Un+p.,)=0.

dinc
). (7.3

Tdinp
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mentum flux will therefore be incorrect when this pressure isTo see that this is the geodesic equation, note that

important. Se¢36] for examples.

dg~'=-g '(dg)g™* (A7)
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APPENDIX: GEODESICS AND HAMILTONIAN FLOWS We now examine these equations for the particular case of

the Unruh metric. We define a four-vectpf, = (w,—k;) so
In this appendix we show that the null geodesics of thethatp, x*=wt—k-x. Then
Unruh metric coincide with conventional Hamiltonian optics 1 . 5 o2
ray tracing. The ray tracing equations are derived from =29""PuP,=2[(@—Vv-K)*=c*K|7]. (A9)
w(k,x) as Hamilton’s equations become
. Jdw Jw 0
dx’ dt oH
X=—, = o " (Al) J—— =
ak dX 97 " dr a9V k (A10)
In our casew(k,x)=c|k|+v-k. Thus and
dx Lok dk av, A2 dx  oH 4 2k
dr Ui C|k|’ dr o (A2) E——&—ki—vi(w—v )+ k. (A11)

We begin by noting that geodesics with an affine parameter For null geodesics —v-k)*~c?[k|?=0, or (w—Vv-k)

are stationary paths for the Lagrangian =clk|. Thus
1 dx*dx” dx c?k;
L=39uwg- G- (A3) E_vi-i_m’ (A12)
To make connection with the ray tracing formalism, consider©"
the corresponding Hamiltonian dyi K
=vitCr Al13
=29""PuP,, (A4) dt KT (AL
and write down Hamilton’s equations withplaying the role ~ Which is the group velocity equation. We also find
of time:
do o dH
d aH ar w0 (4149
ar ~ap, 9P
K if the flow is steady, and
dp, oH 149 dk  oH v,
dr T XE T2 g ——PaPg- (A5) g (e k) , (A15)
Combining these gives which is equivalent to the momentum evolution equation
d2XI~L g,u,B dX v _’]_ élgaﬁ A6 dkl (9U]
TZ e drPet9 2 o | PaPee (AO) PRk (A16)
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