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Many-body partition function and thermal Hartree-Fock approximations
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The hierarchy equations for the quantum thermal density matrices of an assembly of interacting particles in
an external potential are derived in a compact form. This approach can complement and finally replace the
phenomenological treatment of the thermodynamic properties of quantum gasses, liquids, and solids. We also
derive a temperature Hartree-Fock approximation for fermions based on the symmetry properties of the exact
hierarchy and finally we discuss the present approximation in relation to that of Kaplan and Argyres@T. A.
Kaplan and P. N. Argyres, Ann. Phys.~N.Y.! 92, 1 ~1975!#.
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I. INTRODUCTION

Although all information about a system ofN identical
particles is contained in theN-particle density matrix, many
important physical quantities can be obtained from low-or
density matrices. The particle density and the kinetic ene
are important physical quantities, which can be calcula
via the single-particle density matrix~DM!, while for the
total energy of a system with two particle interactions t
two-particle DM is needed. Thus, it would be useful if o
could set up equations for lower-order density matrices,
noring the higher-order ones, as in most experiments o
quantities involving one- and two-particle DM’s are me
sured. In fact, many phenomenological equations, like, e
the Boltzmann equation and the diffusion equation, conc
single-particle density matrices. Unfortunately, the low-ord
density-matrix equations derived from first principles, i
volve higher-order DM’s and therefore one has to deal wit
hierarchy of equations@1#. The way out is to terminate thes
hierarchies by expressing the higher-order reduced den
matrices~RDM’s! in terms of lower-order ones. This is i
principle possible for the ground state and thermal equi
rium states, since the diagonal elements of the single-par
density matrix determine uniquely the higher-order dens
matrices. This is a corollary, directly derived from the H
henberg and Kohn theorem@2# and its generalizations to
thermodynamic systems@3#.

In actual calculations concerning the thermal properties
quantum gases, liquids, and solids, one has to know the
plicit forms of the functions which express the depende
of the high-order density matrices on the lower-order o
and thus it is necessary to use approximations. Then one
use the exact hierarchies to justify or improve already ex
ing phenomenological equations describing these syste
Such an example is the Landau-Silin equation@4# set up
phenomenologically to describe Fermi liquids such
helium-3. This equation was later derived from first pri
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ciples by Glezos and Theophilou@5#, while Brosenset al. @6#
derived a similar equation in studying the dielectric prop
ties of the electron gas for which many phenomenologi
equations existed before. These studies, however, conce
eigenstate properties and not thermodynamic equilibrium

Another possible application of the thermal hierarc
equations is their use in the derivation of approximations
the thermal exchange and correlation energy density fu
tional, Exc(n), in the frame of a thermal density-functiona
theory ~TDFT! @3#. Approximations concerning the ground
state density matrices hierarchy have already been obta
by Holas and March@7#.

The present paper deals with the hierarchy of therm
density matrices of a system ofN identical particles in an
external potentialV, in thermodynamic equilibrium, interact
ing via two-body forces, i.e., the Hamiltonian is of the for

HN5(
i 51

N

ti1 (
iÞ j 51

N

ti , j . ~1!

For electrons that we focus on here,t i , j5e2/r i j is the Cou-
lomb interaction between electrons at separation dista
r i j . Our objective is to use existing knowledge to construc
hierarchy for the reduced density matrices.

Let CNi(x1 ,x2 ,...,xN) be an eigenfunction of the
N-fermion HamiltonianHN , where the variablex stands for
the position and spin variable. Then, by multiplying bo
sides of the eigenvalue equation byCNi* (x18 ,x28 ,...,xN8 ) one
gets

HN~x1 ,x2 ,...,xN!ni
~N!~x1 ,...,xN ;x18 ,x28 ,...,xN8 !

5ENini
~N!~x1 ,...,xN ;x18 ,x28 ,...,xN8 !, ~2a!

where
134 ©2000 The American Physical Society
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ni
~N!~x1 ,x2 ,...,xN ;x18 ,x28 ,...,xN8 !

5CNi~x1 ,x2 ,...,xN!CNi* ~x18 ,x28 ,...,xN8 ! ~2b!

and the reduced single state density matrices are define
the relation

ni
~B!~x1 ,...,xs ;x18 ,...,xs8!

5S N
SD E dxs11 ,...,dxN

3ni
~N!~x1 ,...,xs ,xs11 ,...,xN ;x18 ,x28 ,...,xs8xs11 ,...,xN!.

~2c!

The integration sign in the following will imply that one ha
to equate primed and unprimed integration variables be
integrating.

After successive integration of both sides of Eq.~2a!, one
gets the hierarchy of equations for the reduced density
tricesnk

(s) :

Hsnk
~s!1~s11!E dxs11S ts111(

i 51

s

t i ,s11D nk
~s11!1~s11!

3~s12!/2E dxs11dxs12ts11,s12nk
~s12!5ENknk

~s! , ~3a!

where

Hs5(
i 51

s

t i1 (
iÞ j 51

s

t i , j , H15t1 . ~3b!

For deriving these equations, we followed the procedure
Cohen and Frishberg@1# and we have also adopted the
notation with minor changes to embrace excited states.

II. DERIVATION OF THE THERMODYNAMIC
HIERARCHY EQUATIONS

The N-particle canonical ensemble Bloch density mat
is @8#

C~N!~x1 ,...,xs ,...,xN ;x18 ,x28 ,...,xs8 ,...,xN8 ,b!

5(
i

exp~2bE1!

3ni
~N!~x1 ,x2 ,...,xN ;x18 ,x28 ,...,xN8 !. ~4a!

The definition of the lower-order reduced Bloch density m
tricesC(s) is @8,9#

C~s!~x1 ,x2 ,...,xs ;x18 ,x28 ,...,xs8!

5S N
SD E dxs11 ,...,dxN

3C~N!~x1 ,x2 ,...,xN ;x18 ,x28 ,...,xN8 !, ~4b!
by

re

a-

f

-

i.e., they are derived from the higher-order ones by progr
sively integrating out information. Integrating over all var
ables, one gets the many-body partition function for a
nonical ensemble,

Z~b!5N21(
i

exp~2bEi !E dx ni
~1!~x,x8! or

Z~b!5Tr$exp~2bH !%, ~4c!

by means of which the macroscopic properties of a system
thermodynamic equilibrium can be derived. The Bloch DM
differ from the thermal DM’s only by the multiplicative fac
tor Z(b), i.e., C(s)5Z(b)n(s).

The reduced single-particle density matrix is identical
the single-particle temperature Green’s functi
G(x8,t8;x,t;b) in the limit that t82t5«→0, «.0 @10#.
This function is defined in terms of the fermion field oper
tors ĉ(x8,t8), ĉ†(x,t) by the relation

G~x8,t8,xt;b!5Tr$exp~2bH2mN!T@ĉ~x8,t8!ĉ†~x,t !#%,

~5!

whereT is the time-ordering operator. Similar relations ho
for the higher-order Bloch density matrices and the cor
sponding Green’s functions@10#. Thus in general thermody
namic Green’s functions contain more information than
corresponding density matrices as they involve the time v
able.

By using Eq.~4! it is straightforward to derive the relatio

C~s!5(
i

exp~2bEi !ni
~s!, 1<s<N, ~6!

which will be used for the setting up of the hierarchy equ
tions for the reduced density matrices. We multiply Eq.~3a!
throughout by exp(2bEk) and sum over the entire level spe
trum k. Then, employing the same notation as in Eq.~3! we
can write

HsC
~s!1~s11!E dxs11S ts111(

i 51

s

t i ,s11D
3C~s11!1@~s11!~s12!/2#

3E dxs11dxs12ts11,s12C~s12!52
]

]b
C~s!, ~7!

where the sum(Ek exp(2bEk)nk
(s) on the right has been re

placed by2(]/]b)C(s). Thus we have derived the desire
hierarchy equations. The energy levelsEi and the corre-
sponding wave functions do not appear in the final set of
hierarchy. This is expected to be so as one could use
trace definition of the density matrices and derive these eq
tions without making any use of the energy eigenstates. T
derivation is given in Appendix A for the one-particle re
duced density matrix. In fact, the use of traces instead
eigenfunctions is more rigorous, as a Hamiltonian may
possess a complete set of eigenfunctions. However, we h
chosen the presentation in terms of eigenfunctions as th
more comprehensible and is closely related to the grou
state derivation of Cohen and Frishberg@1#. It is worthwhile
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to observe that by writing the equation in terms of the n
malized thermal density matrices n(x1 ,x18 ;b)
5C(x1 ,x18 ;b)/Z(b) one gets a more complex equation.

III. SYMMETRY PROPERTIES OF THE DENSITY
MATRICES

The differential operators in Eq.~7! are similar in form to
those of the time-dependent Schro¨dinger equation, witht
52 ib, and Eq.~7! is covariant with respect toI 3

3, the group
of all translations and rotations in the three-dimensional
clidean space. This means that translation and rotation o
external potential gives a density-matrix solution with cor
sponding translation and rotation, in agreement with the c
responding property which follows directly from the defin
tion of theN-particle DM’s. Further, one can easily verif
that all symmetry properties of the Hamiltonian are tra
ferred to the one- and two-particle operators of Eq.~7!. This
is a direct consequence of the fact that integration over
space does not change the symmetry properties. Only
number of variables is reduced.

One can solve Eq.~7! starting from the zero-temperatur
(b5`) DM’s. In this case the transformation properties
the ground-state DM’s related to the symmetry properties
the Hamiltonian will be transferred to the finite-temperatu
N-particle DM and thereby to the lower-order ones. The
properties are important and have to be imposed on the
lutions in order to get a correct description of the physi
system. Thus in the case of fermions the trace is over
space of antisymmetric wave functions while in the case
bosons one has to choose the space of symmetric ones
summarize these properties below.

~a! The Bloch DM’s are real and symmetric with respe
to the exchange of primed and unprimed variables, i.e.,

C~s!~x1 ,...,xi ,...,xk ,...,xs ;x18 ,xi8 ,...,xk8 ,...,xs8 ;b!

5C~s!~x18,...,xi8,...,xk8,...,xs8 ;x1,...,xi ,...,xk,...,xs;b!.

~8!

This property is a direct consequence of the definition wh
one chooses real wave functions~in the case of degenerac
one can also use a real basis!. In order to see the importanc
of this condition, take the case of the equation of t
N-particle DM. As the differential operators in Eq.~7! affect
only the primed variables, one would have the freedom
choose any unprimed part, if the symmetry constraint~a! is
not imposed to the solutions.

~b! It is essential to notice that the solutions of Eq.~7!
belong to the irreducible representations~Irreps! of the per-
mutation group of the indices for the unprimed and prim
variables separately. In the case of fermions, the antisym
try Irrep must be chosen, i.e., the density matrix must sat
the following relation:

C~s!~x1 ,...,xi ,...,xk ,...,xs ;x18 ,...,xi8 ,...,xk8 ,...,xs8 ;b!

52C~s!~x1 ,xk ,...,xi ,...,xs ;x18 ,...,xi8 ,...,xk8 ,...,xs8 ;b!.

~9!

The same relation holds for the primed variables.
-
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~c! For many-electron systems in an external poten
V(x), the density matrices have the same symmetry as
external potential. Thus, let the external potential have
propertyV(gx)5V(x), whereg is a rotation or translation
belonging to a groupG. As G is a subgroup ofI 3

3, it follows
that the HamiltonianH is also invariant underG, as the ki-
netic and interaction energy term ofH is invariant underI 3

3,
which containsG. We shall show that

C~s!~gx1 ,...,gxs ;gx18 ,...,gxs8 ;b!

5C~s!~x1 ,...,xs ;x18 ,...,xs8 ;b!. ~10!

The proof is based on the trace property Tr$AB%
5Tr $BA%. Thus

Tr $e2bHgng21%5Tr $g21e2bHgn%.

By taking into account thatg commutes withH and therefore
with e2bH, we get Eq.~10!. Thus, e.g., the thermal averag
of the electron density in a solid will have the space-gro
symmetry of its lattice.

The hierarchy equations were used in@7# for the deriva-
tion of an approximation for the exchange and correlat
potentialVxc(n) for the case of the ground state. Obvious
one can use the present hierarchy of density matrices to
rive an approximation in the frame of a thermal density fun
tional formulation, like the one established by Mermin@4#. In
such an approximations,Vxc(n) will have the symmetry of
the density and therefore of the external potential. This is
the case when one considers a density-functional appro
for single states, as degeneracy may give rise to den
asymmetries, which are transmitted toVxc(n) @11#.

If the Hamiltonian has an additional symmetry beyo
that of the permutations of the indices, one can classify
energy eigenstates according to the Irreps of the symm
group, and consider traces in a subspace with states
definite Irrep. In this way one can develop reduced DM
erarchies labeled by the Irreps of the symmetry group. S
DM’s are important in problems of broken ergodicity@12#.
As the derivation is as that of the general case, with the sp
of states restricted, we shall not repeat the proof. The h
archy obtained is as that of Eq.~7! with the reduced density
matrices carrying an additional index, labeling the Irre
Then a density matrix defined by Eqs.~4! is thes sum over
all matrices labeled by the Irreps of the symmetry grou
Thus, e.g., one can label the density matrices by the s
index S when no spin-orbit coupling is considered and
magnetic field is present.

IV. THERMODYNAMIC APPROXIMATIONS
FOR FERMION SYSTEMS

The simplest approximation for the ground-state theo
which takes into account the fermionic character of the p
ticles, is the Hartree-Fock~HF! approximation. The hierar-
chy equations for this approximation were derived by Coh
and Frishberg@1#. As for the thermodynamic HF, we hav
two versions: the thermal HF~THFA! and the single deter
minant HF (TSDA) derived and discussed in detail by Kapla
and Argyres@13#. The first one considers an approxima
density operator of the form exp@2b„K(ni)2mN…#, whereK
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is a linear function of the particle number operatorsni while
the other is free of this restriction. In both cases the gra
canonical potential is minimized with respect to this dens
approximation.

In the present paper, we develop an approximation ba
on the simplest symmetry-preserving expression of
DM’s. Thus for fermions we write

C~s!~x1 ,x2 ,...,xs ;x18 ,x28 ,...,xs8 ;b!5s! 21 det@C~xixj8 ;b!#,

~11!

where by the bracket@ # we denote thes by s matrix, with
matrix elementsCi j 5C(xi ,xj8) and the approximation to
C(1) is denoted byC. This is the simplest expression forC(s)

having the property of antisymmetry with respect to t
e
o
ic
p

r
v
ap
te

op
-
y

ed
e

exchange of two primed or unprimed variables. The pres
approximation is similar to that of the ground-state theory
Cohen and Frishberg and as is well known it does not h
for densities of the form exp(2bH) when H involves two-
particle operators. In order to avoid confusion with the ex
DM’s, we shall consider that the above thermal avera
hold for an approximate statistical density operator, which
the following will be denoted by exp(2bK), where the ap-
proximate HamiltonianK involves only single-particle inter-
actions. By introducing in Eq.~7! the decoupling scheme o
Eq. ~11!, for the cases51, we get the equation forC. After
summing the various terms resulting from the expansion
the determinants, the following integrodifferential equati
is obtained withU(x1 ,x2) denoting the two-particle interac
tion:
2
]

]b
C~x1 ,x18 ;b!5@2¹1

2/21V~x1!#C~x1x18 ;b!1VCb~x1 ;b!C~x1 ,x18 ;b!2E dx2U~x1 ,x2!C~x1x2 ;b!C~x2 ,x18 ;b!

1@E~b!1Ecb~b!2Exc~b!#C~x1 ,x18 ;b!2E dx2@~2¹28!2/21V~x28!#C~x1 ,x28 ;b!C~x2 ,x18 ;b!

2E dx2VCb~x2 ;b!C~x1 ,x2 ;b!C~x2 ,x18 ;b!2E E dx2dx3U~x2 ,x3!C~x1 ;x2 ;b!C~x2 ,x18 ;b!

3C~x3 ;x3 ;b!1E E dx2dx3U~x2x3!C~x1 ;x2 ;b!C~x2x3 ;b!C~x3 ,x18 ;b!, ~12a!
a-

ry,
an

n-

ct
.
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e
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ive.
ar-
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en
where

VCb~x1 ;b!5E dx2U~x1 ,x2!C~x2 ,x2 ;b! ~12b!

is the two-particle direct~Hartree! potential, and

E~b!5221E dx2@2¹2
2/21V~x2!#C~x2 ,x2 ;b!,

~12c!

Ecb~b!5221E E dx2dx3U~x2 ,x3!C~x2 ;x2 ;b!

3C~x3 ,x3 ;b!, ~12d!

Exc~b!5221E E dx2dx3U~x2 ,x3!C~x2 ;x3 ;b!

3C~x3 ,x2 ;b!. ~12e!

In all cases, before the integration is carried out the prim
variable of integration is equated to the unprimed one. N
also the symmetry relations between primed variables wh
allowed us to use unprimed variables for the differential o
erators and the external potential.

Thus finally we have an equation in compact form, whe
no energy levels and eigenstates appear, which is an ad
tage with respect to the conventional thermodynamic
proximation, which is expressed in terms of the eigensta
of a Hartree-Fock operator. We note that all symmetry pr
d
te
h
-

e
an-
-
s
-

erties of the density matrix are preserved in this approxim
tion. As this equation is of first order inb, one needs the
initial condition. By calculating the zero-temperature (b
5`) reduced density matrix from the ground-state theo
one can find the solution at finite temperature. One c
change variables to the center of massX5(x11x18)/2 and
relative positions variablex5x12x18 and take the Fourier
transform with respect to theX variable. In this way one gets
an equation with variablesx and P, whereP can be inter-
preted as the total momentum variable and¹xC(x;P) as the
diffusion term. The physical meaning of the external pote
tial term can be seen when we consider smallx. Then by
expanding aboutX, one gets a force termx¹V(X), affecting
the relative motion. This motion is also affected by the dire
and exchange potentials arising from the interaction term

When the external potential goes to a constant, a solut
which depends only onx, is possible, provided that stabl
solutions of the equation exist. This depends on the form
the interaction potentialU(xI ,xj ). In the case of the electron
gas, stability is not possible, as the interaction is repuls
Then one has to consider the jellium model where the H
tree potential is canceled out by the positive background
tential.

V. DISCUSSION AND SUMMARY

We shall first derive from Eqs.~12! an eigenfunction
equation in order to compare it to that obtained by Coh
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and Frishberg. Second, we shall prove that our thermo
namic HF approximation is related to the THFA rather th
the TSDA of Kaplan and Argyres@13#. Our proof is based on
the fact that the relation̂ninj&T5^ni&T^nj&T does not hold in
the TSDA whereas in the THFA it does. We first notice th
C is a Hermitian operator asC(x,x8;b)5C(x8,x;b) and
therefore it can be expanded in terms of a complete se
functions with only diagonal terms, i.e.,

C~x,x8;b!5(
i

niw i~x!w i~x8!, ~13a!
an
o

by

n
ft-
th

A
-

le
of
es
y-

t

of

where both the wave functions and the coefficients dep
on b. We shall take thew i(x) as real, since in casew i(x) is
complex, its complex conjugate has the same eigenvalue
making use of the orthogonality relation of thew i(x), one
finds

E dx8C~x,x8;b!w i~x8!5niw i~x!. ~13b!

We next multiply both sides of Eq.~12! by w i(x18) and inte-
grate overx18 . After taking into account Eqs.~13!, we get
E dx18w i~x18!S 2
]

]b DC~x1 ,x18 ;b!5@2 1
2 ¹1

21V~x1!#niw i~x1!1VCb~x1 ;b!niw i~x1!

2E dx2U~x1 ,x2!C~x1 ,x2 ;b!niw i~x2!1@E~b!1Ecb~b!2Exc~b!#niw i~x1!

2E dx2@~2¹28!2/21V~x28!#C~x1 ,x28 ;b!niw i~x2!

2E dx2VCb~x2 ;b!C~x1 ,x2 ;b!niw i~x2!

2E E dx2dx3U~x2 ,x3!C~x1 ;x2 ;b!C~x3 ,x3 ;b!niw i~x2!

1E E dx2dx3U~x2 ,x3!C~x1 ;x2 ;b!C~x2 ,x3 ;b!niw i~x3!, ~14!
ac-

ation

ach,
, to

he
re
a

ding
iga-
de-
her
le
ns,
where one can recognize the HF operator on the right-h
side of the first two lines. Thus we get an equation which
the right-hand side is similar in form to that obtained
Cohen and Frishberg in@1#. To verify this, one can introduce
in Eq. ~14! the single-particle DM eigenfunction expansio
given by Eq.~13a!. Note that in the present case, the le
hand side is different and cannot be simplified since
w i(x) depend onb.

In order to show that our equation is related to the THF
we use our approximateC(2). Then according to the decou
pling scheme of Eq.~11!,

2C~2!~x1 ,x2 ;x18 ,x28 ;b!5C~x1 ,x18 ;b!C~x2 ,x28 ;b!

2C~x1 ,x28 ;b!C~x2 ,x18 ;b!,

~15a!

where by C(2) we denote the approximate two-partic
DM’s. It is useful to see that in the explicit expression
C8(2), the i 5 j terms vanish and therefore the above expr
sion becomes

2C2~x1 ,x18 ;x2 ,x28 ;b!5(
iÞ j

ninj$w i~x1!w i~x18!w j~x2!w j~x28!

2w i~x1!w i~x28!w j~x2!w j~x18!%.

~15b!
d
n

e

,

-

We next multiply both sides of Eq.~15a! by w j (x28)w i(x18)
and integrate both sides. After integration we take into
count Eq.~13b! and obtain

E dx28w j~x28!E dx18w i~x18!C~2!~x1 ,x2 ;x18 ,x8;b!

5^ni&T^nj&T@w i~x1!w j~x2!2w j~x1!w i~x2!#. ~15c!

In order to show that the THFA relation

^ninj&T5^ni&T^ j&T ~16!

holds, we have to use the second quantization represent
of C(2). This is done in Appendix B.

We have compared and contrasted the present appro
based mainly on symmetry principles and the densities
the THFA and TSDA of Kaplan and Argyres@13#. These
authors focused attention, via the minimum principle for t
grand-canonical potential. Their results on the THFA a
posed in terms of one-electron eigenfunctions of
temperature-dependent HF operator and their correspon
eigenvalues. However, our objective in the present invest
tion has been to obtain an equation in compact form, in
pendent of wave functions and energies, which by furt
simplifications could eventually lead to the first-princip
derivation of already existing phenomenological equatio
like, e.g., the stationary~time-independent! Boltzmann equa-
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tion. Further, our approach cannot give higher accuracy t
the TSDA, since the Kaplan-Argyres approach is based
the best statistical density operator, which minimizes
grand-canonical potential. The derivation of the TSDA a
proximation in compact form would also be interesting a
useful. The advantage of our derivation with respect to t
of the method of Green’s functions is that the time order
which makes the equations more complicated is not pre
in our case.

To conclude, we consider that more insight is gain
when the same approximation is seen from a different p
spective.
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APPENDIX A

We shall derive the equation forC(x,x8) without making
use of the eigenfunction expansion. We shall also use fi
operators. We write the Hamiltonian

H5T1H int1V̂ ~A1a!

in terms of the fermion field operatorsĉ1(x) and ĉ(x),
where the various terms of the Hamiltonian assume inte
forms, namely

T5221E d3x¹ĉ1~x!¹ĉ~x!, V̂5E n̂~x!V~x!d3x,

~A1b!

H int5221E d3x8E d3xĉ1~x!n̂~x8x!ĉ~x!U~ ux,x8u!.

~A1c!

The ĉ1(x),ĉ(x) obey the anticommutation relation

@ĉ1(x),ĉ(x8)#15d(x2x8) and the n̂(x,x8) takes the
simple form

n̂~x,x8!5ĉ1~x!ĉ~x8!. ~A2a!

Thenn(x,x8;b)5Tr $ĉ1(x)ĉ(x8)exp(2bH)% and

2
]

]b
C~x,x8;b!5Tr $ĉ1~x!ĉ~x8!H exp~2bH !%.

~A2b!

We next make use of the relations

ĉ~x8!H5@ĉ~x8!,H#1Hĉ~x8!,

@ĉ~x8!,H#5@ĉ~x8!,T#1@ĉ~x8!,H int#1@ĉ~x8!,V#,

@ĉ~x8!,T#52221¹2ĉ~x8!,

@ĉ~x8!,H int#5E d3x9n̂~x8,x9!U~ ux9,x8!ĉ~x8!

and
n
n
e
-

t
g
nt

d
r-

ld

al

@ĉ~x8!,V̂#5V~x8!c~x8!.

After substituting the above relations in Eq.~A2b!, we get

2
]

]b
n~x,x8;b!5TrH ĉ1~x!@2221¹821V~x8!#

1E d3x9U~ ux9,x8!ĉ1~x!

3n̂~x8,x9!ĉ~x8!exp~2bH !J
1Tr $ĉ1~x!Hĉ~x8!exp~2bH !%.

~A3a!

Finally, by inserting the explicit form ofH in Eq. ~A3a!,
noting that

ĉ1~x!@2221¹821V~x8!#ĉ~x8!

5@2221¹821V~x8!#ĉ1~x!ĉ~x8! ~A3b!

and that the two-particle density matrix is

C2~x1 ,x2 ;x18x28 ;b!5221Tr $ĉ1~x1!n̂~x2 ,x28!ĉ~x18!

3exp~2bH !%, ~A3c!

we get the hierarchy equation~7! for the first-order DM.
Note that the term

Tr $ĉ1~x!H intĉ~x8!exp~2bH !%

involves third-order DM’s.

APPENDIX B

We use Eq.~15! with C(2)(x1 ,x2 ;x18 ,x28 ;b) expressed in
terms of the field operators as in Eq.~A3c!, with the approxi-
mate HamiltonianK in place ofH.

Then

E dx28w j~x28!E dx18w i~x18!Tr $ĉ1~x1!ĉ1~x2!ĉ~x28!

3ĉ~x18!exp~2bK !%

5^n̂i&T^n̂ j&T@w i~x1!w j~x2!2w j~x1!w i~x2!#. ~B1!

We next substitute the integrals of the primed variables
~B1! by the creation and annihilation operators defined
follows:

âi
15E d3x w i~x1!ĉ1~x1!, âi5E d3x8w i~x1!ĉ~x1!

~B2!

and the left-hand side of Eq.~B1! becomes



he

n
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E dx28w j~x28!E dx8w i~xI8!Tr$ĉ1~x1!

3ĉ1~x2!ĉ~x28!ĉ~x18!exp~2bK !%

5Tr $ĉ1~x1!ĉ1~x2!â j âi exp~2bK !%.

By multiplying by w i(x1)w j (x2), for iÞ j , on both sides of
v.
Eq. ~B1! and integrating we find after taking into account t
orthogonality relations

Tr $âi
†â j

†â j âi exp~2bK !%5^n̂i&^n̂ j&T , for iÞ j .
~B3!

We next take into account that foriÞ j , âi
†â j

†â j âi

5âi
†âi â j

†â j5n̂i n̂ j . Thus finally we find the desired relatio
Tr $$n̂i n̂ j exp(2bK)%5^n̂i&T^r̂ j&T for iÞ j .
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