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Many-body partition function and thermal Hartree-Fock approximations
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The hierarchy equations for the quantum thermal density matrices of an assembly of interacting particles in
an external potential are derived in a compact form. This approach can complement and finally replace the
phenomenological treatment of the thermodynamic properties of quantum gasses, liquids, and solids. We also
derive a temperature Hartree-Fock approximation for fermions based on the symmetry properties of the exact
hierarchy and finally we discuss the present approximation in relation to that of Kaplan and Arfy#es
Kaplan and P. N. Argyres, Ann. Phy@\.Y.) 92, 1 (1975)].

PACS numbd(s): 05.30—d

I. INTRODUCTION ciples by Glezos and Theophil¢g], while Brosenst al.[6]
derived a similar equation in studying the dielectric proper-

Although all information about a system of identical  ties of the electron gas for which many phenomenological
particles is contained in thi-particle density matrix, many €quations existed before. These studies, however, concerned
important physical quantities can be obtained from low-ordeigenstate properties and not thermodynamic equilibrium.
density matrices. The particle density and the kinetic energy Another possible application of the thermal hierarchy
are important physical quantities, which can be calculate@duations is their use in the derivation of approximations for
via the single-particle density matriDM), while for the the thermal exchange and correlation energy densny func-
total energy of a system with two particle interactions thetional, Exi(n), in the frame of a thermal density-functional
two-particle DM is needed. Thus, it would be useful if one theory (TDFT) [3]. Approximations concerning the ground-
could set up equations for lower-order density matrices, ig_state density matrices hierarchy have already been obtained
noring the higher-order ones, as in most experiments onlpy Holas and Marcl7]. , _
quantities involving one- and two-particle DM’s are mea-  1he present paper deals with the hierarchy of thermal
sured. In fact, many phenomenological equations, like, e.gdensity matrices of a system &f identical particles in an
the Boltzmann equation and the diffusion equation, concer§Xternal potentiaV/, in thermodynamic equilibrium, interact-
single-particle density matrices. Unfortunately, the low-ordernd Via two-body forces, i.e., the Hamiltonian is of the form
density-matrix equations derived from first principles, in-
volve higher-order DM’s and therefore one has to deal with a N N
hierarchy of equationgl]. The way out is to terminate these HN=2 ti+ 2
hierarchies by expressing the higher-order reduced density =1 1#)=
matrices(RDM’s) in terms of lower-order ones. This is in
principle possible for the ground state and thermal equilib+or electrons that we focus on hetgjzezlrij is the Cou-
rium states, since the diagonal elements of the single-particlemb interaction between electrons at separation distance
density matrix determine uniquely the higher-order densityr;; . Our objective is to use existing knowledge to construct a
matrices. This is a corollary, directly derived from the Ho- hierarchy for the reduced density matrices.
henberg and Kohn theorefi2] and its generalizations to Let Wyi(Xq,Xp,....Xy) be an eigenfunction of the
thermodynamic systenis]. N-fermion HamiltonianH, where the variable stands for

In actual calculations concerning the thermal properties othe position and spin variable. Then, by multiplying both
quantum gases, liquids, and solids, one has to know the eXjdes of the eigenvalue equation B (X} X5 ,....X},) one
plicit forms of the functions which express the dependencgyets
of the high-order density matrices on the lower-order ones
and thus it is necessary to use approximations. Then one can N) L ,
use the exact hierarchies to justify or improve already exist- HN(X1 X2, XN (X, XN 5 X X 5 X)
ing phenomenological equations describing these systems.
Such an example is the Landau-Silin equat[dh set up
phenomenologically to describe Fermi liquids such as
helium-3. This equation was later derived from first prin- where

1ti,j- D

=Enint™ (Xq 1o XX XD e XN (2a
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NN (X1, X000 XX X e XE) i.g., thgy are G!erived f_rom the.higher-orde.r ones by progres-
sively integrating out information. Integrating over all vari-
=WNi(Xg, Xo, e XN) WRI(XT XD 5 XN) (2b)  ables, one gets the many-body partition function for a ca-
nonical ensemble,
and the reduced single state density matrices are defined by

the relation Z(B):NflE eXD(—,BEi)f dx ni(l)(x,x’) or
I
(B) ! ’
N (Xq oo Xg i X yeeesXs)
e Z(B)=Triexp— pH)}, (40
_ ( N) j dx dx by means of which the macroscopic properties of a system in
S Sl BN thermodynamic equilibrium can be derived. The Bloch DM’s
(N) o, , differ from the thermal DM'’s only by the multiplicative fac-
XN (X aeee Xg o Xg 1o e XNGXL XD 4o v e X Xgg 15000 XN)- tor Z(B), i.e.,CO=2(B)n®,
(20 The reduced single-particle density matrix is identical to

the  single-particle  temperature  Green’s  function
The integration sign in the following will imply that one has G(x’,t’;x,t;8) in the limit thatt’'—t=e—0, >0 [10].
to equate primed and unprimed integration variables befordhis function is defined in terms of the fermion field opera-
integrating. tors (x',t'), #'(x,t) by the relation
After successive integration of both sides of E2g), one
gets th;a)hierarchy of equations for the reduced density maG(x’,t’,xt; 8)=Tr{exp — BH— uN)T[#(x',t") T (x,0)]},
tricesny” (5)

whereT is the time-ordering operator. Similar relations hold

S
)nf(5+1)+(s+ 1) for the higher-order Bloch density matrices and the corre-

Hsn(ks)+(3+ 1)j dXs41 ts+1+i21 tisr1

sponding Green'’s functiorf40]. Thus in general thermody-
namic Green’s functions contain more information than the
ding densit tri they involve the ti i-
X (s+ 2)/2J dXs+1dXs+2ts+1,s+2nf<S+2):ENknf(S)a (33 ;glr(raespon ing density matrices as they involve the time vari
By using Eq.(4) it is straightforward to derive the relation

where
C¥=3 exp—BE)N, 1=s=N, ©

S S
I
HS:E t|+2 ti,jl letl' (3b) ) ) ) ]
=1 7=l which will be used for the setting up of the hierarchy equa-
tions for the reduced density matrices. We multiply E2p)
For deriving these equations, we followed the procedure ofhroughout by expt BE,) and sum over the entire level spec-
Cohen and Frishbergl] and we have also adopted their trum k. Then, employing the same notation as in E3).we
notation with minor changes to embrace excited states.  can write

S
Il. DERIVATION OF THE THERMODYNAMIC (s) f
HC®+(s+1)| d tep1t t;
HIERARCHY EQUATIONS s (5+1) | dXsia) Lo ;1 "5“)
The N-particle canonical ensemble Bloch density matrix X CETD +[(s+1)(s+2)/2]
is [8]
d
X | dXgy10dXs ot cstd=——cb (7
CMN(Xq, e Xe o XNXE XY e X 1 XK B) j st fst st lst2 B @
=S exg— BEY) where the sunEE, exp(—BEJNY on the right has been re-
: L placed by—(a/dB8)C'®. Thus we have derived the desired
. o ) hierarchy equations. The energy levéls and the corre-
XN (X1, X0, XN XL XD 5 XN (43 sponding wave functions do not appear in the final set of the

hierarchy. This is expected to be so as one could use the
The definition of the lower-order reduced Bloch density ma-trace definition of the density matrices and derive these equa-

tricesC® is [8,9] tions without making any use of the energy eigenstates. This
derivation is given in Appendix A for the one-particle re-
COXq,Xa, e X1 X)X e XL) duced density matrix. In fact, the use of traces instead of

eigenfunctions is more rigorous, as a Hamiltonian may not
N possess a complete set of eigenfunctions. However, we have
=( S j AXssgr B chosen the presentation in terms of eigenfunctions as this is
more comprehensible and is closely related to the ground-
XCM(Xg X XN XL X 1 XN (4b)  state derivation of Cohen and Frishbétg. It is worthwhile
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to observe that by writing the equation in terms of the nor- (c) For many-electron systems in an external potential
malized  thermal density  matrices n(xq,X;;8) V(x), the density matrices have the same symmetry as the
=C(xy,X};B)/Z(B) one gets a more complex equation. external potential. Thus, let the external potential have the
propertyV(gx) =V(x), whereg is a rotation or translation
. SYMMETRY PROPERTIES OF THE DENSITY belonging to a grquﬁs. .As G is_a su_bgroup of3, it foIIows_
MATRICES that the HamiltoniarH is also invariant unde@, as the ki-
netic and interaction energy term Hfis invariant undet 3,

The differential operators in Eq7) are similar in formto  which containss. We shall show that
those of the time-dependent Schimger equation, witht
=—ipB, and Eq(7) is covariant with respect t, the group CO(gXy,....0%:9X1 .. ..%; B)
of all translations and rotations in the three-dimensional Eu-
clidean space. This means that translation and rotation of the
external potential gives a density-matrix solution with corre- .
sponding translation and rotation, in agreement with the cor--rhe proof is based on the trace property {AB}
responding property which follows directly from the defini- =Tr{BA}. Thus
tion of theN-particle DM’s.  Further, one can easily verify —BH 1 —1.-BH
that all symmetry properties of the Hamiltonian are trans- Trie "gng }=Tr{g ‘e "gnj.
ferred to the one- and two-particle operators of & This gy taking into account thay commutes wittH and therefore
is a direct consequence of the fact that mtegra_tlon over allitn e A" we get Eq(10). Thus, e.g., the thermal average
space does not change the symmetry properties. Only th {he electron density in a solid will have the space-group
number of variables is reduced. symmetry of its lattice.

One can solve Eq7) starting from the zero-temperature ~ Thg hierarchy equations were used[# for the deriva-
(B=) DM's. In th's, case the transformation properties of {jon of an approximation for the exchange and correlation
the ground-state DM's related to the symmetry properties ofstential\v, (n) for the case of the ground state. Obviously
the Hamiltonian will be transferred to the f|n|te-temperatureOne can use the present hierarchy of density matrices to de-
N-particle DM and thereby to the lower-order ones. Thes&;ye an approximation in the frame of a thermal density func-
properties are important and have to be imposed on the S 4| formulation, like the one established by Merrfd. In
lutions in order to get a correct description of the physicals,ch an approximationa/, (n) will have the symmetry of
system. Thus in the case of fermions the trace is over thg,e gensity and therefore of the external potential. This is not
space of antisymmetric wave functions while in the case ofe case when one considers a density-functional approach
bosons one has to choo;e the space of symmetric ones. Ws single states, as degeneracy may give rise to density
summarize these properties below. o asymmetries, which are transmitted\tg.(n) [11].

(@) The Bloch DM's are real and symmetric with respect ¢ the Hamiltonian has an additional symmetry beyond
to the exchange of primed and unprimed variables, i.e.,  hat of the permutations of the indices, one can classify the
, , . energy eigenstates according to the Irreps of the symmetry
e X Xs B group, and consider traces in a subspace with states of a
definite Irrep. In this way one can develop reduced DM hi-
erarchies labeled by the Irreps of the symmetry group. Such

(8)  DM's are important in problems of broken ergodicfty2].

) ) ) o As the derivation is as that of the general case, with the space
This property is a direct consequence of the definition whenyf states restricted, we shall not repeat the proof. The hier-
one chooses real wave functiofia the case of degeneracy archy obtained is as that of E€f) with the reduced density
one can also use a real basis order to see the importance matrices carrying an additional index, labeling the Irrep.
of this condition, take the case of the equation of thetnen a density matrix defined by Edd) is thes sum over
N-particle DM. As the differential operators in E() affect 5| matrices labeled by the Irreps of the symmetry group.
only the primed variables, one would have the freedom torhus, e.g., one can label the density matrices by the spin

choose any unprimed part, if the symmetry constréatis  jndex S when no spin-orbit coupling is considered and no

(b) It is essential to notice that the solutions of E@)
belong to the irreducible representatigiseps of the per-
mutation group of the indices for the unprimed and primed
variables separately. In the case of fermions, the antisymme-
try Irrep must be chosen, i.e., the density matrix must satisfy The simplest approximation for the ground-state theory,

=CO(Xq,.o. X i X] o0 XE 3 B). (10)

S v/
COXgyene Xiyene Xicsor e X1 X] X

= COX], oo X oo Xy oo XE T X e e Xi e Xy X B).

IV. THERMODYNAMIC APPROXIMATIONS
FOR FERMION SYSTEMS

the following relation: which takes into account the fermionic character of the par-
ticles, is the Hartree-FockHF) approximation. The hierar-
COXyee e Xisene XKoo e X3 XLy ee e X{ eee X yeee X3 B) chy equations for this approximation were derived by Cohen

and Frishberd1]. As for the thermodynamic HF, we have
two versions: the thermal HFTHFA) and the single deter-
9 minant HF (Tspa) derived and discussed in detail by Kaplan
and Argyres[13]. The first one considers an approximate
The same relation holds for the primed variables. density operator of the form ekp B(K(n;) — uN)], whereK

! ! !

= — CO (X Xy oo Xi e X XD e X oo Xfey e X5 3 B).
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is a linear function of the particle number operatoysvhile ~ exchange of two primed or unprimed variables. The present
the other is free of this restriction. In both cases the grandapproximation is similar to that of the ground-state theory of
canonical potential is minimized with respect to this densityCohen and Frishberg and as is well known it does not hold
approximation. for densities of the form exp(SH) whenH involves two-

In the present paper, we develop an approximation basaggrticle operators. In order to avoid confusion with the exact
on the simplest symmetry-preserving expression of théM's, we shall consider that the above thermal averages

DM'’s. Thus for fermions we write hold for an approximate statistical density operator, which in
the following will be denoted by exp{(BK), where the ap-
COX1,Xp,er. X X)X, X B) =51 1 defC(xx] : 8)], proximate HamiltoniarK involves only single-particle inter-

(11) actions. By introducing in Eq.7) the decoupling scheme of

Eq. (112), for the cases=1, we get the equation fdC. After
where by the bracket] we denote thes by s matrix, with  summing the various terms resulting from the expansion of
matrix elementsC;; = C(x; ,xj’) and the approximation to the determinants, the following integrodifferential equation
CcW is denoted byC. This is the simplest expression f6f9 is obtained withU(x;,x,) denoting the two-particle interac-
having the property of antisymmetry with respect to thetion:

J

—@C(lexi;ﬁ)=[—Vi/2+V(X1)]C(X1X1;ﬁ)+VCb(X1:ﬂ)C(X1,X1:B)—f dxU(X1,%2) C(X1X2; B)C(X2,X1 ; B)
+[E(ﬂ)+Ecb(ﬂ)—Exc(ﬁ)]C(Xl,Xi;,3)—f dXo[ (= V5)2/2+V(x3)]C(X1,X5; 8)C (X, X ; B)
_f dX2VCb(X2;B)C(lexziﬁ)c(xzxi;,3)_ffddeXSU(Xz7X3)C(X1;X2i,3)C(X21Xi;:3)

XC(X3§X3;,3)+ffdxzdxsu(xzxs)C(X1iX2?ﬂ)C(szs;B)C(Xs-Xi;,3)' (12a

where erties of the density matrix are preserved in this approxima-
tion. As this equation is of first order i3, one needs the
VCb(Xl;IB):f dxU(Xq,%)C(X0,%0: 8) (12D initial condition. B){ calculgting the zero-temperatur@ (
=) reduced density matrix from the ground-state theory,
one can find the solution at finite temperature. One can
change variables to the center of mass (x;+x;)/2 and
1 5 relative positions variablec=x;—x; and take the Fourier
E(B)=2 f dxg[ = Vo/2+V(X2) JC(X2.%2: B), transform with respect to thé variable. In this way one gets
(120 an equation with variables and P, whereP can be inter-
preted as the total momentum variable &h@(x;P) as the
diffusion term. The physical meaning of the external poten-
tial term can be seen when we consider smallThen by
expanding aboux, one gets a force termVV(X), affecting

is the two-particle direc(Hartreg potential, and

Ecb(ﬁ)=27lffdXZdX3U(X2,X3)C(X2;X2;B)

X C(Xs.X3:8), (129 the relative motion. This motion is also affected by the direct
and exchange potentials arising from the interaction term.

Ex(B)= 2‘1f f dX,dX3U (X5,X3)C(X5;X3; B) When the external potential goes to a constant, a solution,
which depends only ow, is possible, provided that stable

X C(X3,X2; ). (12¢ solutions of the equation exist. This depends on the form of

] o ) _theinteraction potentidl (x, ,x;). In the case of the electron
In all cases, before the integration is carried out the primegas, stability is not possible, as the interaction is repulsive.
variable of integration is equated to the unprimed one. Notérhen one has to consider the jellium model where the Har-

also the symmetry relations between primed variables whiclee potential is canceled out by the positive background po-
allowed us to use unprimed variables for the differential optential.

erators and the external potential.
Thus finally we have an equation in compact form, where
no energy levels and eigenstates appear, which is an_advan- V. DISCUSSION AND SUMMARY
tage with respect to the conventional thermodynamic ap-
proximation, which is expressed in terms of the eigenstates We shall first derive from Eqgs(12) an eigenfunction
of a Hartree-Fock operator. We note that all symmetry propequation in order to compare it to that obtained by Cohen
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and Frishberg. Second, we shall prove that our thermodywhere both the wave functions and the coefficients depend
namic HF approximation is related to the THFA rather thanon 8. We shall take thep;(x) as real, since in casg/(x) is

the TSDA of Kaplan and Argyrdd 3]. Our proof is based on comple, its complex conjugate has the same eigenvalue. By
the fact that the relatiofn;n;)+=(n;)(n;)y does not hold in  making use of the orthogonality relation of thg(x), one

the TSDA whereas in the THFA it does. We first notice thatfinds

C is a Hermitian operator a€(x,x’;B)=C(x’,x;8) and

therefore it can be expanded in terms of a complete set of , . L
functions with only diagonal terms, i.e., f dx'C(x,x"; B) @i(X") = nNigi(X). (13b)
C(X.X’;/:a’)=2i niei(X) ei(x'), (133 We next multiply both sides of Eq12) by ¢;(x;) and inte-

grate overx; . After taking into account Eq$13), we get

C(Xq,X1;B)=[— 5 VI+V(x)INi@i(X1) + Vep(Xe; B)Nigi(Xq)

jdxi(Pi(Xi)(_%
—f dxaU (X1,X2) C(X1,X2; B)Ni@i(X2) +[E(B) + Ecn(B) — Exc( B) INi¢i(X1)
- f A (— V5)212+ V(x3)IC (X1 X :B) 01 (Xz)
—f dXoVen(X2: B)C(X1, X2 BINigi(X2)
—f f dxodX3U (X2,X3)C(X1;X2; B)C(X3,X3; B)N; ¢i(X2)

+f f dxxdx3U (X5,X3) C(X1;X5; B)C(X2,X3; B)Ni¢i(X3), (14

where one can recognize the HF operator on the right-han@e next multiply both sides of Eq15a by ¢;(x5) ¢i(X})
side of the first two lines. Thus we get an equation which orand integrate both sides. After integration we take into ac-
the right-hand side is similar in form to that obtained by count Eq.(13b) and obtain

Cohen and Frishberg ii]. To verify this, one can introduce

in Eq. (14) the single-particle DM eigenfunction expansion , , , N~(2) L
given by Eq.(13a. Note that in the present case, the left- dxo@j(X2) [ dXqi(X1)CH (X1, %25 %1 ,X"5 B)
hand side is different and cannot be simplified since the
#i(x) depend ong. = (M) (Nl ei(X1) @j(X2) = ¢j(X1) @i(X2)].  (150)
In order to show that our equation is related to the THFA, )
we use our approximat€®. Then according to the decou- N order to show that the THFA relation
pling scheme of Eq(11),
(ninp)r={nw(;)r (16)
2C2) (X1, X0 X4 X5 1 B)=C(X1,X} : B)C (X0, X5
(X1 X21X1 X5 B) = C X0 X1 1 B)CXa %2 1) holds, we have to use the second quantization representation
—C(X1,%5;B8)C(X2,X5: B), of C®. This is done in Appendix B.

(153 We have compared and contrasted the present approach,
based mainly on symmetry principles and the densities, to
where by C® we denote the approximate two-particle the THFA and TSDA of Kaplan and Argyred.3]. These
DM's. It is useful to see that in the explicit expression of authors focused attention, via the minimum principle for the
c'@ thei=| terms vanish and therefore the above eXpres_grand-ca_mon|cal potential. Their resultfs on the_ THFA are
sion becomes posed in terms of one-electron elgenfu_ncnons of a
temperature-dependent HF operator and their corresponding
eigenvalues. However, our objective in the present investiga-
Zcz(xl,xi;xz,xé;ﬁ)zz_ nini{ @i (X1) @i(X1) @j(X2) @j(X3) tion has been to obtain an equation in compact form, inde-
i#] pendent of wave functions and energies, which by further
simplifications could eventually lead to the first-principle
derivation of already existing phenomenological equations,
(15b like, e.g., the stationargtime-independentBoltzmann equa-

= @i(X1) @i(X3) @j(X2) @j(X1)}.
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tion. Further, our approach cannot give higher accuracy than [z}(x’),f/]=V(x’)¢(x’).
the TSDA, since the Kaplan-Argyres approach is based on
the best statistical density operator, which minimizes the _— : .
grand-canonical potential. The derivation of the TSDA ap-Aﬁer substituting the above relations in Heh2b), we get
proximation in compact form would also be interesting and
useful. The advantage of our derivation with respect to that _ in(x x",8)=Tr{ I 0[ -2V 2+ V(x)]
of the method of Green’s functions is that the time ordering ap
which makes the equations more complicated is not present
in our case. | AU + f d*X"U (X" x") g ()
To conclude, we consider that more insight is gained
when the same approximation is seen from a different per-
spective. X A(X X)) (X" Yexp — BH)

ACKNOWLEDGMENT +Tr{;y+(x)H &(X’)GXF(—EH)}.
We thank Professor A. Hola@Varsaw for many valu- (A3a)
able discussions in the general area of this investigation.

Finally, by inserting the explicit form oH in Eq. (A3a),
APPENDIX A noting that

We shall derive the equation f@(x,x") without making ~y P B
use of the eigenfunction expansion. We shall also use field () =277V VIXD) Jeh(X)
operators. We write the Hamiltonian 1o, oA -
P [~ 27324V TF 0 UX)  (A3D)
H=T+Hp+V (Ala)
and that the two-particle density matrix is

in terms of the fermion field operatorg™(x) and #(x),
where the various terms of the Hamiltonian assume integral CZ(X]_,XQ;X:;_Xé ;,8)=2’1Tr{f//+(xl)ﬁ(x2,x§) ':’f(xi)

f , I
orms, namely X exp(— BH)), (A30)

_n-1 3 o+ > N/ — P 3
T=2 fd XVy ()Vg0, v f ROOVOOdx, we get the hierarchy equatiofY) for the first-order DM.
(Alb)  Note that the term

Him=2’1f d3x’f d3x g ()A(X X) (U (|x,X']). Tr{g* (OH (X" )exp(— BH)}

Alc
( ) involves third-order DM’s.

The ¢ (x),(x) obey the anticommutation relations

[47 00, 9(x')].=8(x—x') and the A(x,x') takes the APPENDIX B
simple form We use Eq(15) with C@)(x,,x,;x] ,x5;8) expressed in
A IN— T ) T s terms of the field operators as in E&3c), with the approxi-
AT =47 (X)X (A23) mate HamiltoniarK in place ofH.
Thenn(x,x"; B) =Tr{y* (x) ¢:(x')exp(= BH)} and Then
J N “ ~ N A
- @C(x,x’;ﬁ):Tr{w*(x)w(x’)H exp(— BH)L. f dXé(Pj(Xé)f dx; @i (X)) Tr{g™ (x) ¢ (X2) h(x3)
(A2Db) _
X (xp)exp(— BK)}
We next make use of the relations R
A i i =(Pp)7(Nj) 7L 0i(X1) @j(X2) — @j(X1) @i(X2) ] (B1)
p(XIH=[4(X"),H]+Hy(X), _ . . :
We next substitute the integrals of the primed variables of
[I(X), H]=[dX ), T+ X ) i+ [ (X)), V] (B1) by the creation and annihilation operators defined as
' ' s B follows:
[¢(x'), T]==2"1V24(x'),
. ) a'= f X @i(x) I (%), &= f A’ i (X0) (xq)
(D) il = [ XG¢ XU x) ) ®2)

and and the left-hand side of EB1) becomes
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, , ) . Eqg.(B1) and integrating we find after taking into account the
f dXz@;(Xz)J dx’ (X ) Tr{e™ (x1) orthogonality relations
~ " Tr{ala'aa exp— BK) =(A)(A))7, for i#].
X I (x0) ) Hxp expl — BK)} (802 3,8 expl = BIOF= (A iy " e
=Tr{i" (X)) " (%2) & exp(— BK)}. We next take into account that foi#j, &a/a3

=a/a,a/a;=n;A;. Thus finally we find the desired relation
By multiplying by ¢;(x1) ¢j(X), for i#j, on both sides of  Tr{{f;n; exp(— BK)}=(f)F;)r for i #].
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