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Stable solitons of quadratic Ginzburg-Landau equations
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We present a physical model based on coupled Ginzburg-Landau equations that supportsstable temporal
solitary-wave pulses. The system consists of two parallel-coupled cores, one having a quadratic nonlinearity,
the other one being effectively linear. The former core is active, with bandwidth-limited amplification built into
it, while the latter core has only losses. Parameters of the model can be easily selected so that the zero
background is stable. The model has nongeneric exact analytical solutions in the form of solitary pulses
~‘‘dissipative solitons’’!. Direct numerical simulations, using these exact solutions as initial configurations,
show that they are unstable; however, the evolution initiated by the exact unstable solitons ends up with
nontrivial stable localized pulses, which are very robust attractors. Direct simulations also demonstrate that the
presence of group-velocity mismatch~walkoff! between the two harmonics in the active core makes the pulses
move at a constant velocity, but does not destabilize them.

PACS number~s!: 42.81.Dp, 42.65.Ky, 52.35.Sb
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I. INTRODUCTION

Propagation of localized pulses~solitons! in many nonlin-
ear physical systems is governed by various form of
complex Ginzburg-Landau~GL! equations which include
dispersive and nonlinear effects in both conservative and
sipative forms @1–3#. The GL equation and its differen
modifications describe various effects in laser physics@4#,
fluid dynamics@5# and nonlinear optics@6#. Different types
of solutions to the one-dimensional complex GL equati
such as pulselike, shocklike, sources, sinks, and periodic
quasiperiodic solutions, have been analyzed. A fundame
issue, from the standpoint of possible applications, is
stability relative to small perturbations of the localized puls
like solutions of these complex GL equations. The simpl
form of this kind of nonlinear Schro¨dinger equation with
frequency and intensity-dependent gain and loss is the c
GL equation which includes only cubic terms. This equat
has been analyzed mainly in the context of plasma phy
@7# and its exact solitary wave solutions are known to
unstable in general. Later on, the cubic-quintic GL equat
was put forward as it admits stable pulselike solutio
@8–11#.

Recently, a great deal of attention has been attracte
solitons in optical media with a quadratic (x (2)) nonlinearity
that consist of two mutually locked components, viz., t
fundamental~FH! and second harmonic~SH! fields @12#. Ex-
perimental observations of the solitons in the spatial@13#,
temporal @14#, and spatiotemporal@15# domains were re-
ported. Because any optical medium has intrinsic los
stable propagation or circulation of solitons requires a co
pensating gain. The action of pure losses onx (2) solitons was
considered in@16#, and adiabatic amplification of spatial sol
tons was analyzed numerically in@17#. Recently, an adia-
batic perturbation theory was developed for quadratic sol
propagation in nonconservative media@18#. Actually, the
losses are insignificant for the spatial solitons, as the siz
PRE 621063-651X/2000/62~1!/1322~6!/$15.00
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the experimental sample is usually much smaller than
attenuation length@13#. Recently, robusttemporal solitons
have been predicted in an externally pumpedx (2)cavity with
parametric gain and an additional cubic nonlinearity pres
@19#. Other situations can be expected too where there is
synchronized pump but the solitons circulate in a cavity,
cumulating loss and gain effects as a result of many ro
trips, thus making them important. Moreover, for narro
temporal solitons, circulating in the cavity, dispersive loss
due to the finite amplifier bandwidth will be especially im
portant.

The objective of this work is to analyze a physical co
figuration with a quadratic nonlinearity, losses, and comp
sating gain, modeled by linearly coupled one-dimensio
complex GL equations, that gives rise tostable temporal
solitons. The model is introduced, and its special exact s
tary wave solutions are obtained, in Sec. II. In Sec. III w
present detailed numerical simulations of the soliton sta
ity. The results of this work are briefly summarized in th
final section.

II. THE MODEL AND ITS EXACT SOLITARY
PULSELIKE SOLUTIONS

First of all, it is natural to assume that dominating loss
are those at SH, while losses at FH are negligible~note that
the most prominent contribution to the losses, the Rayle
scattering, has its intensity decaying asl24 with the wave-
length!. On the other hand, the amplifier~that we assume to
be integrated with the nonlinearx (2) crystal, by means of
doping the crystal with a resonant impurity, which is pump
by an external source of light@20#! should operate at FH, as
otherwise, the amplification will be inefficient~for quadratic
solitons, the SH component is usually weaker than the
one!. So, we adopt a model combining losses at SH a
bandwidth-limited gain at FH.

It is well known that solitons in the models of this typ
1322 ©2000 The American Physical Society
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are unstable, because the linear gain makes the trivial
state, i.e., the soliton’s background, unstable~see, e.g.,@21#!.
A general and experimentally feasible way to stabilize
background instability was proposed in the context of s
tons in optical fibers with a cubic nonlinearity an
bandwidth-limited amplification@22#: the nonlinear wave-
guide has to be linearly coupled to a parallel core with s
ficiently strong losses. Because the coupling decays ex
nentially with the inverse wavelength, it is reasonable to ta
into regard only the coupling in the FH component. The
the linearly coupled complex GL equations that are expec
to admit stabilized solutions takes the form

iAz1~1/2!DAtt1A* B5 ig0A1 ig1Att1K A8, ~1!

iBz2 idBt1~s/2!DBtt2bB12A252 iG0B1 iG1Btt ,
~2!

iqAz81~ ia1n!A85K A. ~3!

HereA, B, andA8 are, respectively, the FH and SH amp
tudes in the main core and the FH amplitude in the ad
lossy one;z andt are, as usual, the propagation distance a
reduced time;D.0 is the coefficient of the chromatic dis
persion at FH;d is a group-velocity mismatch between F
and SH;s is the relative SH/FH dispersion coefficient;b is
the phase-velocity mismatch;g0 is the FH gain; an effective
filtering coefficientg1 accounts for the finite size of the ga
band;G0 andG1 control the losses at SH;K is the FH cou-
pling constant; whilen, q, anda are the mismatch, propa
gation, and loss constants in the added core. The param
s and b may have any sign, while all the parameters
right-hand side of the equations are positive (G1 may also be
zero!. We set, by means of obvious rescaling,D[K[1,
which implies that all the lengths are measured in units of
intercore coupling length. An explicit dependence of the
lutions, to be obtained below, on the size of the coupl
constant can be readily analyzed by reversing the resca

The model assumes that the losses~along with the pos-
sible phase-velocity mismatch! dominate in the additiona
core, while the dispersion, nonlinearity, and dispersive los
may be neglected in it. Note that two versions of the mo
with the cubic (x (3)) nonlinearity, one neglecting these term
and the other one taking them all into account, were num
cally studied and compared in full detail in Refs.@22#. It was
found that there is no essential difference, whatsoever,
tween the properties of exact solitary pulses in the two v
sions of the model. There is no reason to assume that
situation would be drastically different in the case of thex (2)

nonlinearity.
As concerns the group-velocity mismatch between

and SH in the main core, accounted for by the parameterd in
Eq. ~2!, it is well known that for conservative second
harmonic generation~SHG! the corresponding term can a
ways be eliminated by means of a formal phase transfor
tion. Physically, a sufficient suppression of the grou
velocity mismatch between the FH and SH waves is a cru
condition that must be met in order to provide for the c
ation of SHG solitons, and there are various experime
techniques that make it possible to achieve this purp
@12,14#. However, including dispersive losses and gain
ro
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formal elimination ofd is impossible, which also has a dire
physical purport: it is harder to provide for the full SH
resonance in the presence of losses and gain. On the o
hand, if a stable balance between losses and gain is pos
for a soliton, it may then help to stabilize the soliton again
various nondissipative perturbations~such as the group
velocity mismatch! which would otherwise be able to de
stroy it. Thus, the parameterd is quite important in the
model, and it will be taken into regard in the numerical sim
lations reported below.

Lastly, our approach implies one more assumption, v
that the inverse group-velocity mismatchc between FH
waves in the active and passive cores is negligible, too.
estimate physical conditions that justify the latter assum
tion, we note that temporalx (2) solitons dealt with in experi-
ments@14# have a very small temporal width,T;50 fs, and
they propagate at a strong anomalous FH dispersionD
;1 ps2/m, which gives the soliton’s dispersion lengthzD
;T2/D;1 mm. On the other hand, the inclusion of the pa
allel core produces a nontrivial effect if the correspondi
coupling length,zc @;1/K, in terms of Eqs.~1! and ~3!#, is
aboutzD . We note that it is quite possible technologically
fabricate a dual-core waveguide withzc;1 mm; this cir-
cumstance makes the proposed scheme realistic, bec
x (2) optical crystals available for the experiment have a s
of a few cm@14,15#. Now, Eq. ~3! tells us that the walkoff
length has to be much larger than the coupling length,
c!T/zc;50 ps/m. It is necessary to add that, in reali
there is no need to make the two cores of differe
materials—it is sufficient to have the cores identically dop
only the active one being externally pumped. In this case,
cores have identical refractive indices and thus the pu
propagate with almost identical group velocities if the sha
of the cores is similar. To conclude the discussion of
possible experimental implementation of the propos
scheme, we note that the analysis of the fluctuations of
coupling constant induced by inevitable irregularities in t
separation between the cores shows that solitons hav
strong immunity against such fluctuations@23#.

Proceeding to the mathematical analysis of the model,
notice that the first necessary condition for soliton stability
the stability of the zero background,A5B5A850. The
derivation of this condition is straightforward: one subs
tutes into the linearized equations a small perturbation of
form A,A8;exp(gz2ivt), B;exp(2gz22ivt), wherev is
an arbitrary frequency of the perturbation andl is the insta-
bility growth rate. This yields a dispersion equation,

qg21~a2qg01qg1v22 in1 1
2 iqv2!g

1H 12ag01S ag11
n

2Dv21 i Fg0n1S a

2
2ng1Dv2G J

50. ~4!

Obviously, the necessary stability condition is Reg(v)<0
for all real v. The corresponding algebraic problem follow
ing from Eq.~4! can be easily solved in a numerical form.
typical background-stability region on the parametric pla
(a, g0) at fixed values of other parameters is shown in F
1. One can check that a corollary of the stability condition
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1324 PRE 62LUCIAN-CORNEL CRASOVAN et al.
a.g0, i.e., the loss in the added core must bestrongerthan
the linear gain in the main one.

A remarkable property of Eqs.~1!–~3! is that they admit
an exactsolitary-pulse solution in a form suggested by t
works @7,24,25# provided that the walkoff is disregarded (d
50),

A5a@sech~lt!#21 imeikz, B5b@sech~lt!#212ime2ikz,

A85a8@sech~lt!#21 imeikz, ~5!

with the pulse’s inverse widthl, chirp m, and wave-number
shift k. These parameters are real, while the amplitudea,
a8, andb may be complex. However,a can be made real too
through a trivial phase shift, therefore the complex u
knowns area8 and b. Substituting the ansatz~5! into Eqs.
~1!–~3!, we arrive at five complex equations for four re
unknownsl, m, k, a and two complex onesa8 andb. Ob-
viously, a solution may exist if two constraints are impos
on the eight real parameters of the model~s, b, g1 , G0 , G1 ,
q, a, andn; recall that we are now dealing with the cased
50). First, we can derive a relatively simple equation for t
chirp:

4m4130dm3280m2290dm13650, ~6!

where d[ 1
2 (e24g1)/(11eg1) and e[s/G1. Assuming

that real solutions to Eq.~6! have been found, we sett1
[90m230m3 and cast the subsequent results into the fo

l5@G0 /~4G124sm24G1m2!#1/2,

b5l2~ 1
2 2 ig1!~21 im!~31 im!,

a5~l/A2!@~ 1
2 s2G1!~212im!~312im!b#1/2,

a85a/@~n2qk!1 ia#,

and

b522k12l2~s14mG12sm2!.

Additionally, as bothuau andl must be real, the paramete
of the model have to fulfill some inequalities,t1(G11sg1)
.0 andG0 /(4G124sm24G1m2).0 .

Introducing r 1[(214g1m2 1
2 m2)l2, r 2[(24g112m

1g1m2)l2, andr 3[g02r 2, the equation fork can be writ-
ten, after some algebra, as

FIG. 1. The stable-background domain forq51, s52, G0

50.2, G150.1, g150.15 ~a!, andg150.3 ~b!.
-

d

qk32~n12qr1!k21~2nr 11qr1
21qr3

221!

3k2~r 1
2n1r 3

2n2r 1!50. ~7!

This equation has one or three real roots fork. For each root,
a5r 3(n2qk)/(r 12k). Thus, the exact solitary-pulse solu
tion exists, provided that the values of the mismatchb and
lossa are selected by the above constraints.

III. STABILITY OF PULSELIKE SOLITARY WAVES

The background stability is not sufficient for the full dy
namical stability of the solitary pulse. Therefore, we ha
numerically tested the stability of the exact solution fou
above, arriving at results which are different from those
the similar model with the cubic nonlinearity@22#: the ana-
lytical solution is unstablein all the cases considered, bu
there is anotherstablepulse in all the cases, including thos
when the exact solution does not exist~recall that the exact
pulse solution was not generic, depending on two extra c
ditions; in contrast with this, the new numerically foun
stable pulse appears to be a fairly generic solution!. We ob-
served that the initial exact pulse reshapes into the n
stable pulse, a typical example being displayed in Fig
@panels~a!, ~b!, and~c!#. The same stable pulse can also
generated using, instead of the exact analytical solution
input in the form of rather arbitrary Gaussians:A5a0exp
(2l0

2t2), B5b0exp(2l0
2t2), and A85a08exp(2l0

2t2), with
somea0 , b0 , a08 , andl0 @see panels~d!, ~e!, and~f! in Fig.
2#. It should be mentioned here that such stable pulses ca
generated from a variety of inputs, including, e.g., sech2 in-
tensity profile input pulses. Thus, we conclude that the n
trivial stationary pulses are very robustattractors. It is note-
worthy that the rearrangement of the Gaussian into the st
pulse is much more violent than in the case of the ex
initial pulse, see Fig. 2, i.e., the exact pulse, although be
unstable, is rather close in shape to the stable one. We
studied in detail the structure of the stable pulse. Its real

FIG. 2. The evolution of the exact pulse@~a!, ~b!, and~c!# and of
the Gaussian pulse@~d!, ~e!, and~f!# in the absence of walkoff. Here
q51, g050.3, g150.3, G050.2, G150.1, s51.4, a50.330 06,
b521.557 89, andn50. The Gaussian pulse has the amplitud
a051.7, b051.2, a0850.6, and the inverse widthl050.12.
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imaginary parts are even functions oft, and it is strongly
chirped, see a typical example in Fig. 3.

Now considering the generic case, when the exact p
solution is not available, the stable pulse can be obtained
launching a Gaussian solely in the FH component, the
other ones being empty, see Fig. 4. Because of the bist
ity, there is a threshold for the generation of the stable pu
In Figs. 4~a! and 4~b!, we show that the same stable pulse
generated from different initial Gaussians, provided that th
intensity is above the threshold. Figure 4~c! shows that, with
an insufficient intensity, i.e., below the threshold, the inp
decays into the zero solution.

The present model is bistable: coexisting attractors are
nontrivial pulse and the stable zero solution. According
the general principles, aseparatrix, in the form of an un-
stable stationary solution, must exist between two attract
cf. a similar situation found in Refs.@22#. It is obvious that
our unstable exact pulse is, when it exists, just the separa
In the generic case, when the exact solution is not availa
an unstable soliton must exist, too. It can be found from
numerical solution of the stationary version of Eqs.~1!–~3!,
but is of no interest.

As it was mentioned above, it is quite important to i

FIG. 3. The real and imaginary parts~full and dashed lines! of
the stable-pulse solution in the case corresponding to Fig. 2. H
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clude in the consideration the group-velocity mismat
~walkoff! between FH and SH, accounted for by the para
eterd in Eq. ~2!. Our simulations have demonstrated that t
pulse that was stable atd50 readily survives in the presenc
of the walkoff, just acquiring some constant velocity. No
that in the case of conservative quadratically nonlinear me
the properties of this kind of moving solitons~usually termed
walking solitons! were analyzed systematically in Ref.@26#.
In Fig. 5 @panels~a!–~c!# we show the contour plots of th
evolution of the walking soliton generated by the initial co
dition in the form of the exact~for the cased50) pulse

re

FIG. 4. Evolution of the Gaussian launched in the FH comp
nent in the absence of walkoff. The initial amplitudes area054 ~a!,
a053 ~b!, anda051.5 ~c!. The inverse width of the initial pulse is
l050.05, and the other parameters areq51, g050.3, g150.2,
G050.2, G150.2, s53.1, a50.45, andb5220. Only the evo-
lution of the FH absolute value is shown.

FIG. 5. The gray-scale plots of the evolution of the exact pu
@~a!uAu, ~b! uBu, and~c! uA8u# and of the Gaussian pulse@~d! uAu, ~e!
uBu, and ~f! uA8u# for the same parameters as in Fig. 2 but with
nonzero walkoff parameterd50.2.
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solution ~5! in the presence of a moderate mismatchd
50.2. Recall that the results of simulations of the same c
but with d50 were displayed above in Figs. 2~a!–2~c!. The
only essential difference introduced by the nonzero gro
velocity mismatch is a finite velocity of the soliton~repre-
sented by the slope clearly seen in Fig. 5!. More detailed
analysis of the numerical data shows that, while the mov
soliton becomes asymmetric, its amplitude and energy
practically identical to those of the quiescent one shown
the same values of the parameters andd50 in Fig. 2. More-
over, the simulations withdÞ0, starting with the Gaussia
input, rather than the former exact pulse solution, prod
exactly the same stable moving solitary wave, see F
5~d!–5~f!.

The evolutions of the exact pulse solution~5! correspond-
ing to the parameters given in the caption of Fig. 2 and of
Gaussian pulse launched only in the FH component co
sponding to the parameters given in the caption of Fig. 4~a!,
at still larger values of the walkoff parameterd50.4, are
shown in Figs. 6 and 7, respectively. Numerical measu
ment of the amplitude and energy of the emerging sta
moving solitons again yields results nearly coinciding w
those found in the absence of walkoff and for the same
ues of the other parameters.

Detailed numerical studies revealed that for the walk
parameterd&4 the solitons maintain their integrity. So, b
increasing the walkoff parameter, we found that the pro
gation displays, after a transient regime, persistent osc
tions similarly to those reported for quadratic solitons in no
dissipative systems@27#. The outcomes of our simulation
for d51 andd52 are shown in Figs. 8 and 9, respective
One should note that the greater the walkoff parameter,
longer is the transient regime. Moreover, the soliton tra
verse velocity increases with the walkoff parameterd. Thus,
the stable pulses supported by the present system are r

FIG. 6. The gray-scale plots of the evolution of the exact pu
for the same parameters as in Fig. 2 but for the walkoff param
d50.4. ~a! uAu,~b! uBu, and~c! uA8u.

FIG. 7. The gray-scale plots of the evolution of a Gaussian pu
launched in the FH component for the same parameters as in
4~a! but for the walkoff parameterd50.4. ~a! uAu, ~b! uBu, and~c!
uA8u.
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robust objects, whose characteristics do not depend on
particular initial conditions.

IV. CONCLUSION

In conclusion, we have proposed a physical configurati
modeled by linearly coupled one-dimensional comp
Ginzburg-Landau equations, consisting of two parall

e
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FIG. 8. The evolution of the exact pulse for the same parame
as in Fig. 2 but for the walkoff parameterd51. ~a! uAu, ~b! uBu, and
~c! uA8u.

FIG. 9. The same as in Fig. 8 but for the walkoff parameted
52. ~a! uAu, ~b! uBu, and~c! uA8u.
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coupled waveguide cores, one having the quadratic non
earity, the other one being linear. The former core is act
with bandwidth-limited amplification integrated into it, whil
the latter one is lossy, which provides for complete stabi
of the zero background. The proposed model has nongen
exact solitary-pulse solutions. Direct simulations demo
strate that they are always unstable; however, there alw
exist stable pulses, which are robust attractors, that ca
generated from various initial conditions, including the g
neric case when the exact-pulse solution does not exist. I
group-velocity mismatch between the two harmonics in
main core is taken into regard, the soliton acquires a cons
velocity, remaining fairly stable during propagation, th
ik,
.
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constituting a walking soliton in media with gain and losse
Because the recently observed temporal@14# x (2) solitons
have a very small dispersion length~of a few mm!, and it is
technologically possible to fabricate a dual-core wavegu
whose coupling length is on the same order of magnitu
the proposed model might find a direct physical realizatio
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