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We present a physical model based on coupled Ginzburg-Landau equations that sstatetemporal
solitary-wave pulses. The system consists of two parallel-coupled cores, one having a quadratic nonlinearity,
the other one being effectively linear. The former core is active, with bandwidth-limited amplification built into
it, while the latter core has only losses. Parameters of the model can be easily selected so that the zero
background is stable. The model has nongeneric exact analytical solutions in the form of solitary pulses
(“dissipative solitons”). Direct numerical simulations, using these exact solutions as initial configurations,
show that they are unstable; however, the evolution initiated by the exact unstable solitons ends up with
nontrivial stable localized pulses, which are very robust attractors. Direct simulations also demonstrate that the
presence of group-velocity mismatthalkoff) between the two harmonics in the active core makes the pulses
move at a constant velocity, but does not destabilize them.

PACS numbgs): 42.81.Dp, 42.65.Ky, 52.35.Sb

[. INTRODUCTION the experimental sample is usually much smaller than the
attenuation length13]. Recently, robustemporal solitons
Propagation of localized pulsésolitons in many nonlin-  have been predicted in an externally pumpéticavity with
ear physical systems is governed by various form of theparametric gain and an additional cubic nonlinearity present
complex Ginzburg-LandayGL) equations which include [19]. Other situations can be expected too where there is no
dispersive and nonlinear effects in both conservative and digsynchronized pump but the solitons circulate in a cavity, ac-
sipative forms[1-3]. The GL equation and its different cumulating loss and gain effects as a result of many round
modifications describe various effects in laser phy$ils  trips, thus making them important. Moreover, for narrow
fluid dynamics[5] and nonlinear optic§6]. Different types temporal solitons, circulating in the cavity, dispersive losses
of solutions to the one-dimensional complex GL equationdue to the finite amplifier bandwidth will be especially im-
such as pulselike, shocklike, sources, sinks, and periodic arfprtant.
quasiperiodic solutions, have been analyzed. A fundamental The objective of this work is to analyze a physical con-
issue, from the standpoint of possible applications, is thdiguration with a quadratic nonlinearity, losses, and compen-
stability relative to small perturbations of the localized pulse-sating gain, modeled by linearly coupled one-dimensional
like solutions of these complex GL equations. The simplesEomplex GL equations, that gives rise $table temporal
form of this kind of nonlinear Schinger equation with solitons. The model is introduced, and its special exact soli-
frequency and intensity-dependent gain and loss is the cubf@ry wave solutions are obtained, in Sec. Il. In Sec. Ill we
GL equation which includes only cubic terms. This equationPresent detailed numerical simulations of the soliton stabil-
has been analyzed mainly in the context of plasma physicy. The results of this work are briefly summarized in the
[7] and its exact solitary wave solutions are known to befinal section.
unstable in general. Later on, the cubic-quintic GL equation

was put forward as it admits stable pulselike solutions Il. THE MODEL AND ITS EXACT SOLITARY

[8-11]. . PULSELIKE SOLUTIONS
Recently, a great deal of attention has been attracted to
solitons in optical media with a quadratig®)) nonlinearity First of all, it is natural to assume that dominating losses

that consist of two mutually locked components, viz., theare those at SH, while losses at FH are negligiblete that
fundamentalFH) and second harmoniSH) fields[12]. Ex-  the most prominent contribution to the losses, the Rayleigh
perimental observations of the solitons in the spdtid], scattering, has its intensity decaying»s* with the wave-
temporal [14], and spatiotempordl1l5] domains were re- length. On the other hand, the amplifi@hat we assume to
ported. Because any optical medium has intrinsic lossese integrated with the nonlineaf® crystal, by means of
stable propagation or circulation of solitons requires a comdoping the crystal with a resonant impurity, which is pumped
pensating gain. The action of pure losses@®H solitons was by an external source of lighi£0]) should operate at FH, as,
considered i16], and adiabatic amplification of spatial soli- otherwise, the amplification will be inefficietor quadratic
tons was analyzed numerically {i17]. Recently, an adia- solitons, the SH component is usually weaker than the FH
batic perturbation theory was developed for quadratic solitorone. So, we adopt a model combining losses at SH and
propagation in nonconservative media8]. Actually, the  bandwidth-limited gain at FH.

losses are insignificant for the spatial solitons, as the size of It is well known that solitons in the models of this type
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are unstable, because the linear gain makes the trivial zeformal elimination ofé is impossible, which also has a direct
state, i.e., the soliton’s background, unstalsiee, e.g.[21]).  physical purport: it is harder to provide for the full SHG
A general and experimentally feasible way to stabilize theresonance in the presence of losses and gain. On the other
background instability was proposed in the context of soli-hand, if a stable balance between losses and gain is possible
tons in optical fibers with a cubic nonlinearity and for a soliton, it may then help to stabilize the soliton against
bandwidth-limited amplificatior{22]: the nonlinear wave- various nondissipative perturbatiorisuch as the group-
guide has to be linearly coupled to a parallel core with sufvelocity mismatch which would otherwise be able to de-
ficiently strong losses. Because the coupling decays expatroy it. Thus, the parametef is quite important in the
nentially with the inverse wavelength, it is reasonable to takenodel, and it will be taken into regard in the numerical simu-
into regard only the coupling in the FH component. Then,lations reported below.
the linearly coupled complex GL equations that are expected Lastly, our approach implies one more assumption, viz.,
to admit stabilized solutions takes the form that the inverse group-velocity mismatah between FH
waves in the active and passive cores is negligible, too. To
iA,+ (12 DA +A*B=iyA+iyA,+KA", (1) estimate physical conditions that justify the latter assump-
tion, we note that temporal® solitons dealt with in experi-
iB,—i6B,+(0/2)DB,,— BB+2A?=—il'\B+il';B,,, ments[14] have a very small temporal widtfi,~50 fs, and
2 they propagate at a strong anomalous FH disperdsibn,
~1 pg/m, which gives the soliton’s dispersion length
igAL+ (ia+v)A'=KA. (3) ~T?D~1 mm. On the other hand, the inclusion of the par-
allel core produces a nontrivial effect if the corresponding
Here A, B, andA’ are, respectively, the FH and SH ampli- coupling lengthz, [~1/K, in terms of Eqs(1) and(3)], is
tudes in the main core and the FH amplitude in the adde@boutz, . We note that it is quite possible technologically to
lossy onez and r are, as usual, the propagation distance andabricate a dual-core waveguide witi~1 mm; this cir-
reduced timeD >0 is the coefficient of the chromatic dis- cumstance makes the proposed scheme realistic, because
persion at FH:8 is a group-velocity mismatch between FH x(?) optical crystals available for the experiment have a size
and SH;o is the relative SH/FH dispersion coefficiefit;is ~ of a few cm[14,15. Now, Eq.(3) tells us that the walkoff
the phase-velocity mismatchy, is the FH gain; an effective length has to be much larger than the coupling length, i.e.,
filtering coefficienty, accounts for the finite size of the gain ¢<T/z.~50 ps/m. It is necessary to add that, in reality,
band;I"y andI'; control the losses at SHK is the FH cou- there is no need to make the two cores of different
pling constant; whilev, g, and « are the mismatch, propa- materials—it is sufficient to have the cores identically doped,
gation, and loss constants in the added core. The paramete¥gly the active one being externally pumped. In this case, the
o and 8 may have any sign, while all the parameters oncores have identical refractive indices and thus the pulses
right-hand side of the equations are positi¥g (nay also be ~Propagate with almost identical group velocities if the shape
zerg. We set, by means of obvious rescalif=K=1, of the cores is similar. To conclude the discussion of the
which implies that all the lengths are measured in units of thd0ssible experimental implementation of the proposed
intercore Coup"ng |ength_ An exp|icit dependence of the Soscheme, we note that the analysis of the fluctuations of the
lutions, to be obtained below, on the size of the couplingcoupling constant induced by inevitable irregularities in the
constant can be readily analyzed by reversing the rescalingeparation between the cores shows that solitons have a
The model assumes that the los¢a®ng with the pos- Strong immunity against such fluctuatiof3].
sible phase-velocity mismatthdominate in the additional Proceeding to the mathematical analysis of the model, we
core, while the dispersion, non"nearity, and dispersi\/e |osse§0tice that the first necessary condition for soliton stability is
may be neglected in it. Note that two versions of the modethe stability of the zero backgroundy=B=A’=0. The
with the cubic (®) nonlinearity, one neglecting these terms derivation of this condition is straightforward: one substi-
and the other one taking them all into account, were numeritutes into the linearized equations a small perturbation of the
cally studied and compared in full detail in Reffg2]. Itwas ~ form A,A’~exp@z-iw7), B~exp(Yz-2iw7), Wwhere w is
found that there is no essential difference, whatsoever, bean arbitrary frequency of the perturbation ands the insta-
tween the properties of exact solitary pulses in the two verbility growth rate. This yields a dispersion equation,
sions of the model. There is no reason to assume that the
situation would be drastically different in the case of 1€ qg?+(a—qye+qy,0°—iv+3iqe?)g
nonlinearity.
As concerns the group-velocity mismatch between FH
and SH in the main core, accounted for by the paramgter
Eqg. (2), it is well known that for conservative second-
harmonic generatiofSHG) the corresponding term can al- =0. 4)
ways be eliminated by means of a formal phase transforma-
tion. Physically, a sufficient suppression of the group-Obviously, the necessary stability condition isgRe)=<0
velocity mismatch between the FH and SH waves is a crucialor all real w. The corresponding algebraic problem follow-
condition that must be met in order to provide for the cre-ing from Eq.(4) can be easily solved in a numerical form. A
ation of SHG solitons, and there are various experimentatypical background-stability region on the parametric plane
techniques that make it possible to achieve this purposéw, vy,) at fixed values of other parameters is shown in Fig.
[12,14]. However, including dispersive losses and gain, al. One can check that a corollary of the stability condition is
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FIG. 1. The stable-background domain foe=1, 0=2, I’y
=0.2,I';=0.1, y;,=0.15(a), and y;=0.3 (b).

a>y,, i.e., the loss in the added core mustdbengerthan
the linear gain in the main one.

A remarkable property of Eq$l)—(3) is that they admit
an exactsolitary-pul;e solution in a form_suggested by the 16 2 The evolution of the exact pulk@), (b), and(c)] and of
works[7,24,29 provided that the walkoff is disregarded (  the Gaussian pulgéd), (e), and(f)] in the absence of walkoff. Here
=0), q=1, y,=0.3, 7,=0.3,1,=0.2,T,=0.1, ¢=1.4, a=0.330 06,

_ 241 ppikz _ 24 2ip2ikz B=—1.55789, andv=0. The Gaussian pulse has the amplitudes
A=a[seclir7)] €™, B=Db[seclir7)] e ap,=1.7, by=1.2,a5=0.6, and the inverse widthy=0.12.

[ 2+ipnqikz
A'=a'[seclinr)J7THe™, © qk®— (v+2qr)k?+ (2vr,+qri+qri—1)
with the pulse’s inverse width, chirp w, and wave-number
shift k. These parameters are real, while the amplituales
a’, andb may be complex. Howeveg can be made real too
through a trivial phase shift, therefore the complex un-
knowns area’ andb. Substituting the ansat®) into Egs.
(1)-(3), we arrive at five complex equations for four real
unknowns\, u, k, a and two complex onea’ andb. Ob-
viously, a solution may exist if two constraints are imposed
on the eight real parameters of the mo@el 3, y,, I'g, 'y,

Xk—(rav+riv—r,)=0. (7)

This equation has one or three real rootskoFor each root,
a=r3(v—gk)/(r;—K). Thus, the exact solitary-pulse solu-
tion exists, provided that the values of the mismagcland
loss « are selected by the above constraints.

Ill. STABILITY OF PULSELIKE SOLITARY WAVES

g, , andw; recall that we are now dealing with the cae  The background stability is not sufficient for the full dy-
=0). First, we can derive a relatively simple equation for thenamical stability of the solitary pulse. Therefore, we have
chirp: numerically tested the stability of the exact solution found

above, arriving at results which are different from those for
the similar model with the cubic nonlinearif22]: the ana-
lytical solution isunstablein all the cases considered, but
there is anothestablepulse in all the cases, including those
when the exact solution does not existcall that the exact
pulse solution was not generic, depending on two extra con-

414+ 30d u®— 80u2—90d u + 36=0, (6)

where d=3(e—4v,)/(1+€y;) and e=o/I';. Assuming
that real solutions to Eq6) have been found, we set
=901 —30u2 and cast the subsequent results into the form

N=[To/(4T 1 —4ou—A4AT 1 u?)]Y2, ditions; in contrast with this, the new numerically found
stable pulse appears to be a fairly generic solytivvie ob-
b=N2(—iy)(2+iw)(3+ip) served that the initial exact pulse reshapes into the new

stable pulse, a typical example being displayed in Fig. 2
[panels(a), (b), and(c)]. The same stable pulse can also be
generated using, instead of the exact analytical solution, an
input in the form of rather arbitrary Gaussiams= agexp
(—\37), B=bgexp(—-\37), and A’'=ajexp(—\37), with
and someay, by, a;, and\g [see panelgd), (e), and(f) in Fig.
2]. It should be mentioned here that such stable pulses can be
B=—2k+2\%(c+4ul'1—ou?). generated from a variety of inputs, including, e.g., $eioh
N tensity profile input pulses. Thus, we conclude that the non-
Additionally, as botha| and\ must be real, the parameters trivial stationary pulses are very robatractors It is note-
of the model have to fulfill some inequalities,(I'y+oy1)  worthy that the rearrangement of the Gaussian into the stable
>0 andlo /(47— 4opu—4T14%)>0 . pulse is much more violent than in the case of the exact
Introducing ry=(2+4y,u—3u®)N% r,=(—4y1+2u initial pulse, see Fig. 2, i.e., the exact pulse, although being
+y1#?) N2, andrz=y,—r,, the equation fok can be writ-  unstable, is rather close in shape to the stable one. We have
ten, after some algebra, as studied in detail the structure of the stable pulse. Its real and

a=(\\2)[(30-T1)(2+2iw)(3+2i u)b]"?

a'=al[(v—qgk)+ia],
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Re(A), Im(A)

Re(B), Im(B)

FIG. 4. Evolution of the Gaussian launched in the FH compo-
nent in the absence of walkoff. The initial amplitudes age- 4 (a),
ag=3 (b), anday=1.5(c). The inverse width of the initial pulse is
No=0.05, and the other parameters are 1, y,=0.3, y,=0.2,
'y=0.2,1',=0.2, 0=3.1, «=0.45, andB=—20. Only the evo-

E’ lution of the FH absolute value is shown.
% Y ) clude in the consideration the group-velocity mismatch
’ (walkoff) between FH and SH, accounted for by the param-
151 T eter§ in EqQ. (2). Our simulations have demonstrated that the
2.0 L . L pulse that was stable at= 0 readily survives in the presence
-50 25 0 25 50 ; S i
T of the walkoff, just acquiring some constant velocity. Note

) ) ) that in the case of conservative quadratically nonlinear media

FIG. 3. The real and imaginary parfull and dashed lingsof o properties of this kind of moving solitofssually termed
the stable-pulse solution in the case corresponding to Fig. 2. Her\(fvalking soliton were analyzed systematically in RE26).
z=200. In Fig. 5[panels(a)—(c)] we show the contour plots of the

evolution of the walking soliton generated by the initial con-
imaginary parts are even functions of and it is strongly dition in the form of the exactfor the caseéd=0) pulse
chirped, see a typical example in Fig. 3.

Now considering the generic case, when the exact pulse (@) (b) ©
solution is not available, the stable pulse can be obtained by .
launching a Gaussian solely in the FH component, the twa oo
other ones being empty, see Fig. 4. Because of the bistabil,,
ity, there is a threshold for the generation of the stable pulse
In Figs. 4a) and 4b), we show that the same stable pulse is %
generated from different initial Gaussians, provided that their
intensity is above the threshold. Figuree¥shows that, with |
an insufficient intensity, i.e., below the threshold, the input
decays into the zero solution.

The present model is bistable: coexisting attractors are th¢ s
nontrivial pulse and the stable zero solution. According to
the general principles, aeparatrix in the form of an un-
stable stationary solution, must exist between two attractors 100
cf. a similar situation found in Ref$22]. It is obvious that
our unstable exact pulse is, when it exists, just the separatrix
In the generic case, when the exact solution is not available,
an unstable soliton must exist, too. It can be found from a F|G. 5. The gray-scale plots of the evolution of the exact pulse
numerical solution of the stationary version of EqB—~(3),  [(a)|A|, (b) |B|, and(c) |A’|]and of the Gaussian pul§el) |A|, ()
but is of no interest. [B|, and(f) |A’|] for the same parameters as in Fig. 2 but with a

As it was mentioned above, it is quite important to in- nonzero walkoff parameta?=0.2.

400

Z200

0
40 - 0

T -
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(©)

T T T

FIG. 6. The gray-scale plots of the evolution of the exact pulse
for the same parameters as in Fig. 2 but for the walkoff parameter
6=0.4. (& |A[,(b) [B, and(c) |A'].

solution (5) in the presence of a moderate mismatéh
=0.2. Recall that the results of simulations of the same case
but with =0 were displayed above in Figs(@-2(c). The
only essential difference introduced by the nonzero group-
velocity mismatch is a finite velocity of the solitdmepre-
sented by the slope clearly seen in Fig. Blore detailed
analysis of the numerical data shows that, while the moving
soliton becomes asymmetric, its amplitude and energy are
practically identical to those of the quiescent one shown for
the same values of the parameters and in Fig. 2. More-
_over, the simulations witid+0, starting with the_Gaussmn FIG. 8. The evolution of the exact pulse for the same parameters
input, rather than the former exact pulse solution, produc%1S in Fig. 2 but for the walkoff parametér=1. (a) |A|, (b) |B|, and
exactly the same stable moving solitary wave, see Figs(.c) | A’|.. ' ' '
5(d)—5(f).

The evolutions of the exact pulse soluti(@) correspond-
ing to the parameters given in the caption of Fig. 2 and of th
Gaussian pulse launched only in the FH component corre-
sponding to the parameters given in the caption of Fg),4
at still larger values of the walkoff parametér=0.4, are IV. CONCLUSION
shown in Figs. 6 and 7, respectively. Numerical measure-
ment of the amplitude and energy of the emerging Stabl('f'hodeled by linearly coupled one-dimensional complex

moving solitons again yields results nearly coinciding withGinzbur -Landau equations. consisting of two parallel-
those found in the absence of walkoff and for the same val- g q ' 9 P

ues of the other parameters.

Detailed numerical studies revealed that for the walkoff
parameterd<4 the solitons maintain their integrity. So, by
increasing the walkoff parameter, we found that the propa-
gation displays, after a transient regime, persistent oscilla-
tions similarly to those reported for quadratic solitons in non-
dissipative systemp27]. The outcomes of our simulations
for 6=1 and5=2 are shown in Figs. 8 and 9, respectively.
One should note that the greater the walkoff parameter, the
longer is the transient regime. Moreover, the soliton trans-
verse velocity increases with the walkoff parameieihus,
the stable pulses supported by the present system are rather

robust objects, whose characteristics do not depend on the
articular initial conditions.

In conclusion, we have proposed a physical configuration,

(a) (b) (©)

z 200

T T T

FIG. 7. The gray-scale plots of the evolution of a Gaussian pulse
launched in the FH component for the same parameters as in Fig.
4(a) but for the walkoff parametef=0.4. (a) |A|, (b) |B|, and(c) FIG. 9. The same as in Fig. 8 but for the walkoff parameter
|A"]. =2.(a |A[, (b) [B], and(c) |A"[.
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coupled waveguide cores, one having the quadratic nonlineonstituting a walking soliton in media with gain and losses.
earity, the other one being linear. The former core is activeBecause the recently observed tempdtad] x(? solitons
with bandwidth-limited amplification integrated into it, while have a very small dispersion lengibf a few mm, and it is
the latter one is lossy, which provides for complete stabilitytechnologically possible to fabricate a dual-core waveguide
of the zero background. The proposed model has nongenerghose coupling length is on the same order of magnitude,

exact solitary-pulse solutions. Direct simulations demon+he proposed model might find a direct physical realization.
strate that they are always unstable; however, there always

exist stable pulses, which are robust attractors, that can be
generated from various initial conditions, including the ge-
neric case when the exact-pulse solution does not exist. If the
group-velocity mismatch between the two harmonics in the L.-C.C. acknowledges support from DAAD for his stay at
main core is taken into regard, the soliton acquires a constafiriedrich-Schiller-UniversitaJena. B.A.M., D.M., and F.L.
velocity, remaining fairly stable during propagation, thusappreciate support from the DHGFB 196.
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