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Exact soliton solutions for a family of N coupled nonlinear Schralinger equations
in optical fiber media

K. Nakkeerati
Laboratoire de Physique, Universitie Bourgogne, UMR CNRS No. 5027, 9 avenue Savarye Bostale 47 870, 21078 Dijon, France
(Received 8 November 1999

We consider a family of both homogeneous and inhomogensasipled nonlinear Schdinger equations
which govern simultaneous propagationMfields in an optical fiber with various important physical effects.
The eigenvalue problem associated with homogeneous equations is constructed with the help of the Ablowitz-
Kaup-Newell-Segur method. Using the dund transformation method, one-soliton solutions are explicitly
derived.

PACS numbes): 42.81.Dp, 02.30.Jr, 05.45.Yv, 42.65.Tg

[. INTRODUCTION The Painlevanalysis ofN-CNLS equations has been carried
out in [6]. The Lax pair forN-CNLS equations have been
The all-soliton-optical communication link is going to presented by Fordy and Kuligi].
play a vital role in the rapidly growing information technol-  For transmitting pulses at a high bit rate, it is necessary to
ogy. The principle of solitons in optical fiber is based on thepropagate ultrashort pulses. Ultrashort pulses suffer from
exact bal_ance between the effects, group veloc!ty dispersiopigher-order effects such as higher-order disper¢it@D),
(GVD) (linear effect, and self-phase modulatioSPM)  Kerr dispersion(also called self-steepeningand delayed
(nonlinear effect This was theoretically reported by Hase- popjinear responsf8,4,10. HOD is a linear effect but, un-
gawa and Tapperftl] and experimentally proved by Mol- |ixe GvD, it broadens the pulses asymmetrically in the time
lenaueret al. [2]. Propagation of optical solitons in a single y,main. Kerr dispersion is due to the intensity dependence of
mode fiber is governed by the famous nonlinear Sdimger o oroup velocity. This forces the peak of the pulse to travel
(NLS) equation of the forni1,3,4) faster than wings, which causes asymmetrical spectral broad-
1 ening.
EQIt+ |Q|ZQ}, 1 If we consider only the effects of HOD and Kerr disper-
sion, the wave dynamics of simultaneous propagatioiN of
whereq is the slowly varying envelope of the axial field, and fields is governed by thi-coupled Hirota N-CH) equations
subscriptsz andt denote spatial and temporal partial deriva- of the form
tives.
For handling more channels it is necessary to propagate
more than one field simultaneously. Transmission of many
fields simultaneously in a fiber is called wavelength division quZi[ijtﬂr
multiplexing (WDM) (i.e., fields with slightly different fre-
guencies In 1974, Manako\5] derived the coupled NLS
(CNLS) equations from the NLS equation by considering +e
that the total field is comprised of two fieldkeft and right
polarizations. In the same work he presented the linear ei-
genvalue problem associated with the CNLS equations and
the soliton solutions using the inverse scattering transform ji=1,2,...N. 3)
(IST). The Painleveanalysis of the CNLS equations was
carried out by Sahadevagt al. [6]. Soliton solutions using
the Hirota bilinear method for CNLS equations were pre-The Hirota equation was first considered by Hirota himself in
sented by Radhakrishnan and Lakshmafizh In [8] we  [11]. Two coupled Hirota equations were first considered by
have generated the soliton solutions using thekBmd  Tasgal and Potasgk2]. In that they have constructed the
transformation method. _ . Lax pair and obtained the soliton solutions using IST.
When we consider the simultaneous propagationNof Radhakrishnanet al. [13] have performed the Painleve
nonlinear waves in a fiber, the wave dynamics of the systeranalysis and generated the soliton solutions for the coupled
will be governed byN-CNLS equations of the form Hirota equations using the bilinear transformation method.
Using the Baklund transformation method, we have gener-

g,=i

ﬁl anlz)q;}

Qjire +3 g +3

N N
> lan? > q:qm)qj}
n=1 n=1

|1 : 2 ; ated the soliton solutions for the saf&

%z=1| 2%t Z‘l [l )q, o 1=12. N ) With all the higher-order effects, simultaneous
N-nonlinear waves propagation is governed byNheoupled
higher-order nonlinear Schdimger (N-CHNLS) equations
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1 N increasing distributed amplification with scale lengths com-
Qj,=1 <§qm+ > |qn|2qj) parable to the c_haracter_isti_c dispersion length have also been
n=1 reported by Quiroga-Teixeiret al. [29].

N N For simultaneous propagation Nffields, system Eq(5)
el Gt 62, [anl?ajet 35 2 anlz)t], becomes

. 1 .

j=12,...N. (4) ij2+ 505+ 05| 2 [anl® | +iF(2)9;+ M(2)t%g; =0,

Here in Eq.(4), we consider only the real part of the last
term. The imaginary part is related to the stimulated Raman
scattering effect. The inverse scattering transform scheme for
the HNLS equatiofji.e.,j=1 in Eq.(4)] was applied by Sasa
and Satsum#l4]. Painleveanalysis and other related inte- For the propagation of two orthogonally polarized optical
grable properties of HNLS equation were carried out infields in a nonuniform fiber media, coupled INLS equations
[15,16. of a particular form have been considered and have shown

Coupled HNLS(CHNLS) [i.e.,j=2 in Eq.(4)] equations  that with suitable variable transformation, the system equa-
have been proposed and have shown that the system equatigen can be transformed to coupled NLS equati¢B8].
is integrable for a particular form using Painlesealysis  Similarity reduction for variable-coefficient coupled NLS
[17]. The linear eigenvalue problem for CHNLS eq'uationsequations of different form has also been studieif.
and the exact one-soliton solutions generated using tok-Ba  In this paper, we consider thé-coupled nonlinear Schro
lund transformation are given {18]. Similar analyses were dinger (N-CNLS) equations(2), N-coupled Hirota(N-CH)
extended to simultaneous propagation of three fields als@quationg3), N-coupled higher-order nonlinear Scdinger
The bilinear form for CHNLS equations and the associatedN-CHNLS) equations(4), and N-coupled inhomogeneous
soliton solutions were constructed [ih9]. In [20], Painleve  nonlinear Schidinger (N-CINLS) equations(6) [for case(i)
analysis and the inverse scattering transform scheme favi(z)=0 andF(z)=1[2(z+z,)], wherez, is a constant,
N-CHNLS equations have been presented. and case(ii) M(z)=F(z)=1], which govern the simulta-

In real fiber, the core medium is not homogeneousneous propagation o fields in an optical fiber with various
[21,22. There will always be some nonuniformity due to important physical effects. The eigenvalue problem associ-
many factors, and important among them @jea variation  ated with the homogeneous equations is constructed with the
in the lattice parameters of the fiber medium, so that thenelp of the Ablowitz-Kaup-Newell-SeguiAKNS) method
distance between two neighboring atoms is not constarf32]. Using the Baklund transformation method, one-soliton
throughout the fiber, andi) the variation of the fiber geom- solutions are explicitly derived.
etry (diameter fluctuations, etc.These nonuniformities in-
fluence various effects such as logs gain, dispersion,
phase modulation, et§23]. When considering the inhomo- Il. N-CNLS EQUATIONS
geneities in the fiber, the dynamics of the optical pulse
propagation is governed by the following equation:

i=12,...N. (6)

The wave dynamics of simultaneous propagationNof
fields in an optical fiber with only the effects of GVD and
SPM is governed by th&-CNLS equationg?2). The linear

1 . - :
i0,+ 5 Gt lal2q+iF (z)q+M(2)t2q=0, (5)  eigenvalue problem for Eq2) can be written a$9]

whereF(z) andM (z) are inhomogeneous parameters related ﬂz U

to gain(or losg and phase modulation, respectively. at 1=

Recently, the application of Eg5) with various forms of
inhomogeneities has been studied in various papers. The pos- _ T
sibility of clean and efficient nonlinear compression of W= (1haths - nsa) @)
chirped solitary waves with appropriate tailoring of the gain
or dispersion as a function of distance and with optionalwhere
phase modulation have been studied by Modgds. Kumar
and Hasegawa derived the chirped stationary solutions of Eq.

(5) with F(z2)=0 and M(z)=const[25]. Clarkson carried “IN G G2 o O

out the Painlevanalysis of the inhomogeneous NIISILS) -q7 in O - 0

equation [26] and Balakrishnan discussed the inverse- * :

scattering scheme for the INLS equatif@¥]. Equation(5) Up=f =&z 0 iIx - 0. ®
with M (z) =0 andF(z) = 1/2z was studied by Burstest al. : HE :

[28] from the soliton point of view. In that, they have pre- —q5 0 0 i\

sented the Lax pair for the system with a nonisospectral ei-
genvalue parametér.e., an eigenvalue parameter as a func-
tion of time and spade The soliton solution and the N\ is the spectral parameter. Space evolution of eigenfunction
possibility of amplification of soliton pulses using a rapidly W is given by
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(10
where
N
A= |qql? (11)
n=1

Equation(2) can be obtained from the compatibility condi-

tion Ulz_vlt+[U1,Vl]=0.
In order to construct the B&lund transformation of Eq.
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[2i( = \*)T T,
N

for j=1,2,...N—1,
1+ T2

n=1
q;—aj=
P 2iv-anTy

N for j=N.
1+ 2 T2
\ n=1

(15

In Eq. (15), the primed quantities refer t¢-soliton solutions
and the unprimed quantities refer t&{ 1)-soliton solu-
tions. Using Eq(15), one can in principle generakésoliton
solutions.

For instance, the trivial solutions of E®), q;=0, corre-
spond to the following pseudopotentials:

I'y=a; exd —2i(At+\2%2)], (16)

N, (17

where a;’s are arbitrary integration constants. So, we can
find new solutions of Eq(2) from Eg. (15), which is gener-
ated from the trivial onéwith A =i ),

IFj=a; for j=23,...

*
q _2pBaj,
i— *
a;

secli2Bt)exp2iB%z), j=1,2,...N—1,

(18

2B .
qn=—,secti2pt)exp(2i B?z), (19
a

1

with the condition #3)_,|a,|?=]|a,|?.

From Egs.(18) and (19), one can generate thé-soliton
solutions in a recursive manner. From the one-soliton solu-
tion, one can calculate the pulse width, amplitude, and shape
of the pulses for WDM communication.

(2), let us write down the linear eigenvalue problem in terms

of the Riccati equation. For this purpose, we introduce new

variables(or pseudopotentials

d
ri= , j=1,2,...N. 12
SR/ NI : (12
Inserting Eq.(12) into Eq. (7), we get
N—1
F1t=—2l7\rl+qu]§=:l Fj+l+qN+q’l\‘lF§.' (13)
Cy=—qgf[1+qyl. T for j=23,...N. (19

Similarly, equations fol";, can be obtained from E@9).
Now, to construct the Bzlund transformation, we define
the new transformations in the ford;—I'j, N—\', g
—qj , which keeps the form of Eq$13) and(14) invariant.
The simplest transformation can be tried by settifif
=TI'j, N'=\*, and after some simplifications the &dund
transformation for Eq(2) is obtained in the form

Ill. N-CH EQUATIONS

The nonlinear wave propagation of simultaneduBelds
in an optical fiber with the effects of GVD, SPM, HOD, and
Kerr dispersion is governed by tih¢CH equationg3). The
linear eigenvalue problem for E¢3) can be obtained using
AKNS method as

(N’—U\If
T
V= (hotf3- - ¢N+1)Tv (20
where
—iN g1 QO dn
-q; in O 0
U,=| —a5 0 i\ 0 (21)
-qy 0 O i

Space evolution of eigenfunctiol is given by
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whereA=3N_|q,|?. Equation(3) can be obtained from the

compatibility conditionU,,—V,+[U,,V,]=0.
Using the same procedure, the dgaund transformation
for Eq. (3) is found to be

[ 2i(n— x*)r r*

( St for j=1.2,... N1,

1+2 Tl

, n=1
9i—q =
P 2iv-an Ty _
—x—— for j=N
1+ [Ty?
\ n=1
(24)

Similarly, the one-soliton solutions for the-CH equations
are generated as

_ al+1 3 2
qj=———secli2pt+8eB°z)exp(2i <2),
1
j=1,2,...N-1, (25)
2B .
an=—_secli2pt+ 8eB3z)exp 2i B%z), (26)
a

1

with the condition 3N, |a,|?=]a,|?.

IV. N-CHNLS EQUATIONS

In order to analyze theN-CHNLS equations(4), it is
rather convenient to introduce variable transformations,

uj(x, T)=aq;(t, z)exr{_i (t—é

T=2z, (27)

— Z
12¢°

Then, Eq. (4) reduces toN coupled complex modified
Korteweg—deVriegKdV)-type equations,

N
UjT+ €| Ujgex 621 |Un| 2ujx + 3u;

N
Z |Un|2) 1_
29

The Lax pair forN coupled complex modified KdV equa-
tions (28) is derived as

A
ax st
V= (Yihoths . .. hons1) (29

where
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whereB=3N_,|u,|?. Equation(28) can be obtained from
the compatibility conditiorJ 3,— V4 +[U3,V3]=0 [and Eq.
(4) simultaneously.

Using the same procedure, thedRlund transformation for
Eq. (28) is found to be

( A: *
2i(N—\*)T T,
2 for j=1,2,... N—1,
1+ |1,
n=1
2i(N—\F)T, _
——n—— for j=N.
1+ [T,
\ n=1

(33

Similarly, the one-soliton solutions for Eq28) (simulta-
neously forN-CHNLS equationsare generated as

2Ba%;
uj:@secmzﬂt—ae/ﬁz), j=12,...N—1,
' (34)
uNz—fsechjz,Bt —8¢pB%2) (35)

1

with the condition 22N, |a,|?=|a,|?.

V. N-CINLS EQUATIONS

K. NAKKEERAN
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—iN g O an
-q7 in O - 0
Us=[ a5 0 ix --- 0 (39
\ is the nonisospectral parameter given by
2pu+t
A= 2(z+7)° (40

where u is the hidden spectral parameter.
The space evolution of eigenfunctioh is given by

With the effects of inhomogeneities and phase modula-

tion, wave dynamics of the simultaneous propagatioNof
optical pulses in a fiber medium with the effects of GVD and

SPM alone is given by

N

> lanl?
n=1

. 1 .
i)+ 5 Gjee+ 0 +iF(2)q;+M(2)t%q;=0,

i=1,2,...N. (36)

Here we consider the following two cases for which the
system equatiofi36) is completely integrable and possesses

Lax pair and exact soliton solutions throughdRlund trans-
formation.

Case(i): M(2)=0 andF(z)=1[2(z+zp)], wherez, is a
constant. With these conditions, E&6) will become

N .
1 i
id:.+ —a: : 2|4 .=
|qu+2q]tt+qj nZl|qn| )+2(Z+Zo)q] 01
ji=1,2,...N. (37)

The Lax pair associated with E€37) is contructed as

ot - UaY

V= (rihoihs i) (39

where

aq}—V\I’ 41
=7 = Vav, (41
-1 0 O 0
0O 1 0 0
V4:i)\2 0 o1 --- 0
0O 0 O 1
0 q: 0Oz an
—qr
+A| —a3
A 1t U2t ANt
| af —lal® —aqaf S CICH
i
+§ a3 —di03 _|CI2|2 —anas |,
One  — 0108 — 920y —|anl?
(42)
where
N
A= 2 ol (43)

Equation(37) can be obtained from the compatibility condi-
tiOI’l U4Z_V4t+[U4,V4]=O.

Using the same procedure, the dRlund transformation
for Eq. (37) is found to be
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r . n
2iN—AM[TF ) .
N LIFL for ji=12,...N-1, |QjZ+QjTT+2anZl |Qn[*=0. (48)
1+ 2 T/
gl = n=1 Case(ii): M(z2)=F(z)=1. With this choice, theN-CINLS
q =49 = 2i(N—\*)Ty equations(36) become
—Fx—— for j=N.
1+ 2 |7 N
=1 ; ; —
S ” 192+ aje 205 2, [anl?® | +ia;+t%9;=0,
Similarly, the one-soliton solutions for the-CINLS equa-
tions (37) are generated as i=1,2,...N. (49)
The Lax pair associated with E49) is constructed as
2ual 2ut i
;= *'u A secVE a exp( (t2/2—2,u2)>, Al
al(z+20) Z+ZO Z+ZO E:US\I},
P = e T 50
i=1.2,...N-1, 45) (P1hatbs - 1) (50
where
2 2ut [ .
an= ~ secfﬁ a ex;< (t212— 2,@2)), —iIN Qp Qz -+ Qu
aj(z+zp) z+2z Z+27 “of in 0 N
(46) Ql i e

with the condition & 3=N_,|a,|?=]|a,|?.
It is interesting to mention that under the variable trans- :
formations -Qf 0 0 - ix

Us=| -Q§ 0 ix - 0 |, (51)

whereQ;=q; exp(—it?2) and\ is the nonisospectral param-

V22, it2 eter given by
q;(z,t)= EQ](LT)GXF{m :
0 0 A= exp—2z), (52
14 B \/E'on 4 where . is the hidden spectral parameter.
Cztzy’ Cz+zy] (47) The space evolution of eigenfunctidh is given by
the N-CINLS equations(37) can be transformed into ﬂzv W (53)
N-CNLS equations of the form gz 0
-1 00 --- 0 it Qi Q2 -+ Qu
0 1 0 0 -Qf —it 0
Ve=2iN2[ 0 0 1 --- O|+2n| —Q3 0 —it
0O 00 --- 1 -Qy O o - it

21|Qn|2 Qu+2itQ; Q+2itQ, -+ Qpnt2itQy

Qi—2itQ7 —1Q4/? -Q,Q1 —QnQ7

54
Q3 —2itQ3 -Q:Q3 —1Qyl2 E —QnQ3 4

+i

Qni—2itQy  —Q1Qy -QQy - —|Qu?
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Equation(49) can be obtained from the compatibility condi- clear that for the simultaneous propagationNohonlinear

tion Us,— V5 +[Us,V5]=0. optical fields, there exists exact balancing between the physi-
Using the same procedure, the dglund transformation cal effects of GVD and SPMwith the inclusion of cross-
for Eq. (49) is found to be phase modulation al$o
p N-CH equations include the higher-order effects due to
2i()\—)\*)1“11“}‘+1 . HOD and Kerr dispersion. For the simultaneous propagation
N for j=12,...N-1, of N fields, the existence of the Lax pair proves the exact
1+ 2 T, balancing between the asymmetrical temporal broadening by
;L n=1 HOD and the asymmetrical spectral broadening by Kerr dis-
Q-Qj= 2i(N =)y persion. Similarly, in Sec. IV, we find the possibility of
—x—— for j=N. soliton-type pulse propagation for the fiber system described
14 2 T, 2 by N-CHNLS equations. Here also the asymmetrical tempo-
| = ral broadening of optical pulses due to HOD is counter-

(55) balanced by the asymmetrical spectral broadening due to the

combined effects of Kerr dispersion and delayed nonlinear
Similarly, the one-soliton solutions for the-CINLS equa-  effects. We have already shown through Painlevelysis
tions (49) are generated as that only for this form ofN-CHNLS equations does the fiber

system allow soliton-type pulse propagati@o].
qi= SECV{Za t+8fza o dz) Finally, in Sec. V, simultaneous propagationNhonlin-

j ar 2 172 ear pulses in inhomogeneous optical fibers was considered.
The first case of integrabM-CINLS equations dealt with the
spatial inhomogeneity. A similar kind of system equation in
an erbium-doped optical fiber system for single field propa-
gation has been discussed[B3]. The second case is with

*
2058744

z
Xexr{—Zialt—MJ (ai—ag)dz+it2/2},

j=12,...N-1, (56) phase modulation. This integrable case is also related to the
dispersion-managed solitons. [84], one can see the rela-
2a, z tionship between the system equati@t®) (for the single-
QN:a—*SQCFE 2a21+8J 011“20'2) field case and the dispersion-managed fiber system equa-
1 tion.

Thus, in this paper, we have considered theCNLS,
, (67)  N-CH, N-CHNLS, and two cases oN-CINLS equations
which govern simultaneous propagationNofields in a fiber
where a;=k; exp(=22), a,=k,exp(—22) (k;,k, are real ~medium with various important physical effects. Then, with
and imaginary parts ofu), and with the conditon 1 the help of the respective linear eigenvalue problem, exact
+3N_lay)2=ay)2. one-soliton solutions have been generated from tfekBad
transformations.

z
xex;{ —2ia t—4i f (a?—a3)dz+it?/2

VI. DISCUSSIONS AND CONCLUSION
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