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Excitation of wakefields from a short charge bunch moving parallel to the axis of a dielectric-lined cylin-
drical waveguide is analyzed. This situation amounts to generation of Cerenkov radiation in a transversely
bounded system. Wakefields are expanded into an orthonormal set of hybrid electric-magnetic eigenfunctions
for this waveguide geometry. The orthonormalization relations for this system are obtained, evidently for the
first time, both for a stationary source and for a localized moving source such as a charge bunch; it is shown
that these orthonormalization relations differ. Forces arising from wakefields are found, valid within and
behind a distributed bunch. Deviation of bunch distribution from axisymmetry leads to generation of dipole
modes of significant amplitude that may lead to instability. Poynting’s theorem is examined for this system,
and it is shown that convected Coulomb field energy must be subtracted from the Poynting flux to obtain the
radiation power. This power, which balances drag on the bunch as calculated directly from the fields, is shown
to flow in a direction opposite to that of the charge bunch. The results are easily generalized to bunches of
arbitrary length and charge distribution, and to a train of such bunches. Numerical examples are presented for
monopole, dipole, and quadrupole wakefield forces, and sample electric field patterns are shown to assist in
understanding the unusual nature of this type of Cerenkov radiation. For a 2-nC rectangular drive bunch of
length 0.20 mm, moving along the axis of an alumina-lined waveguiged.50) with inner and outer radii of
0.50 and 5.0 mm, a peak accelerating gradient behind the bunch of 155 MeV/m is predicted. This relatively
high magnitude of accelerating gradient suggests that a simple uniform dielectric pipe could be the basis for the
structure of a future high-gradient electron/positron linear accelerator, once low-emittance, kiloampere, subpi-
cosecond electron bunches are available in the laboratory.

PACS numbgs): 41.60.Cr, 41.75.Ht, 29.1Fw

[. INTRODUCTION wakefield occurs after each bunch in the train. A test bunch
injected one-half period behind the last drive bunch can ex-
In 1997, a new approach was described for electron agperience a strong accelerating field. The superposition of
celeration in the composite wakefield excited in a dielectricawakefield amplitudes from a train dfl drive bunches of
lined waveguide by the passage of a finite periodic train otthargeq can lead to an accelerating field comparable to that
drive buncheg1]. The novelty of this approach rested upon produced by a single, equally dimensioned bunch of charge
two main featuresFirst, the use of relatively short drive Q=Ng. But, since it is easier to produce a short, well-
bunches was shown to allow the excitation of a large numbefocused bunch of lower charge, and since shorter bunches
of high-amplitude TN, waveguide modes in formation of produce stronger wakefields, considerable advantage may ac-
the wakefields. The excited higher-order modes, with phaserue when a train of moderate-charge short bunches is em-
velocities equal to the bunch velocity and to one anotherployed, rather than a single bunch of the same total charge.
have nearly equally spaced eigenfrequencies. This leads to a The analysis presented in Réfl] was for the simple,
strongly peaked spatiotemporal superposition of fields, withalbeit unattainable, two-dimensional configuration of an in-
a net wakefield amplitude that can be much larger than thénitesimally thin sheet beam passing along the axis between
amplitudes of individual modes. The number of participatingtwo parallel dielectric slabs having perfectly conducting ex-
waveguide modes and the resulting peak intensity of theerior coatings. In Ref[3], preliminary results were pre-
wakefield both increase as the bunch length decreases. Losgnted for acceleration in a cylindrical waveguide, consisting
bunches, as employed by oth€?3, cannot excite wakefields of a dielectric tube with a perfectly conducting outer coating,
with peak amplitudes as large as short bunches carrying theith the charge bunches moving along the axis. Results were
same charge in the same structusecond the waveguide shown in Ref[3]in which an unloaded acceleration gradient
design can be such that these nearly periodic strongly peaked about 57 MeV/m was predicted using a single 2-nC drive
high-amplitude wakefields have nearly the same period abunch in a suitably designed dielectric-lined waveguide. But
that of the train of drive bunches. This can lead to constructhe theory expounded in Refsl] and[3] contained several
tive interference between wakefields from successivdlaws which will be recounted below, and which are rem-
bunches, so that a cumulative buildup in the amplitude of theedied in the present work. Numerical computations presented
in the present paper show, for the example cited in Ff.
with a single 2-nC rectangular bunch of 0.18-mm length and
*Permanent address: POSTECH, Pohang, Korea. Electronic aavith waveguide inner and outer radii of 0.375 and 4.88 mm,
dress: sypark@postech.ac.kr that an accelerating gradient of 131 MeV/m can be obtained.
"Electronic address: jay.hirshfield@yale.edu A gradient of this magnitude, using a moderate-strength
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bunch charge, is in the range sought for a future TeV-clasturthermore shown to require accounting for the convected
linear collider. This preliminary result suggests that carefulCoulomb field energy that trails a bunch. Subtracting this
analysis be devoted to fully understand this new approach fdirom the Poynting flux gives the radiated power, and thus the
achievement of high-gradient electron-positron acceleratiorfirag force on the bunch. The drag force found in this way
to perfect means for generating kA, sub-psec electrogrees identically with that found from wakefields acting di-

bunches, and to provide the basis for design of proof_ofrectly on the bunch, as of course it must. The radiated power
principal experiments. This paper concentrates mainly oS Shown to propagate in a directi@ppositeto that of the

formal aspects of the theory of wakefield excitation in aPunch. This subtle point was also not recognized in Réfs.

dielectric-lined waveguide. The theory applies to the wake2nd[3], so that calculations therein of the drag force only

fields within a drive bunch, to the wakefields behind a singlel™®™ the accumulation of stored wakefield energy are incor-
ect. A recently published power flow model for wake fields

drive bunch, and to the composite wakefields of a train of . . . X
drive bunches. However, to avoid undue length, numerical! 2 dielectric waveguidg7] led to somewhat different con-

examples are given in this paper only for a single driveqlusmns from those presented here, including even the direc-
bunch. tion of power flow. N |
A major concern in any accelerator configuration is orbit In addition to exposition of the theory as described above,

instability driven by transverse forces that arise from nonaxi—numer'cal results are presented of monopole, dipole, and

symmetric bunch distributions. That concern is addressed iﬂuadrupole wakefields induced by the passage of a single

this paper, in which theory is developed for excitation of unch. Plots of electric field lines for the monopole case are
hybrid elec':tric-magneti(:HEM) modes excited by a nonaxi- presented to help understand the unusual nature of the fields.

symmetric bunch, or train of such bunches. Theories alon?umencal results are also presented for transverse forces

this line have been developed heretofore, including those b rising from a bunch displaced from the axis, and for the

Rosing and Gaji4], and by Ng[5], but these authors did not adiated power. Future papers will deal with detailed multi-
agree with one a'mother on so’me important issues. The nch computations, including acceleration of a test bunch;

prior theories are not based on an expansion of the wav etailed stability analysis for a single bunch and a train of

equation in a sequence of orthonormal waveguide modes, nches; and effects suph as end refleqtiqns of wakeﬁelds
their treatment of multimode, multibunch effects may be at are peculiar to finite-length realistic accelerating
more cumbersome than the normal-mode expansion methdHOdUIeS'

that is expounded in this paper. This follows since direct

solution of the inhomogeneous coupled wave equations for Il. WAKEFIELDS IN A DIELECTRIC-LINED

the wakefields induced by a short bunch moving along a CYLINDRICAL WAVEGUIDE

dielectric-lined waveguide without expansion in normal 14 introduce the notation, we review the derivation for
modes requires a summation over a large number of poles ifg fie|ds of HEM modes of a cylindrical waveguide contain-
atransform_ mtegral, w_|th a concomitant evaluation of a Iargqng one or more axisymmetric dielectric layers. A further
number of implicit residues. The normal-mode approach reyeriyation is given, evidently for the first time, for the or-

quires summation over only two poles, with explicit resi- thonormalization relation to be used when these modes are
dues. The normal-mode theory presented here will also bgyjteq by a stationary source, and when they are excited by

shown to lead to compact formulas for the longitudinal and, moving source. Field solutions are obtained when the

transverse monopole, dipole and higher-order forces on a tesf, ;ce is'a moving charge bunch, corresponding to Cerenkov
bunch that follows behind an off-axis drive bunch, and for 5 qiation in a transversely bounded system. The fields ob-
the radiated power. All results given in this paper can easilyinag are shown to be consistent with Gauss's law. Forces
be generalized to a train of drive bunches, including condiziging from wakefields are found, including those within the
tions where the wakefields interfere constructively. The Ch'efounch and those that can act uptand accelerajea test
objective of this work is to provide a systematic theory ofp, \nch that trails a drive bunch: these forces are found to

dielectric wakefields and their application to accelerationniorm to the Panofsky-Wenzel theordi8]. Poynting’s
and to allow scrutiny of potential beam instabilities driven by ihaqrem is examined, and it is shown that convected Cou-
off-axis excursions of the drive bunches, including the casgym, field energy needs to be subtracted from the Poynting
of a synchronous multibunch train. _ flux to find the correct radiation power flow, and thus the
In working toward that objective, several previously un- o iation reaction forcéor drag forcg acting on a radiating
explored theoretical issues had to be confronted. Althouglynch: the drag force is found to be consistent with Wilson’s
field solutions and dispersion relations for HEM modes for 8heoren9]; the direction of radiation power flow is found to
cylindrical dielectric-lined waveguide were derived long ago, opposite to motion of the bunch. These results are gener-

[6], no detailed orthonormalization relation was previouslyyjizeq to bunches of arbitrary length and charge distribution,
obtained; this deficiency is now remedied. Furthermore, th%nd to a train of such bunches.

distinction between orthonormalization, when modes are ex-
cited by a stationary source or by a moving source, were not
clarified, in particular the need to modify the ortho-

normalization relation obtained for a stationary source when
the source is a uniformly moving charge bunch; this defi- In this section, the electromagnetic fields of a cylindrical

ciency is also now remedied. That distinction was not recogwaveguide containing one or more coaxial dielectric layers
nized in Refs[1] and[3]. Calculation of the radiated power are determined. The fields are shown to be expressible in
from a moving charge bunch in a dielectric waveguide isterms of normal modes that, in general, are hybrid modes

A. Eigenmodes for cylindrical waveguide with coaxial
dielectric liners
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with six field components. However, for the special case of y=|k(V|r, x,=|k\Y|R;, and (k{V)?=(w/c)?—k?<0.
azimuthally symmetric modes it can be shown that the hy-

brid modes reduce to transverse-electfiE) and transverse- To find fields in the dielectric regionR;<r<R,) where
magnetic(TM) types. The most common form for a dielec- ¢=¢, andu= u,, appropriate boundary conditions must be
trically loaded cylindrical waveguide is that of a hollow satisfied. At the outer conducting boundary one BAR,)
uniform dielectric pipe with a vacuum hole along its axis, =e,(R,)=h,(R,)=0, these being equivalent to simply
and with an ideally conducting layer on its exterior surface.e,(R,)=dh,(R,)/dr=0. Thus

The fields and dispersion relation for hybrid HEM modes of

this structure have been long knoy@] but, prior to the E\(y)
work reported here, there seems to have been no derivation e(r) E(yy)
of an orthogonality relationship, nor of the power-flow for- (hz(r)) = , (2.5
mula. For solution of the wave equation with source charges z B Hi(y)
and currents of a bunch moving in the central vacuum hole H,(yq)
of such a waveguide, an orthonormalization procedure is
necessary to decompose the sources into normal modes. Where
Fourier expansion of the fields in a circular cylindrical E(y) N((Y,) 31(y,)
waveguide takes the form I — I1y2 INy2
’ (H|<y>>—J'(y’(N.'<y2>> Nl(y)(J((YZ)) =9
E,(r,t)
Ec(r.t) with y=k&r, y,=k®R;, y,=k®R,, and ()2
E,(r.t) 1 (= =epu(wl/c)?—k?>>0, which choice of sign is required for
H(r 1) :(ZT)"‘f,mdw dk nonevanescent radiation. In E€.6), Jy(y) and N(y) are
H, (1) ordinary Bessel functions of the first and second kinds.
Hr(r,t) The remaining boundary conditions are tleat h,, ey,
o andh, be continuous at=R;. With these boundary condi-
» tions, Eqs(2.3)—(2.6) can be combined to find the unknown
X > exg—i(wt—kz—16)] coefficientsA andB, with the result given in matrix form as
|=—»
e,(r) (mﬂmﬂ(g) =0, (2.79
ier(r) 21122
—ey(r) where
—ihr) 20
h,(r) B 1/ (X1) Ef(y1)
ih(r) Ml T yiE(yy)”
Thene,(r) andh,(r) satisfy Bessel's equation 1/ (X1) H/ (y1)
2= M , (2.70
2 1d , 12\ edn) X111(X1) y1Hi(y1)
WJFFEJF(kL_r_z) hy(r) =0, (2.2

kel ( 1 1)
M = M = =4+ —= ,
wherek? =& u(w/c)?—k?, and where the transverse compo- S R PR

nents are given by ] . ] . o ]
with the primed functions representing a derivative with re-

k ® spect to the argument. Equati¢®.7a gives the dispersion
(er(f)) 1 de, [ w7 relation as

ho)) " KE| | e 2] dr p
c detM =M ;M ,,— M2,=0, (2.89
and and the TE/TM mixing ratio as
k ® B M
hr(r)) 1 dh, e— || -__ e (2.8b
ea(r) ki M% dr + ) r e, . (23) A Mll

The remaining boundary conditions, namely, tha and
In the vacuum hole (&r<R;) where e=u=1, the uh, be continuous at=R,, do not give additional indepen-

fields must be regular at=0; thus dent conditions, becauses(w/c)e,=(l/r)e,+kh, and
u(wl/c)h,=(l/r)h,+ke,.
e r)| (A} L(x) The dispersion relatiofEq. (2.89] can be satisfied by a
hAr)) =\ B/T,(x,)" (24 discrete set of eigenvalues witf = —k2+euw?/c?; the

corresponding eigenfunctions will be designated by sub-
wherel,(x) is the modified Bessel function, and scripts such as, ,(r),h,,(r), etc.
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B. Generalized orthonormality relations tor in the Green's function for wakefields in a two-
In Appendix A it is proven that, foN concentric dielec- dimensional waveguide; its precise origin is identified here.
tric layers in a uniform cylindrical waveguide, the following C&Tying out the integration in Eq2.11) (see Appendix A
generalized orthogonality relation applies between any tw§Ves the foIIo_vvmg reSl_JIt for the normalization constant in
modes satisfying the dispersion relation with frequencies anfE'™Ms of the eigenfunctions, ,(r) andh;,y(r):
wave numbersd,,k,) and (w,,k,),

N2 2 2
r 1 [de I
N = Co=2, 7(& W ﬁ) —W)ein
(i y2_ (i) y2 ' i=1 L,n Ll
2 L 2= ()2 | drrferm(n)hgn(r)
i=1 ' ' Ri_1 1 (dh,, 2 |2 R;
. + 1il 72 ( ) +(1—z—z>h§n]
+egm(rhy o(r)]=0, if m#n, (2.9 ki o\ dr KT ar ' R,
wherek(), = /e, ui(w,/c)2— K2 is the radial eigenvalue for (212

the transverse wave number for thth mode in theith di-
electric layer. As in Sec. Il A, the specific configuration of
interest in this paper is that of a vacuum hoie=(; 0<r
<R;) surrounded by a single dielectric layar<2; R;<r
<Ry), but generalization of the orthonomality relation to an N g

arbitrary number of layers will be maintained throughout this > f " dr r[ei€, m(r)e, (1) + mih, m(r)h, (1]
section. As will be shown below, the means of applying Eq. =1 JR_; ' ' ' ’
(2.9 to find the normalization constant whem=n will de- —C.s (2.13
pend upon the nature of the source of radiation. nemn: '

For a waveguide with stationary sources, solutions Ofyith ¢ as in Eq.(2.12. This latter form will be used to
Maxwell's equations are symmetric in time, so that all wave-gq|ye the wave equation with a moving source for wakefields
guide modes Ca”.beztaken t°2 have Zequgl frequencies, 1.6 sec 11 C while the form given by Eq2.11) will be used in
wm=wy. Thus ()2 = (k)= — (k3 —Kk}) is indepen- 4 calculation of the radiation power in Sec. Il F.
dent of the layer parameters, and moves outside of the sum-
mation in Eq.(2.9). The following orthonormality relation
then results:

As further shown in Appendix A, from Ed2.1)) it is pos-
sible to derive another, simpler form of the orthonormality
relation, namely,

C. Wave equations with moving charge bunch as a Source

We consider as a source for the wakefields a point charge
N R (or a short rigid bunchof chargeq, moving with a constant
2 f drrle; m(rhgn(r)+egm(r)h, o(r)]1=86niCn, velocity v in a dielectric-lined cylindrical waveguide of the
=1 IR type discussed in Sec. Il A. Its direction of motion is along
(2.10 the z axis, but its transverse position is displaced off the axis
by an increment in the direction chosen to b&,=0, i.e.,

) o .
whereC,, is the normalization constant to be used with sta along thex-axis. Thus for the point charge one has

tionary sources. A general relation for orthogonality similar
to this has been derived in R¢10], although the proof there S(r—ro)
was limited to waveguides containing only singly connected p(r,t)=0qg ;
domains of different dielectric constants; the proof provided

here applies to multiply connected domains typified by a I =vp(rt), 3,=3,=0 (2.14
coaxial structure of several axisymmetric layers of different e PALE, ==

dielectric constant. The explicit form &/, is given in Eq.

5(0)8(s),

wheres=z—uvt. As will be shown below, the field solution

(A14). o o ~for a distributed source can be found by replacingdffienc-
However, when sources of radiation within the waveguide;jg, 8(s) in Eq. (2.14 by the distribution functionf(s),

are charge bunches moving parallel to, or along, the axignere fdsf(s)=1; now the solution can be constructed

with velocity v, the correct symmetry is with respect 20 from that for as-function source by observing that

—vt, SO thatwy=kyw. Now (k)2— (k)%= (&u8?

—1)(k3—k2), whereB=v/c, so from Eq.(2.9 one obtains .o )

the modified orthonormality relation f(s)= J_wds f(s')é(s—s'), (2.15

% ) Ri and that the solutions of Maxwell's equations are linear in
“ (eimiB _1)L_ ldrr[erym(r)hgyn(r)+e(,1m(r)hr'n(r)] the source terms. Therefore, the solution fos-éunction
" source will be found first, and its extension to a distributed
=0mnBCh, (2.11 source will then follow easily using the prescription of Eq.
(2.15.

where C,, is the normalization constant to be used when a One can expand the fields as in E¢&.1), and substitute
uniformly moving charge bunch is the source of the fields these into Maxwell’s field equations, with the source terms
and where the factgB on the right-hand side is introduced to given by Eq.(2.14. The longitudinal components of the
simplify the form of C, (see below. The factor ¢;u;8> fields are found to satisfy Bessel's equation with a source
—1) was introduced in Refl] as anad hocweighting fac- term on the right-hand side, e.g.,
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er)| _[J,r)
(hz(r) _( 0 ) (216

wherek?=¢ uw?/c?—k?, and

~ * 00 2m )

Jz(l’):477f dtf dZJ’ d¢9e'(“’t’kz"0)
% e o

u dd;

c? ot

=8772iq0k(1—,82)w5(w

1dp
e 0z

—kv), (2.17)

sincee= =1 in the vacuum channel. The transverse field

components are given by Eq&.3), sinceJ,=J,=0.
We now proceed to solve Eq2.16) by expanding the
fieldse,(r) andh,(r) in terms of their eigenmodes, as

ezn(r)
( hr) 2 A( hya(r))

Upon substituting Eq(2.18 into Eq. (2.16) and noting that
the eigenmodeg, (r) and h,(r) satisfy the source-free
relation[Eq. 2.2 with eigenvaluek, ,, one obtains

(2.18

2 An(kE—kE )

ez,n<r>)_(’jz(r>
han(H))~\ 0 )

(2.19

Now the orthonormality relatiohEqg. (2.13] can be used to
find the amplitudes\,,, namely

W, (k)
—k2’

n(k)— (2.20

where

N
1 R ~
P~ drre, ,(r)g,(r
C 2 JR” a(0JA1)

8
:—C—qoez,n(ro)kb‘(w—kv). (2.2])
n
SubstitutingA, (k) into Eq.(2.18, using Eqs(2.1) and(2.3),
yields the following solution for the fields:

E,(r,t)
E,(r,t)
Hﬁ(rvt) qO I| - ezn rO)J' IkS
Hyrt) | =i 2, @2 d" s
H.(r,t)
E,(r,t)
€,n(r)
k K, ier,n<r>>
Ek_n _ha,n(r)
X ih, () . (2.22
k K2,

hr,n(r) )

K2 ky liegn(r)

S. Y. PARK AND J. L. HIRSHFIELD

PRE 62

s>0

Rek

FIG. 1. Contours for integration in the compléxplane for
wakefields. Note that both poles are in the lower-half plane to be
consistent with causality. The upper contosr-Q) corresponds to
the region ahead of the beam, while the lower contesr @) cor-
responds to the region behind the beam.

In order to carry out thd integration in Eq.(2.22, one
needs a prescription for handling the singularities in the in-
tegrand atk= *k,,; this prescription is supplied by the re-
quirement of causality. For the wakefield problem, the
proper causality condition is that there be no fields ahead of
a source charge. This condition can be met by shifting both
poles into the lower half of thecomplex k plane, as shown
in Fig. 1. Thek integration is then carried out along the
contours shown in Fig. 1, closing in the upper-half-plane for
s>0, and closing in the lower-half plane fer<0. The con-
tour chosen for evaluation of a similar integral in REF]
only enclosed one pole in the lower-hdfplane, and thus
provided only half of the correct result. Evaluation of the
integrals in Eq(2.22 thus gives

. eiks k
[

i cosk,,s
=2 ik /K2 )sink,s| @ (7S) (229
where
1 if x>0
O=10 it x<0

is the Heaviside function. Substituting E@.23 into Eq.
(2.22, and taking real parts, gives the field solutions as fol-
lows:
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EZ(rlt)
E,.(r,t)
Hy(r,t) o % Eunllo)
=-2
H(r,1) 2, 2,
H.(r,t)
Eq(r,t)
€,n(r)g2n(S)cosl 0
€ n(r)
h;n(r)>gi (s)cosl 6
hzn(r) gz n(S)sinl 0 '
—hy n(r
eerr;?g)))gf'n(s)sinl 0
(2.24 FIG. 2. Gaussian pillbox used to calculate the electric flux and
power flow emerging out of the beam. Here, and in Figs. 5 and 6,
where the bunch is at the right-hand end of the plot and is moving toward
the right. For checking consistency with Gauss’s law, surfadée
g0 (s) cosk s positioned immediately behind the charge, while for calculating
( o = . k” O(—s). power flow, surfacel is positioned at an arbitrary distance behind
gL,n(S) SINKnS the charge. The pillbox is fixed in space, while the beam is moving.

Sincee, (r), & ,(r), andhy, ,(r) are even functions of,

and sincen, (r), h; ,(r), ande, ,(r) are odd functions of,

the terms under the summation in E@.24) are all even
functions ofl. Thus the summation may be condensed to run
from 0O to e, doubling the value of all the terms except that e, n(r)gg a(s)

Ez<r,t>) _ 4do < €nlro)
0

Er(l',t) I Ri n=1 C,

for 1=0.

For a distributed source, as given by E2.15), the fields X Ko de,n(r) © (s’
are still given by equations of the same form as 424, kf n o dr i
but the following generalization of thg functions is used: (2.2

( gg,n(s) ) ( gz n(s f ds’ f( )( gg‘n(S—S') ) where

92 o(9)) \gin(s) 0% n(s—s)/" )
2 2 R;
- ¢ E(%) =2 (R ) kl (djr ten
. P A . . 1 = 1 L,n

For a train ofM distributed bunches, the distribution function ’ Ri—1
can be represented as (2.28

M For the monopole case, the only magnetic field component is
f(s)=2, fi(s—s)), (226  HolnO=eBE(r,D). o o
j=1 We now consider a Gaussian pillbox, as shown in Fig. 2,
and calculate the total electric flux emanating from it. The
wheres; =z—z;—v;t, with z; the centroid for thgth bunch only nonvanishing contribution comes from field lines that
and vj |t3 Ve|oc|ty This prescr|pt|0n may be emp]oyed in Pass across surface If the location of surfacé is taken to
analysis of the wakefields for a train of bunches, but detailedPe just behind the charge bunche., in the limit ass
discussion of multibunch wakes is beyond the scope of this20~) the preponderance of the contribution to the flux
paper. comes in the vacuum channel. Furthermore, in the limit as
y—o, k)| =k,/y—0, and thus the field becomes uniform
in radius, ie. e, n(r)—lo(|k(1) [r)—1, and similarly
e,n(ro)— 1. Therefore the total flux of electric fiel# ema-
A check on the accuracy of the overall field solution Q'Ve”natmg from the pillbox becomes
by Eq.(2.24) can be obtained by calculating the total electric
flux that emanates from the charge bunch using Gauss’s law. o
This check can be carried out easily in two limiting cagés: & — 7R? I —E,(s—07)]=4mq, 2
numerically in the limit asy—oc, and(ii) analytically in the n=
limit as R;—0.
Only the monopole field componentis<0) contribute to It can be demonstrated by numerical evaluation that the sum
the total flux, after integration oved. Thus the electric field in Eq. (2.29 approaches unity, as it must to be consistent
components that contribute to the flux are with Gauss’s law.

D. Electric flux and Gauss'’s law

1
—. (229
1¢c,
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Analytically, a proof of consistency with Gauss’s law can F,(r,r) o w
be obtained in the limit aR;— 0. In this limit, the dispersion Fr) | =—2q0, S S €zn(ro)
relation for TMg,, modes of the dielectric-filled waveguide Fo(r,t) 0~. & C,

[Eq. (2.8)] reduces to
ez,n( r)g(z),n(s) cosl 8

Jo(kf)nRz):O, (2.30 1 de;n o

y k. dr g, n(s)cosl o
. . - 11
and thusk{®)=jon/Ry, WhereJy(jon) =0. The electric field -= “e, (1 (s)sinl 0
components in the waveguide are now nf
(2.395
. Jo(Y)92 n(S) It is important to point out that Eq(2.35 satisfies the
EA(r.1) __ 490 > 1 Panofsky-Wenzel theore[8], in that it is consistent with the
E(r,t) eR5i=1 Ji(jon) &gf ()| relation
\/s,u,Bz—l '
(2.31) P
VLFZ:_FL . (2.3@

0z

=k(2) i i i
wherey=Kk{’r. We consider the same pilloox as shown in Furthermore, one can immediately verify that the force given

Fig. 2, and go to the limit as—0 . To carry out the proof, ¢ (235 can be written as the gradient of a scalar func-
we employ the followingrelatively obscurgidentity, which Hign 2 (némaely g

can be proven from the general properties of orthogonal
eigenfunctions; this identity was previously employed in F=—-qVe, (2.37
Ref. [13].

where ¢ may be thought of as a pseudopotential defined by

oo

= 5 & epn(fo)enn(n)
. JO(RZIOH) R (r) <P(r,t):2%|2 > Z’nko—cz'ngf,n(s)cosle.
=5 = n-n

— “% n=1
nzl MGo) 2 17 232 (2.39

This form can prove useful in exploring stability of the
Use of Eq.(2.32 allows a computation of the flux, yielding beam.
the result The drag force on a drive bunch can be calculated by
considering the bunch to have a finite length of uniform line
. q charge density, calculating the forces acting on each part of
_ 2 _ g0 the bunch using Eq2.35, and then taking the limit as the
® Zﬂf ﬁodr M=Ed)]s0-=4m e’ (233 bunch length goes to zero. Since the wakefields can exert a
force only on those charge elements behind it, one obtains

the drag force as
again consistent with Gauss’s law.
Both of the demonstrations given in this section show that 1 ) ef 2(ro)
the results obtained in this paper for the wakefields of a Fz,drag=§FZ(r,t) r—ro= 0o 2 2 'C .
charge bunch are consistent with Gauss’s law, at least in the 0—0 I=-en=1 n
limits taken. Presumably, a general proof can be obtained, =0 (2.39

but such a proof is beyond the scope of this paper.

© [

The transverse components of the force of a point charge
bunch upon itself vanish sincg%n(s=0)=0. The factor of
3 appearing in Eq(2.39 is often referred to as arising from
A test chargeq that follows a drive bunch of chargg,  the fundamental theorem of beam loading Wilson’s theo-
will experience a Lorentz forcg, with components given by rem[9]. This theorem can be proven for a general distribu-
tion of charge in the bunch, as long as the bunch is narrow in

E. Forces arising from wakefields

F. E, s. This follows from a consideration of the integral:
Fr|=q| E-—uBH,|. (2.34
Fo Ey+uBH,

J_ ds f(s) f dsof (S0)99n (5~ S0) s sy—0-
Substituting the fields as given by E@.24) into this equa- % % 1

tion, and performing algebraic manipulations using €9), = J ds f(S)f dsof(so)O(sp—8)= 5.
enables one to derive the following remarkably simple form o o

for the components df: (2.40
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The force terms given by E@2.35 exhibit useful scaling r 1 sink.s
. . . 0 n
forms in the limit asy— 0. Both the drive chargg, and the Fo(X,Y,8)|1=1= 4qqoR E . C. kR O(-y9),
test charge are moving in the vacuum channet R; where n o
e,n(N)=1(X)/11(x)—(r/Ry)', where x=|k{")|r. As y and Fy(xy,s)|,_1=0. (2.44)
—o, X—Kk,r/y—0, so that the components of the force can
be written One notes that the transverse dipole force is proportional to
ro, the displacement of the drive bunch off axis. Further-
F,(r,t) © @ g more, the dipole force is zero in the direction normal to the
F(r,) | =—2qq, 2 _(_) direction of the displacement; it is independent of the posi-
Fo(r ) 1=« =1 C tion of the test charge, and is independentyof
|
r F. Radiative power flo
(R_l cosl 692 () 1ative power flow

Power radiated from a charge bunch moving along the
r\'-1t 0 waveguide leads to a loss of bunch energy, and is equivalent
X |(R—1> cosl6g; ,(s) |. to application of an effective “drag force” on the bunch.
This drag force can also be computed directly from the
( wakefields within the bunch, as is shown in Sec. Il E. In this
section energy loss due to radiation power flow is calculated,
(2.41) and the drag force derived from it is shown to equal that
' found in Eq.(2.39. When a train of bunches moves along
the waveguide, this drag force acts in addition to forces from
the wakefields from preceding bunches. Furthermore, the ra-
diation generated by the bunch can, in principle, be coupled
linac structure out_of_ the waveguide and used, for exampl_e, as a source of
The monop'ole (=0) and dipole (==1) components radiation for spectroscopy, or for beam diagnostics, since
. . - = . knowledge of the spectrum of radiated power can be used to
are of greatest interest in deter_mmmg stability. The only S9infer the bunch size. For all these reasons it is necessary to
hificant manopole component is develop a theory for the radiative power flow, i.e., for the
power that propagates away from the immediate vicinity of
1 the moving bunch. As will be shown, this quantity cannot be
Fali—o= quOE COSk 80(=s), (242 omputed from knowledge of the Poynting vector alone.
For a stationary source, radiation power flow passing
through any cross section at a point along a waveguide can
be calculated using the Poynting vec®y, e.g.,

rye 0
R, sinl g} n(s)

Close examination of Eq2.41) reveals that the forces enjoy
no inversey scaling that might provide a qualitative advan-
tage in stability, as compared with that for a conventional rf

which is independent of, ry, andr. The monopole radial
force F,|,—g is zero to ordery™!; the lowest order contribu-
tion is of ordery 2, as a result of the near cancellation 2n N R
between electric and magnetic forces. The monopole azi- PZ:j de>, J drrs,, (2.495
muthal forceF |, -, is identically zero to all orders, by sym- 0 i=
metry.

The dipole force is the most serious deflecting force thatVith
arises from slight displacements of the bunch off axis, on

account of the r((_)/Rl)' fa(_:tor in Eq.(2_.4]). Knowk_a_dge of Sz:i(Eer)_EaHr)-

the dipole force is essential in analyzing the stability of both 4w

the drive bunch or bunches, and the test bunch. The longitu-

dinal component of the dipole force is given by But for the case of a wakefield generated by a discrete

bunch or bunches moving along the waveguide, we claim
% that not all the power flow embodied in E@.45 is a ra-
rg X 1 L . . S
F,(%Y.S)|i-1= —4q0o= = >, — cosk,sO(—s), diation power flow. This can be appreciated by considering
Ry R n=1 C four problems that attach to E€R.45, should one interpret
(243 it as radiation power flow(i) P,, as calculated from Eq.
(2.45), is not a uniform function ofz, but exhibits sharp
since the displacement, is taken to be in the direction.  s-dependent peaks and valleys, as shown in computed results
(The coordinatex andy are not to be confused with the given in Sec. llI(Fig. 8). The customary procedure of time
argumentsx andy introduced after Eq(2.4) in connection averaging over a period of the radiation, as applied for a
with the dispersion relatiopn.A factor of 2 in Eq. (2.43 stationary source, cannot be applied here because the inher-
comes from summing contributions from the =1 terms. ent symmetry with respect ®=z—uvt does not have a natu-
The dipole portion of the axial force is seen to be eitherral time period. Moreover, since the dielectric-lined wave-
decelerating or accelerating, depending upon the sigrn of guide structure and the drag force on the bunch are uniform
Such an effect can contribute to energy spread within thelongz, it is difficult to understand a radiation flow that is
bunch. The transverse components of the dipole force areot also uniform ins. (ii) P,, as calculated from Ed2.45),
given by using Eq.(2.249) for the fields, cannot be written as a series of
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terms that are decoupled eigenmode by eigenmode: cross It can be explicitly demonstrated that the radiation power
terms will enter. The physical nature of these cross terms iflow as given by Eq(2.49 overcomes all four difficulties
difficult to understand.(iii) P,, as calculated from Eg. mentioned above. In Appendix B, where somewhat involved
(2.45, is not equal to the work done by the drag force on thealgebraic manipulations are carried out, it is shown that Eq.
bunch, as given by Eq2.39. (iv) P,, as calculated from (2.49 can be reduced to

Eq. (2.45), is a positive quantity: the radiation would flow in

the same direction as the bunch. But since the fields cannot — [? Ri 2
overtake the bunch, this supposed radiation never “gets P2= fo dezl L,ld”(si“iﬂ —DS;. (250
away.” '

The origin of these problems can be traced to the naturénvoking the orthonormalization relatidieq. (2.12)] allows
of the wakefield source, which is manifestly convective,Eq. (2.50 to be cast into the remarkably simple form
rather than stationary. As a drive bunch moves along, the

Coulomb field attached to it also moves along; the Poyntlng— ey r,( 0)

flux associated with this Coulomb field appears as a power P= qO,B Zm nEl O(-s)= |_Zx nEl Pin,
flow in Eq. (2.495 when in fact it is not radiation at all. This (2.50)
convected Coulomb field energy must be subtracted flgm

in order to find the true radiation power flow. where C, is given by Eqg.(2.113, and P, is the power

To compute true radiation power flow, we invoke the radiated into the HElM mode. Note the minus sign in Eq.
Poynting theorem as applied to a fixed volumehat at the  (2.51): radiation power flows in a directioappositeto that

moment of scrutiny surrounds the moving charge bunch, aef the bunch.
depicted in Fig. 2: As claimed, the radiation power flow given by Eg.51)
is indeed in a form where contributions are decoupled mode
d by mode; this property is not enjoyed by eithgror P,.
fvdv EJFV'S = deV(—J-E)ZW, (2.49 Radiation power is a function independentsofbehind the
bunch, and thus free of peaks and valleys even though no
where U=(1/87)(sE-E+ uH-H) is the electromagnetic average over eitheror t was performed. So, as expected, the
energy densityS= (c/4w)EXH is the Poynting vector] is  quantityP, is naturally uniform behind the bunch, consistent
the current density, and/ is the work done by Charge within with the uniform nature of the Waveguide structure wherein
the volumeV. What is significant in the wakefield problem the radiation is propagating. Finally, if one compares Eq.
is thatU and S are functions ofs=z—ut, so that one can (2.51) and Eq.(2.39), it is evident that
write Eq.(2.46) in the form _
Pz:UFz,dragy (2.52

as indeed it must if the theory is to be internally consistent.

Clearly, sinceF, gq is naturally uniform, and S(P?Z must
also be.

J
fvolv[g(sz—vunvi.sl

=f dAZ(sZ—uu)Jrf dA, .S =W
A+A’ A"

2.4
(247 We now consider effects associated with the finite length

If one chooses the are&” to be just outside the perfectly Of @ charge bunch. As pointed out in Sec. IIC, the only
conducting outer waveguide wall, and choogésto be in  formal change in the theory to allow for this extension from
front of the bunch, fields are zero on these areas, and E@ Point charge source is a modification of tgeunctions

(2.47 reduces to an energy balance equation according to the prescription given in EQ.25. To simplify
the discussion that follows, a rectangular charge distribution

is selected, with a distribution functioi{(s)=A"1if —A/2
J dA(S,—vU)=W. (248  <s=<A/2, andf(s)=0 otherwise. The integral in E¢2.25
A is straightforward, yielding

G. Finite bunch length effects

Thus, in the case of wakefields, a modified Poynting vector U, n(S) 1 (sink,s’ S'=—s+A/2
S,=S,—vU emerges naturally for calculating the true radia- giyn(s)) - koA (coskns’) —s—A/2
tion power flowP,, according to (2.53

- R - This expression can be evaluated in front of the beam, within
pzzf dgz arrs,. (2.49  the beam, and behind the beam, by taking into account the
0 Ri—1 properties of the Heaviside function. In front of the beam

>A/2, and one finds
It is also seen that no quantity akin to a group velocity can be

introduced to relate energy flow and Poynting flux, as has 9,.n(S)
been recently suggestdd]; in any case each waveguide (gl’n(s) =0

mode has its own group velocity, and no global definition

exists for this quantity in multimode power flow. Within the beamA/2>s>—A/2, and one finds

(2.59
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A 1.0 T
sink,| —s+ = I
(gz,n<s>): 1 " 2 (2.59
g.n(8)) kA A ' ' 0.8
cosk,| —s+=|—-1
2
Finally, behind the bearm<—A/2, and one finds g 0.6
=
Gzn(S) ( 92n(S) ) =
' = A ’ , 2.5 <
(gi,n<s> D g0 (s) (256 a4,
where
sin(k,A/2) 02
ap(A)= (kA7) (2.57
0.0 .
Equation (2.54 indicates that, as expected, no fields are 0 20 40 60 80 100
found ahead of the bunch. Equati@h55 indicates that the Mode number n

longitudinal and transverse fields are oscillatory within the
bunch, but in a conjugate relationship; this feature is respon-
sible for the so-called head-to-tail instability of a charge
bunch, in which wakefields can lead to destructive shear dis-  s0.0 |-
placements along the bunch. Equati@56) indicates that I
the fields for a finite rectangular bunch are the same as thos
for a point bunch, except for the form factas,(A). This
factor has the effect of reducing the mode amplitudés, 1/ i
for a point charge bunch te,/C,, for the distributed bunch. = 300 |
From the familiar properties at,(A), it is seen that higher- o~

order modes for whictk,A> 7 are reduced in amplitude.
Those are modes with half-wavelengths less than the buncl
length. This demonstrates the rather obvious point that exci- r
tation of short wavelength higher-order wakefield modes re- 10.0 [
quires short drive bunches.

60.0 —

(b)

40.0 |

0.0_ : e e L
I1l. EXAMPLES 0 20 40 60 80 100

. . . . . . Mode numbern
The analytic solutions obtained in previous sections of

this paper using the method of eigenmode expansion have fiG. 3. Power lost by the beam to wakefields as a function of
revealed a number of important features of wakefields inmode numben, for several values of the beam lengtlz; (a) mode
dielectric-lined waveguides that could not easily be revea|e(§pectrum, showing the powe?, lost into each mode; and (b)
through other theoretical formulations. The compact andotal integrated lost power in all modes up to and includingritie
relatively transparent analytic solutiofesg., Eqs(2.24 and  As Az is increased, the higher mode contributions diminish rapidly
(2.35] also permit numerical evaluations to be obtainedand the total lost power decreases. These results show that is im-
speedily and reliably, since singularities that are endemic t@ortant to use a short bunch to generate strong wakefields.
wakefields have been dealt with analytically, therefore obvi-
ating the need for delicate numerical integrations. In thigadiation, as apportioned among the JgMwaveguide
section, results of numerical evaluations will be shown andnodes, plotted versus The quantityP, is P, as given by
discussed, and several unusual basic physics points assoEid. (2.51) with | =0, since contributions with+0 vanish in
ated with wakefields will be elucidated. this case. As the bunch lengNez grows, higher-order modes

In order to generate a sharp wakefield, the drive bunctare less strongly excited, and the wake will smear out
must excite many high-order waveguide modes. The sharpjuickly. At the same time, the total lost and radiated power
ness of the wake most critically depends on the bunch lengttglrop rapidly together with a diminution in drag force. Lower
This fact can be seen from plots of the computed powegrag is an indication of lower acceleration gradient. A mea-
spectrum as shown in Fig. 3. The parameters for this exsure of the total power lost to drag forces and radiated is
ample areR;=0.05cm,R,=0.50cm,e=9.5,q9p=2nC, y  given by Pt:EE,:an,. This quantity, and its dependence
=61, Az=0.02cm, and(=0. These parameters lead to a upon bunch length, is shown in Fig(i8, also plotted versus
wakefield period of 2.63 cm, which is compatible with op- n. It is seen that as the bunch length decreases, an increasing
eration using arX-band rf linac to generate a bunch train number of modes must be included in the calculation in or-
synchronous with the wakefields. These parameters are ader to account for all the lost and radiated power.
hered to in the balance of this paper, unless otherwise noted. Mode dispersion is also a significant factor in determining
Only TMy, waveguide modes are excited in this case, sincehe nature of wakefields. Dispersion influences such factors
ro=0. Figure 3a) showsP,,, the power lost by the bunch to as peak amplitude of the fields, and spreading of the peaks at
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NSy T s et iaa s FIG. 5. An example to show the structure of wakefields in a
o L ':;++++ ] dielectric waveguide(a) the electric flux lines(b) the lineal surface
5 1ot T o ] charge density induced on the wall of the conductor; &)dhe
105 Lo, ] accelerating gradier, on the axis. Note that the flux appears to
. - + ] . . oy
T T N emerge uniformly out of a disk located at the beam position, al-
0 10 20 30 40 50 though the beam is assumed to be a charged rod of lefAgth

Mode interval number =0.05 cm with infinitesimal radius. The electric flux lines are bent

) ) at the dielectric boundaryR;=0.2 cm), and terminate at the con-
FIG. 4. Frequency separation between adjacent modes as af””&UCting wall charge R,=0.5cm). Note that excess charge is in-

tion of mode interval number fofa) monopole (=0), (b) dipole  §yced on the wall, and acts as a source of the trailing wakefield.
(I=1), and(c) quadrupole (=2) modes. The dots represent the Thg gielectric constant is intentionally chosen to be lew=.0) to

frequency separations betwe€TE-like) oddn modes, while the  spow the structure of the wake lines more clearly than for the case
pluses represent frequency separations betw@bflike) evenn o 5 higher dielectric constant, as in Fig. 6.
modes. It can easily be shown that all mode separations approach a

universal asymptotic frequency separatiod w= wc/|(R,
—R;)\e—1], in the limit of largen; for this example,Aw/27  type, plotted as a function of like-mode interval number. The
=11.433 GHz. This near equality of frequency separations is refigures are qualitatively similar to one another, show signifi-
sponsible for creating localized wakefields with differemailues at ~ cant dispersion for low mode interval numbers, but show
the samez locations, as shown in Fig. 7. Therefore, it is not possiblenegligible dispersion at high mode interval numbers. All
to separate the accelerating monopole field from the transverseode intervals asymptotically approach the limiting value
components of the dipole field that can lead to instability. Disper-Af=c/[2(R,—R;) e — 8 2]=11.433 GHz for the param-
sion in the modes with lowen values leads to a smearing of the eters chosen, but the rate of approach to this asymptote is
wake as the distance behind the bunch increases. gentler for highet. The mode dispersion at low mode inter-
val numbers leads to spreading of the wakefield peaks as
increasing distances behind the bunch. Furthermore, study diistance behind the bunch increases. However, since Fig.
stability properties of a bunch requires knowledge of the3(a) shows that short bunches excite lowemodes more
relative strength of mode amplitudes, and the relative locaweakly than intermediate-modes, spreading is minimized
tions of the field peaks for modes with differehtvalues.  for wakefields excited by short bunches. The near equality of
Typically, for a dielectric loaded waveguide, the dispersionmode intervals for monopole, dipole, and quadrupole modes
line for each mode plotted in the-k plane has a hyperbolic indicates that transverse fields are not displaced away from
shape wherk is small, but bends over to become a straightthe bunch location to mitigate against destabilization, as pre-
line of slopec/\/e whenk is large. This leads to a nearly viously speculated10].
uniform spacing of modes in the TE and TM like families for  In Fig. 5, computed wakefields and surface charges are
large k. The TE-like modes have odu-values, while the shown. For this example, a 2-nC, 30.7-MeY= 61) charge
TM-like modes have even-values. Results of computations bunch with lengthAz=0.05cm is moving uniformly along
to determine the eigenfrequencies are shown in Fig. 4, fothe axis in dielectric loaded waveguide. The waveguide has a
monopole modefl =0, Fig. 4a)], dipole modegl=1, Fig. = vacuum hole of radiuk;=0.2cm, a conducting boundary
4(b)], and quadrupole modds=2, Fig. 4c)]. Parameters radius R,=0.5cm, and a dielectric constast=3.0. The
are as for the results shown in Fig. 3. The figures showunch is located az=3.5cm, and is moving toward the
frequency differences between adjacent modes of the samight. For this example, parameters were chosen to allow the
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crowded wakefield pattern to be easier to discern, in contras 0.15
to cases with more highly localized wakefield features. Fig-
ure Ha) shows the pattern of electric flux lines of the
wakefields. The coordinates of the flux linpgz)=cons{
were obtained by numerically solving the differential equa-
tiondr/dz=E,/E,, where the field&, andE, are given by
Eq. (2.24. One unusual feature is that the source of flux
appears to be distributed radially over a disk of radRysat FIG. 6. Wakefield flux lines for a more realistic case than that in
the location of the bunch, even though the bunch actually hakig. 5. Here R;=0.05cm, R,=0.15cm, £=9.5, and Az
a vanishing radial extent. The fielflor s<0) is similar to  =0.02 cm. Note that the wake is much sharper than the case shown
that for a charged disk filling the vacuum hole. The densityin Fig. 5, and clearly illustrates the qualitative notion that the outer
of flux lines is normalized such that the 2-nC bunch generconducting boundary serves to periodically reflect the Cerenkov
ates ten flux lines. The electric flux lines are refracted at th&one back toward the axis. The cone angle closely agrees with the
vacuum-dielectric boundary, and some of them are termicustomary value cos (1/¢8) for Cerenkov radiation in an un-
nated by polarization charge. But for the sake of visualizabounded system.
tion, the plot shows the same number of the flux lines con-
tinuing into the dielectric layer. The flux lines are reflected at In Fig. 7, the forces acting on a test bunch of unit charge
the conducting boundary and the trailing pattern of the wakerailing a 2-nC drive bunch are shown, as a function of the
continues. distance behind the drive bunch. The parameters of the
At the wall, surface charge is induced as shown in Figwaveguide and the drive bunch are chosen identical to those
5(b). The lineal charge densiy(z) is related to the electric as in Fig. 3, except that the drive bunch is now moving
flux density ®,(z) on the wall through Gauss’'s law as parallel to but displaced from the axis by=0.010 cm in the
®,(2)=27R,E,(r=R,,z)=4m3(z)/e. It can be seen that x direction. This radial displacement produces azimuthally
excess surface charge is induced on the wall, as is necessatgymmetric moded ¢ 0), in addition to the symmetric ones
to act as the source of the trailing wakefield. By integrating(l=0). Figures ) and 7d) show the longitudinal and
the surface charge from the bunch backzte2.9 cm, a net transverse fields near the drive bunch, whose axial extent is
positive surface charge of 5.5 nC is found; this is 2.75 timesndicated by the filled rectangle; while Figs(ay and 7c)
that of the drive bunch chargevith opposite sigh This  show the fields near the location for a test bunch, indicated
feature is another peculiar feature of Cerenkov radiation in &y the open rectangle. The longitudinal forég, as shown
bounded system. Outside the Cerenkov regime, the total irin Figs. 7a) and 7b), acts either to accelerate or decelerate
duced wall charge is equal to the source chdwgéh oppo-  elements of the test bunch, depending on its sign. The trans-
site sign, and there is no trailing wakefield formed. verse forced=,, as shown in Figs. (¢) and 7d), is respon-
The electric field on the axi&,(0,z), as plotted in Fig. sible for the stability of the test charge. It is assumed that the
5(c), exhibits localized peaks with alternating signs. It is evi-test charge is also displaced in tkelirection by 0.01 cm.
dent that the leading edge of the axial field at the drive bunctsince the dipole force is the main component of concern
nearz= 3.5 cm is slightly bent, a consequence of finite bunchregarding the stability, and since it is uniform over the cross
length. The field contributions arising from different ele- section of the vacuum hole, the test patrticle is always accel-
ments of the bunch superimpose to give this bend, and therated radially in the same direction as the displacement of
peak value is comparable to the second peak. If the drivéhe drive bunch. For ease of comparison, the plots in Figs.
bunch were a point charge, the leading edge of the first peak(a)—7(d) show the dipole force multiplied by a factor of 10,
would go its maximum immediately, and its height would beand the quadrupole force multiplied by a factor of 100. From
roughly half that of the first negative peak. This factorsof Fig. 7(a) it is apparent that the drag force on each part of the
would be consistent with Wilson’s theordi®l]; but here itis  bunch is different, and thus different segments of a bunch
seen that the conditions for validity of the theorem are vio-with finite length will lose different amounts of energy. If the
lated for finite bunch length, even thougtz=0.05cm is beam were a point charge, the average drag force would be
clearly smaller than any other dimension of the system. Mulhalf of the accelerating force shown in Figay, a limiting
tiple drive bunches can be used to enhance the acceleratimgrcumstance that is the basis of Wilson’s theof@&in But in
field by carefully choosing their spacing to coincide with thethe example shown here the beam length is finite, and the
positive peaks, and acceleration of a test bunch occurs alrag force builds up to more than half the accelerating force.
locations of negative peaks]. Discussion of wakefields It is also apparent from Figs.(@ and 7d) that both the
from multiple drive bunches are beyond the scope of thisaccelerating bunch and the drive bunch are in regions where
paper. the transverse force varies rapidly. As a result, a finite length
In Fig. 6, a wakefield flux pattern is depicted for param-beam will tend to distort into a banana shape. This unavoid-
eters that are optimized for high acceleration gradient. Herable feature is intrinsic to wakefields, as a consequence of
R;=0.05cm,R,=0.15cm,e=9.5, qp=2nC, y=61, and the Panofsky-Wenzel theoref8].
Az=0.02cm. In this case, it is seen that the wake is much A comparison, near the location of a test bunch, between
sharper than that shown in Fig(@. The Cerenkov cone is the transverse force shown in Figcywith the longitudinal
clearly in evidence. It can be easily verified that the con€orce shown in Fig. {@), reveals their ratio to be about 1/10.
angle is essentially that for Cerenkov radiation in an un-Considering the small radius of the waveguide and the fact
bounded medium, i.e., co¥1/Bs)~84°. The peak acceler- that the dipole force increases in proportion to the deviation
ating field on axis az=1.85cm in this case is 155 MeV/m. from the axis, it is clear one must either keep the drive beam

—~ 0.10 |
£
o
- 0.05

1
0.00 zcm) 1.2 1.6 2 24
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FIG. 7. Forces on a test particle with unit charge follogvan2 nC,Az=0.02 cm drive bunch for monopole, dipole, and quadrupole fields.
These fields are generated by the drive bunch moving parallel to the axis, but displacea dirtetion by an increment,=0.01cm, in
a waveguide witiR; =0.05 cm,R,=0.50 cm, and: =9.5. For the sake of clarity, the dipole forde=(1) is multiplied by factor of 10, and
the quadrupole forcel €2) is multiplied by a factor of 100(@) Longitudinal forces near the first accelerating peak, where the location of
a would-be accelerating bunch is indicated by the open box at the peak of the main accelerating force. Note that the dominant contribution
to the accelerating gradient is from the 0 component(b) Longitudinal forces near the drive bundie) Transverse forces near the first
accelerating peak. Note that different parts of the would-be accelerating test bunch will experience quite different transverse forces, leading
to a head-to-tail instability that will result in a banana-shaped bufdhTransverse forces near the drive bunch. Again, head-to-tail
instability is evident.

close to the axis, or keep the dielectric waveguide shortceled, thereby resulting in a uniform flow of radiation. Note
Therefore, it appears necessary to employ strong focusing @lso that the sign oP,,4 IS negative, indicating that the ra-
minimize deviations of the beam from the axis, and/or todiation power flow is opposite to the directions of the bunch
evolve a scheme with short waveguide modules having higlmotion, of P, and ofvU. To our knowledge, this fundamen-
wakefield gradients. Further discussion on bunch stabilitytal distinction has not been previously noted.

focusing and use of shoftavity) dielectric resonator accel-
erating modules is beyond the scope of this paper.

Figure 8 illustrates important issues in regard to the dis-
tinction in the wakefield context between radiation power In this paper, a derivation is presented for the general
and mere convection energy of the Coulomb fields. Thesanalytic solution using the method of eigenfunction expan-
issues are intrinsic for any convecting system, such as in theion for wakefields induced by a charge bunch moving par-
case of wakefields from a charge bunch. Figu@ 8hows allel to the axis of a cylindrical dielectric-lined channel.
the usual power flowP, calculated using the customary Wakefields, equivalent to Cerenkov radiation in a bounded
Poynting vector; this quantity is seen to be nonuniform, withsystem, are electromagnetic shock waves similar to Mach
distinct peaks where the wakefield is peaked on axis. Notevaves in acoustic systems: they contain a singularity at the
also that these peaks also coincide with either the location ofrake front. Because of this singularity, and the fact that the
the drive beam or the peaks of the induced wall charge at thields of greatest interest are highly concentrated in a narrow
boundary of the dielectric. These locations are where one caregion, a purely numerical approach to solve Maxwell's
also expect strong Coulomb fields. In Figb8 the con- equations with a moving source is computationally intensive
vected energy U is shown; this quantity includes both the and susceptible to error. An analytic solution, on the other
radiation energy and the convecting Coulomb energy. It alsthand, allows straightforward checks of the accuracy to be
shows distinct peaks similar to those in Figa)8 Figure &c) carried out, such as consistency with Gauss'’s law. A wake-
shows the difference between Figg¢a)8and 8b), namely, field solution in terms of orthonormal eigenfunctions also
P,—vU, which was identified as the true radiation fi€lg,y  leads to intuitively satisfying and remarkably compact ex-
in Sec. Il. It is clear that all the peaks are essentially canpressions for the forces experienced by drive and test

IV. DISCUSSION
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150 [T T T T ] gument to prove orthonormalifyl2] does not apply. In this
“ ] paper a generalized orthonormality relation is derived for the
first time, to our knowledge, both for a stationary source and
for a convected source such as a charge bunch moving along
a dielectric-loaded waveguide. Since the orthogonality rela-
. ; tion is in an explicit form, it is straightforward to calculate
z(em) 1.2 16 2 2.4 numerical values for the fields, and also to clarify many re-
150 ——4——————7———— T lated physical issues, as shown in Sec. Il.
L ) ] Another point discussed in this paper stems from the fact
100 £ 7] that a uniformly moving charge bunch in a dielectric-lined
: ] waveguide is a convecting system, rather than a stationary
50 ] system such as a linear microwave tube. This fact requires
L L L ] care in deriving an appropriate orthogonality relation, as
* Zem 12 1.6 2 2.4 mentioned above and shown in Sec. IIB. Another feature
peculiar to a convecting system is in regard to radiated
power. In Sec. Il F and as shown in Fig. 8, it is erroneous in
a convecting system to interpret the Poynting vector as ra-
diation power. In a convecting system, Coulomb field energy
appears as a power flow that contributes to the Poynting
b 1 vector. Therefore, as is shown in this paper, for the first time
— T . T T to our knowledge, one must subtract this contribution from
the Poynting vector to obtain the true radiation power. We
FIG. 8. Three different types of energy flow associated withhave shown that the radiation power is uniform behind the
wakefields of a moving sourcéa) Power flowP,, as calculated bunch, and is flowing backward away from the source; in-
from the Poynting vector. Note that this power flow is not uniform deed, causality prevents radiation from flowing forward. It
but is highly peaked, particularly near the peaks of the wakefield orhas also been shown in this paper that the radiation power is
the axis. This power flow includes a contribution from the electro-equal, as it must be, to the work done by the self-drag force
static Coulomb field energy affixed to the chargs). Convecting  \which, for a point charge, is consistent with Wilson’s theo-
energy flowoU. (c) The differenceP,—vU, representing the true  yem [9]. Furthermore, we have shown that this radiation
radiated poweP,,4. Note that the magnitude &¥,,qis uniform in power flow can be decoupled into individual waveguide
z and tha_t its sign is negative, iqdicating that it flows backwards,modes’ while the Poynting vector cannot. The final analytical
i.e., receding away from the moving source. expression for the radiated powgq. (2.51)] is a remark-
ably simple form.
bunches, and for the power radiated by a drive bunch. Ana- The condition for nonvanishing of the radiation power
lytical consistency of the solution with the Panofsky-WenzelP, .4 coincides with the condition for generation of Cerenkov
theorem[8] and with Wilson’s theorenfi9] is also straight- radiation, namely82s>1. When this condition is met, the
forward to establish. solution of the wave equation goes to a shock wave solution.
There have been attempts to solve for wakefields in @&he transition into the Cerenkov regime introduces several
dielectric waveguide by the method of direct integration ofinteresting features that are fundamentally different from or-
the Green'’s functionf4,5]. In this approach, an analytic ex- dinary wave solutions(i) The wake possesses a sharp dis-
pression for the fields can be obtained in terms of a sum ofontinuous front, such that the field vanishes ahead ¢i )it.
residues over an infinite number of poles, each correspondFhis feature is the result of the causality condition, which is
ing to an eigenmode. However, this kind of solution is usefulimposed for evaluation of a contour integral by requiring
only when the system is not bounded or when only a fewboth poles to lie in the lower-half plane of the compliex
modes are adequate, because the residues must each be foptahe, as shown in Fig. 1iii) The wake front in the dielec-
by numerically differentiating the dispersion relation at eachtric region is bent backward at the Cerenkov angle
pole. As seen in Sec. lll, over 100 modes can be required toos }(1/e8), as shown in Figs. 5 and 6iv) Excess wall
describe accurately a relatively sharp wakefield. Althoughcharge is induced on the conducting boundary, which acts as
the prescription for evaluating the residues at the poles ithe source of the trailing wake, as shown in Fig. 5.
given, no explicit form is available. Thus this type of solu-  Analysis of the power spectrum in a wakefield shows that
tion can be cumbersome to use for obtaining numerical reit is necessary to use a short bunch in order to produce a
sults, does not shed light on the physical nature of the wakesharp wake. A sharper wake implies less dispersion, and a
field, and does not lead naturally to the consistency checksigher accelerating gradient. A less dispersive wake is cru-
mentioned above. cial for applications using multiple drive bunches, either in a
In order to apply the method of eigenfunction expansionwaveguide or a cavity configuration. From the examples
it is essential to have an orthonormality relation to solve forshown in Sec. Ill, it would not appear to be unreasonable to
mode amplitudes. For a cylindrical waveguide loaded withdesign and build a wakefield accelerator with an acceleration
concentric dielectric layers, it seems that no such generaradient of 150 MeV/m or more.
relation had until now appeared in the literature, except for Of course, the usefulness of the wakefields to provide
azimuthally symmetric modefsl1]. Due to the nature of a high gradient acceleration depends critically on the stability
structure with multiply connected regions, the available ar-of the drive and test bunches. The solution obtained in this

vU (MW)

o —T 77—
(c)

(MW}

rad

P

-50
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paper provides the means to calculate transverse and Iongi-(i) 1 R, | d
tudinal forces on an nonaxisymmetric bunch. The anaIytic‘I’mn=E27— drr kmknF a(ez,mhz,n)
form of the solution presented allows a remarkably simple LmLn JRi-g
form of the force to be obtained, which checks with the w- w1 d w,[de, , de
. m Wn n ,m Z,N
Panofsky-Wenzel theorem. The consequence of this theorem +eipi—— — - = (hymezn) tKmei—
) o . c c rdr c\ dr dr
is that one cannot separate stability problem from achieve-
ment of a high accelerating gradient, a condition that prevails |2 on(dh, , dh,
in any accelerating structure. It is also shown that the force + r_2€z,mez,n +aniT dr_dr
vector can be derived as the gradient of a pseudopotential.
The accelerating gradient depends sensitively on the vacuum 12
hole size. However, use of a small hole exacerbates the sta- ~  ;2MzmNzn] (- (A3)

bility issue, since any but very small deviations from axi-

symmeltry are intolerable. It has also been shown that peaklsne first two terms are already in the form of total deriva-

of the dipole fields overlap peaks of the longitudinal field. . : .
This requires that a compromise be reached betweeH\les' The first parts of the third and the fourth terms can be

achievement of a high accelerating gradient and achievemeHgﬁggztige%ytg%ﬁéiﬁnd then the differential equata)
of bunch stability. Of course, the transverse forces vanistt
when the drive bunch moves to the waveguide axis, and
therefore it is critically important to study stability with an K2 k2 90 =| Kk Kk | Wm @n

. ! = e, mhynteui— —1lh, e
external focusing force, such as can be provided by quadru- ~—+m=n=mn | EmEREAMEZA SilkiTeT "¢ Mam®zn
pole magnets. Our analytic solution presented in this paper

will provide an essential tool for such a study. +ek &re de,n
Future steps to be undertaken in the quest to understand T T TEM dr
and employ wakefields for acceleration include use of a mul- d R,
tibunch drive train, use of a short dielectric resonator, and + ik, wmrhz . zn
use of external beam focusing to provide stability. odr R,
+ gk K> ﬂJRi drre, e
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1d

de,
——|r
r dr

dr

2
>+(kfn—:—2)ez,n=0. (A5)
APPENDIX A: GENERALIZED ORTHONORMALITY
RELATION Forn#m, one multiplies Eq(A4) by e, ,,, and subtracts a
Consider the following overlap integral between radialSimilar equation witm andn interchanged. This yields
eigenfunctions for two different modes:

R
(k2 —k2,) fR drre,mezn
i—1

) R;
W= f drrier m(r)hya(r)+eqm(rh (1), de,n de, %
Ri_1 =lre,m ar —re,, ar , (AB)
(A1) Ri_;
and, similarly,
where the modes have transverse wave numbers
2 2 Ri
2 > (kim_kLn)f dr Ith,mhz,n
2 wm 2 2 wn 2 i—1
kL,mzsti_Z_km and ki,nzsi:u*i_z_kn’ (AZ) R
c c _Ih dh, h dh, | A7
=|r z,m dr r z,n dr . ( )
i—1

and (v, Ky) and (w,,k,) represent two arbitrary points that
satisfy the dispersion relation E(.8). Using Eq.(2.3), one  Employing Eqs(A6) and (A7), rearranging, and making use
can write Eq.(Al) as of Eq. (2.3, leads to
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A ® :
(ka_m_sz_n)\PS’r?n:[r[(kmez,mhﬁ,n'l'ﬂiTmhz,mhr,n) izl \If%‘q)n: SmrnCh s (A14)
wn R _
~| Kn€pmNznteim~€zmern - with ¥() as given by Eq(A12).
i-1

When the source is moving with constant velocity and

(A8) exited modes satisfy the relatien,=k,v, as for Cerenkov
radiation in the dielectric-lined waveguide, orthogonality

Equation(A8) is written in terms of quantities for which itis takes a form different from EqA13). This follows since

convenient to apply boundary conditions, such as the contitk{))2=k?(e;u;82—1) is a quantity which varies from

nuity of (e,,h,.es,hy,e€,,uh;) at a dielectric interface, |ayer to layer. Thus

and the vanishing ofg; ,h, ,e,) at the conducting wall. Ap-

plying these boundary conditions leads directly to

N
N (kﬁrkﬁ); (eimiBP—1)W{) =0 for m#n,
21 (k? ,—k2 )¥W =0 for n#m, (A9) (A15)
=

This is the generalized orthogonality relation. Foem, a  Sinceky#k;. Therefore, one obtains the relevant orthonor-

different procedure is required to carry out the integrals inmality relation
Eq. (A4). One multiplies Eq(A5) by r(de,,/dr), and in-

tegrates by parts, to obtain N
> (pigiB° =)W= 8miCn, (A16)
R; r2 de 2 |2 R i=1
ka.nf drregn:(_ Z’n) +<k12.n__2)e§n ] )
R_; ' 2 dr r .
i-1 so that
(A10)
and, similarl N
o Co= 3 (mieiB2= 1V, (A17)
oo s e + ol |
1n rr zn— | o 1n~ ,2[""zn .
Ri-1 21\ dr ' R with, as aboveW () given by Eq.(A12). However, in this

i—1
(All)  case the form of Eq(A12) can be simplified somewhat by
expressing the first terms in the second and third brackets in

Substituting these into E¢A4), one obtains terms ofh,,, ande,,, and by invoking boundary condi-
5 tions. As a result, the following form fo€, is found.
4 gl) 2 “n “n
KinWnn=1 | Kitmigi— |l€znhznteiki—
¢ o ¢ No(r2 [ 1 (de,,)\2 12
_ _ 2
de,, r2((de,\? [, 1?2\, C“_i:1 [ 2 i Eﬂ( dr ) (1 kfnrz)eZ
X re;n ar +E dr + kJ.n_r_f S
N 1 (dh,,\? 1 2 he Ri
oy, dh,, r?({dh,,\? M\ Tdr k22| :
Tk e+ 5\ gy i
2 R (A18)
+ kin__Z)hgn J ) (AlZ) - . . .
r ' Ry For finding the orthonormality relation in the case of

wakefields whenw,,= Bck;,, an alternative form can be de-
which can be used to calculate the normalization constant. fived that is less cumbersome to compute than is(E8).
Two particular cases are of interest, namely, that of alhis form is found from Eq(A4), using the relations be-
stationary source where it is legitimate to set=w,, and  tween field components as given from K8.3), namely
that of a moving charge bunch as a source where it is nec-

essary to seb,=knv. In the firstinstance, EqA9) reduces oy de,,
to 8? dr :kJ_,nhH,n_kthz,na
N (A19)
(K2—k3)>, v =0 for m#n, (A13) w, dh,,
i=1 MTW:kL,nee,n_knFez,na

from which, sincek?#k?, the orthonormality relation for
stationary sources is found, namely, to obtain
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2 (i) Om | Ri
KT " Vin=|[rkm€zmhgntr—h, nl Ki€pnt -€,,
! ’ ! wWp ’ ! r - R
-1
Ri Wy,
+ drr{ kyn—¢i€ m€zn
Ri-1 c o
Om
+knTMihz,mhz,n . (A20)

The quantities in square brackets in £420) vanish upon
summation over layers. Thus one obtains

N N n
: i

RN T

i=1 i=1 JRj_,

X

Wn Om
km? €i€;meznt knT Mi hz,mhz,n .

(A21)

Now, for the wakefield case, one hag ,=(eiu;iB?
— 1)k, Thus, employing EqgA16) and(A20) leads to the

relatively simple alternative form for the orthogonality rela-

tionship:
N Ri wn Wm
2 j drr km 8iez,mez,ndl'kn Mihz,mhz,n
i=1 JR_1 C Cc

=CpSmn- (A22)
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The first quantity\lfsy)n, was obtained in EqA4) and, since

wy/c=k,B, it can be written as

\Pn,n':k2 k2 I(ez,nhz,n’+8i/‘/ihz,nez,n’)
1,n

L,n’
de, , R
+pBr SiTnez,n’+MiTmhz,n’) .
-1
+BK2 D) (B3)

Next we considek/(ei;)nyn, . The integration over can be car-
ried as in Appendix A. Using Eg2.3), this quantity can be

written

0 Kk, ki (R | d
Ve;n,n’zsimm | 1d” #iB T gy (€znhznr

dr dr |2

dh,, dh,, 12
+u? 2(—(;“ i +r—2hzlnhzyn,”. (B4)

de,,de,, |2
+hz,nez,n’)+< = &l

As stated in the text, it is this form that was used in Sec. IIC

to solve the wave equation with a source term.

APPENDIX B: POWER FLOW

The second and third terms in E@®3) can be integrated by
parts, and Eq(2.2) can be used to obtain

In this appendix, we shall calculate the radiation power

flow P, as defined by Eq2.49. The algebra is lengthy but :
straightforward, and the result that emerges is surprisingly Ve;n'n/=8ik2—
L,n

simple. Substituting the fields from Ed2.24) into Eq.

(2.49, and carrying out the elementary integration over

yields

Pr2cgy 3

=— n,n’:l i=1

N

E ez,n(ro)ez,n’(r)
C.Cn

X| W00 (9G] 4 (8)— 5 P L G2n()85 1 (5)]

(B1)
where

=g _ By
n’

n,n’ 2 nn’’

. R
\I’S)n,Ef dr r[er,n(r)ha,n’(r)+ee,n(r)hr,n’(r)]y
’ Ri—1

)y
Vn’ =

n’~ Yenn’

(i)
+Vh;n,n’ !

. R (B2)
v;'.)nn,zf drre[en(r)e () +egn(r)esn (r],
o Ri—1

) Ri
Vh;n,n/E JR dr rﬂi[hr,n(r)hr,n'(r)+hﬁ,n(r)hﬁ,n’(r)]r

i—1

. R;
(DS,)H,E fR dr r[siez,n(r)ez,n’(r)+Mihz,n(r)hz,n'(r)]-
i—1

Ky Ky
k2

[ [/-Liﬂl (ez,nhz,n’ + hz,nez,n’)
L,n’
hn R

dr

de,
+r—2"ey  + ulBr

dr hzn

Ri—1

Ri
+ kinf drr(e, €.+ M?ﬁzhzynhzyn,)] .

Ri—1
(B5)

Thenvﬂ.)n ,» can be obtained from E@B5) by interchanging

(si‘_’Mij and (< h). Combining, we obtain

i _ Ko Ko
Vn’n/:sz_ 28i/J«iﬁl(ez,nhz,n’"_hz,nez,n’)
n

1,n’
de dh Ri
+(1+8iﬂi,82)r(SiTmez,n’+MiTm hz,n’)
Ri_1
+K (14882 Dy (B6)

Now, from Egs.(B1) and (B5) one obtains
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kKo, Ky 1—é&pu,
\P(I ! _2n_ _2n_ — 2legphy 0
n,n k kL o 2 ’ ’
de dh Ri
+ Br d:n €n’ di,n hz,n’) +kin:8q)£1l)n’
Ri—1
(B7)
The derivative terms may be eliminated using
de, kf’ [
Ein—rn= k_nn o~ 7 hzn,
dh,, K, |
MiB =g = k—nea,n— €z
so that one finally obtains
‘I’Sn’ - 2k [ [r(ha,nez,n"’_ea,nhz,n’)
n/
Ri X
n
+ Er(ez,nhz,n’_hz,nez,n’) +knﬁq)§1l,)n’
L.n Ri_1
(B8)

Applying the continuity conditions and vanishing at the con-

ducting boundary on the fields, the first term in EBS8)
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ez,n(ro)ez,n'(ro)
P2=2005 Zw . nz,l CoCrr
N
x[ /2—3:—2 O 190 n(9)9] i (S)
E% 0 ]
7 2 h92n(8)93 0/ (S) (B9)
where
N R
2 I(ezn z,n’ hz,nez,n’) )
B J"n Ri1
with kf’n=(eiui,82—1)kﬁ. It can be seen that,, , is anti-

symmetric upon the interchange+«n’), but thatA, ./ is
multiplied by quantities that are symmetric with respect to
this interchange. Thus the first term in E®9) vanishes
upon summation oven and n’. If one now invokes the
orthonormalization relatiofiEq. (2.11)], Eq. (B9) then be-
comes simply

P,=—vqge E 2

|=—w n=1
sincegjn(s)+gz,n(s)=6(—s). It should be noted that the
remarkably simple form of Eq(B10) resulted even though

no average was taken over eitlzeor t. Radiated poweP, is
“naturally” independent ofz andt. This, of course, is as it
should be, since it results from the uniform drag on the
charge bunch and therefore must itself be uniform. The mi-
nus sign in Eq(B10) indicates that the radiated power flows

z n(rO)

—s), (B10)

vanishes upon summation over layers. As a consequence, Eg.a direction opposite to that of the charge bunch, since the

(B1) becomes

convected Coulomb field energy exceeds the Poynting flux.
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