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Theory of wakefields in a dielectric-lined waveguide

S. Y. Park* and J. L. Hirshfield†

Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
and Omega-P, Incorporated, Suite 100, 345 Whitney Avenue, New Haven, Connecticut 06511

~Received 18 February 2000!

Excitation of wakefields from a short charge bunch moving parallel to the axis of a dielectric-lined cylin-
drical waveguide is analyzed. This situation amounts to generation of Cerenkov radiation in a transversely
bounded system. Wakefields are expanded into an orthonormal set of hybrid electric-magnetic eigenfunctions
for this waveguide geometry. The orthonormalization relations for this system are obtained, evidently for the
first time, both for a stationary source and for a localized moving source such as a charge bunch; it is shown
that these orthonormalization relations differ. Forces arising from wakefields are found, valid within and
behind a distributed bunch. Deviation of bunch distribution from axisymmetry leads to generation of dipole
modes of significant amplitude that may lead to instability. Poynting’s theorem is examined for this system,
and it is shown that convected Coulomb field energy must be subtracted from the Poynting flux to obtain the
radiation power. This power, which balances drag on the bunch as calculated directly from the fields, is shown
to flow in a direction opposite to that of the charge bunch. The results are easily generalized to bunches of
arbitrary length and charge distribution, and to a train of such bunches. Numerical examples are presented for
monopole, dipole, and quadrupole wakefield forces, and sample electric field patterns are shown to assist in
understanding the unusual nature of this type of Cerenkov radiation. For a 2-nC rectangular drive bunch of
length 0.20 mm, moving along the axis of an alumina-lined waveguide («59.50) with inner and outer radii of
0.50 and 5.0 mm, a peak accelerating gradient behind the bunch of 155 MeV/m is predicted. This relatively
high magnitude of accelerating gradient suggests that a simple uniform dielectric pipe could be the basis for the
structure of a future high-gradient electron/positron linear accelerator, once low-emittance, kiloampere, subpi-
cosecond electron bunches are available in the laboratory.

PACS number~s!: 41.60.Cr, 41.75.Ht, 29.17.1w
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I. INTRODUCTION

In 1997, a new approach was described for electron
celeration in the composite wakefield excited in a dielect
lined waveguide by the passage of a finite periodic train
drive bunches@1#. The novelty of this approach rested upo
two main features.First, the use of relatively short drive
bunches was shown to allow the excitation of a large num
of high-amplitude TM0m waveguide modes in formation o
the wakefields. The excited higher-order modes, with ph
velocities equal to the bunch velocity and to one anoth
have nearly equally spaced eigenfrequencies. This leads
strongly peaked spatiotemporal superposition of fields, w
a net wakefield amplitude that can be much larger than
amplitudes of individual modes. The number of participati
waveguide modes and the resulting peak intensity of
wakefield both increase as the bunch length decreases.
bunches, as employed by others@2#, cannot excite wakefields
with peak amplitudes as large as short bunches carrying
same charge in the same structure.Second, the waveguide
design can be such that these nearly periodic strongly pe
high-amplitude wakefields have nearly the same period
that of the train of drive bunches. This can lead to constr
tive interference between wakefields from success
bunches, so that a cumulative buildup in the amplitude of
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wakefield occurs after each bunch in the train. A test bun
injected one-half period behind the last drive bunch can
perience a strong accelerating field. The superposition
wakefield amplitudes from a train ofN drive bunches of
chargeq can lead to an accelerating field comparable to t
produced by a single, equally dimensioned bunch of cha
Q5Nq. But, since it is easier to produce a short, we
focused bunch of lower charge, and since shorter bunc
produce stronger wakefields, considerable advantage ma
crue when a train of moderate-charge short bunches is
ployed, rather than a single bunch of the same total cha

The analysis presented in Ref.@1# was for the simple,
albeit unattainable, two-dimensional configuration of an
finitesimally thin sheet beam passing along the axis betw
two parallel dielectric slabs having perfectly conducting e
terior coatings. In Ref.@3#, preliminary results were pre
sented for acceleration in a cylindrical waveguide, consist
of a dielectric tube with a perfectly conducting outer coatin
with the charge bunches moving along the axis. Results w
shown in Ref.@3# in which an unloaded acceleration gradie
of about 57 MeV/m was predicted using a single 2-nC dr
bunch in a suitably designed dielectric-lined waveguide. B
the theory expounded in Refs.@1# and @3# contained severa
flaws which will be recounted below, and which are rem
edied in the present work. Numerical computations presen
in the present paper show, for the example cited in Ref.@3#,
with a single 2-nC rectangular bunch of 0.18-mm length a
with waveguide inner and outer radii of 0.375 and 4.88 m
that an accelerating gradient of 131 MeV/m can be obtain
A gradient of this magnitude, using a moderate-stren

d-
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PRE 62 1267THEORY OF WAKEFIELDS IN A DIELECTRIC-LINED . . .
bunch charge, is in the range sought for a future TeV-cl
linear collider. This preliminary result suggests that care
analysis be devoted to fully understand this new approach
achievement of high-gradient electron-positron accelerat
to perfect means for generating kA, sub-psec elect
bunches, and to provide the basis for design of proof-
principal experiments. This paper concentrates mainly
formal aspects of the theory of wakefield excitation in
dielectric-lined waveguide. The theory applies to the wa
fields within a drive bunch, to the wakefields behind a sin
drive bunch, and to the composite wakefields of a train
drive bunches. However, to avoid undue length, numer
examples are given in this paper only for a single dr
bunch.

A major concern in any accelerator configuration is or
instability driven by transverse forces that arise from nona
symmetric bunch distributions. That concern is addresse
this paper, in which theory is developed for excitation
hybrid electric-magnetic~HEM! modes excited by a nonax
symmetric bunch, or train of such bunches. Theories al
this line have been developed heretofore, including those
Rosing and Gai@4#, and by Ng@5#, but these authors did no
agree with one another on some important issues. Th
prior theories are not based on an expansion of the w
equation in a sequence of orthonormal waveguide modes
their treatment of multimode, multibunch effects may
more cumbersome than the normal-mode expansion me
that is expounded in this paper. This follows since dir
solution of the inhomogeneous coupled wave equations
the wakefields induced by a short bunch moving along
dielectric-lined waveguide without expansion in norm
modes requires a summation over a large number of pole
a transform integral, with a concomitant evaluation of a la
number of implicit residues. The normal-mode approach
quires summation over only two poles, with explicit res
dues. The normal-mode theory presented here will also
shown to lead to compact formulas for the longitudinal a
transverse monopole, dipole and higher-order forces on a
bunch that follows behind an off-axis drive bunch, and
the radiated power. All results given in this paper can ea
be generalized to a train of drive bunches, including con
tions where the wakefields interfere constructively. The ch
objective of this work is to provide a systematic theory
dielectric wakefields and their application to accelerati
and to allow scrutiny of potential beam instabilities driven
off-axis excursions of the drive bunches, including the c
of a synchronous multibunch train.

In working toward that objective, several previously u
explored theoretical issues had to be confronted. Altho
field solutions and dispersion relations for HEM modes fo
cylindrical dielectric-lined waveguide were derived long a
@6#, no detailed orthonormalization relation was previou
obtained; this deficiency is now remedied. Furthermore,
distinction between orthonormalization, when modes are
cited by a stationary source or by a moving source, were
clarified, in particular the need to modify the orth
normalization relation obtained for a stationary source wh
the source is a uniformly moving charge bunch; this de
ciency is also now remedied. That distinction was not rec
nized in Refs.@1# and@3#. Calculation of the radiated powe
from a moving charge bunch in a dielectric waveguide
s
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furthermore shown to require accounting for the convec
Coulomb field energy that trails a bunch. Subtracting t
from the Poynting flux gives the radiated power, and thus
drag force on the bunch. The drag force found in this w
agrees identically with that found from wakefields acting
rectly on the bunch, as of course it must. The radiated po
is shown to propagate in a directionoppositeto that of the
bunch. This subtle point was also not recognized in Refs.@1#
and @3#, so that calculations therein of the drag force on
from the accumulation of stored wakefield energy are inc
rect. A recently published power flow model for wake fiel
in a dielectric waveguide@7# led to somewhat different con
clusions from those presented here, including even the di
tion of power flow.

In addition to exposition of the theory as described abo
numerical results are presented of monopole, dipole,
quadrupole wakefields induced by the passage of a si
bunch. Plots of electric field lines for the monopole case
presented to help understand the unusual nature of the fi
Numerical results are also presented for transverse fo
arising from a bunch displaced from the axis, and for t
radiated power. Future papers will deal with detailed mu
bunch computations, including acceleration of a test bun
detailed stability analysis for a single bunch and a train
bunches; and effects such as end reflections of wakefi
that are peculiar to finite-length realistic accelerati
modules.

II. WAKEFIELDS IN A DIELECTRIC-LINED
CYLINDRICAL WAVEGUIDE

To introduce the notation, we review the derivation f
the fields of HEM modes of a cylindrical waveguide conta
ing one or more axisymmetric dielectric layers. A furth
derivation is given, evidently for the first time, for the o
thonormalization relation to be used when these modes
excited by a stationary source, and when they are excited
a moving source. Field solutions are obtained when
source is a moving charge bunch, corresponding to Ceren
radiation in a transversely bounded system. The fields
tained are shown to be consistent with Gauss’s law. For
arising from wakefields are found, including those within t
bunch and those that can act upon~and accelerate! a test
bunch that trails a drive bunch; these forces are found
conform to the Panofsky-Wenzel theorem@8#. Poynting’s
theorem is examined, and it is shown that convected C
lomb field energy needs to be subtracted from the Poyn
flux to find the correct radiation power flow, and thus t
radiation reaction force~or drag force! acting on a radiating
bunch; the drag force is found to be consistent with Wilso
theorem@9#; the direction of radiation power flow is found t
be opposite to motion of the bunch. These results are ge
alized to bunches of arbitrary length and charge distributi
and to a train of such bunches.

A. Eigenmodes for cylindrical waveguide with coaxial
dielectric liners

In this section, the electromagnetic fields of a cylindric
waveguide containing one or more coaxial dielectric lay
are determined. The fields are shown to be expressibl
terms of normal modes that, in general, are hybrid mo
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1268 PRE 62S. Y. PARK AND J. L. HIRSHFIELD
with six field components. However, for the special case
azimuthally symmetric modes it can be shown that the
brid modes reduce to transverse-electric~TE! and transverse
magnetic~TM! types. The most common form for a diele
trically loaded cylindrical waveguide is that of a hollo
uniform dielectric pipe with a vacuum hole along its ax
and with an ideally conducting layer on its exterior surfa
The fields and dispersion relation for hybrid HEM modes
this structure have been long known@6# but, prior to the
work reported here, there seems to have been no deriva
of an orthogonality relationship, nor of the power-flow fo
mula. For solution of the wave equation with source char
and currents of a bunch moving in the central vacuum h
of such a waveguide, an orthonormalization procedure
necessary to decompose the sources into normal modes

Fourier expansion of the fields in a circular cylindric
waveguide takes the form

S Ez~r ,t !
Er~r ,t !
Eu~r ,t !
Hz~r ,t !
Hr~r ,t !
Hu~r ,t !

D 5
1

~2p!3 E
2`

`

dv dk

3 (
l 52`

`

exp@2 i ~vt2kz2 lu!#

3S ez~r !

ier~r !

2eu~r !

2 ihz~r !

hr~r !

ihu~r !

D . ~2.1!

Thenez(r ) andhz(r ) satisfy Bessel’s equation

F d2

dr2 1
1

r

d

dr
1S k'

2 2
l 2

r 2D G S ez~r !

hz~r ! D50, ~2.2!

wherek'
2 [«m(v/c)22k2, and where the transverse comp

nents are given by

S er~r !

hu~r ! D5
1

k'
2 F S k

«
v

c
D dez

dr
1S m

v

c

k
D l

r
hzG

and

S hr~r !

eu~r ! D5
1

k'
2 F S k

m
v

c
D dhz

dr
1S «

v

c

k
D l

r
ezG . ~2.3!

In the vacuum hole (0,r ,R1) where «5m51, the
fields must be regular atr 50; thus

S ez~r !

hz~r ! D5S A
BD I l~x!

I l~x1!
, ~2.4!

whereI l(x) is the modified Bessel function, and
f
-

,
.
f

on

s
le
is

x[uk'
~1!ur , x1[uk'

~1!uR1 , and ~k'
~1!!2[~v/c!22k2,0.

To find fields in the dielectric region (R1,r ,R2) where
«5«2 andm5m2 , appropriate boundary conditions must b
satisfied. At the outer conducting boundary one hasez(R2)
5eu(R2)5hr(R2)50, these being equivalent to simpl
ez(R2)5dhz(R2)/dr50. Thus

S ez~r !

hz~r ! D5S A
El~y!

El~y1!

B
Hl~y!

Hl~y1!

D , ~2.5!

where

S El~y!

Hl~y! D[Jl~y!S Nl~y2!

Nl8~y2! D2Nl~y!S Jl~y2!

Jl8~y2! D ~2.6!

with y[k'
(2)r , y1[k'

(2)R1 , y2[k'
(2)R2 , and (k'

(2))2

[«m(v/c)22k2.0, which choice of sign is required fo
nonevanescent radiation. In Eq.~2.6!, Jl(y) and Nl(y) are
ordinary Bessel functions of the first and second kinds.

The remaining boundary conditions are thatez , hz , eu ,
andhu be continuous atr 5R1 . With these boundary condi
tions, Eqs.~2.3!–~2.6! can be combined to find the unknow
coefficientsA andB, with the result given in matrix form as

S M11M12

M21M22
D S A

BD50, ~2.7a!

where

M115
I l8~x1!

x1I l~x1!
1«

El8~y1!

y1El~y1!
,

M225
I l8~x1!

x1I l~x1!
1m

Hl8~y1!

y1Hl~y1!
, ~2.7b!

M125M215
kcl

v S 1

x1
2 1

1

y1
2D ,

with the primed functions representing a derivative with
spect to the argument. Equation~2.7a! gives the dispersion
relation as

detM5M11M222M12
2 50, ~2.8a!

and the TE/TM mixing ratio as

B

A
52

M12

M11
. ~2.8b!

The remaining boundary conditions, namely, that«er and
mhr be continuous atr 5RI , do not give additional indepen
dent conditions, because«(v/c)er5( l /r )ez1khu and
m(v/c)hr5( l /r )hz1keu .

The dispersion relation@Eq. ~2.8a!# can be satisfied by a
discrete set of eigenvalues withk'n

2 52kn
21«mvn

2/c2; the
corresponding eigenfunctions will be designated by s
scripts such asez,n(r ),hz,n(r ), etc.
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B. Generalized orthonormality relations

In Appendix A it is proven that, forN concentric dielec-
tric layers in a uniform cylindrical waveguide, the followin
generalized orthogonality relation applies between any
modes satisfying the dispersion relation with frequencies
wave numbers (vm ,km) and (vn ,kn),

(
i 51

N

@~k',m
~ i ! !22~k',n

~ i ! !2#E
Ri 21

Ri
dr r @er ,m~r !hu,n~r !

1eu,m~r !hr ,n~r !#50, if mÞn, ~2.9!

wherek',n
( i ) 5A« im i(vn /c)22kn

2 is the radial eigenvalue fo
the transverse wave number for thenth mode in thei th di-
electric layer. As in Sec. II A, the specific configuration
interest in this paper is that of a vacuum hole (i 51; 0,r
,R1) surrounded by a single dielectric layer (i 52; R1,r
,R2), but generalization of the orthonomality relation to
arbitrary number of layers will be maintained throughout t
section. As will be shown below, the means of applying E
~2.9! to find the normalization constant whenm5n will de-
pend upon the nature of the source of radiation.

For a waveguide with stationary sources, solutions
Maxwell’s equations are symmetric in time, so that all wav
guide modes can be taken to have equal frequencies,
vm5vn . Thus (k',m

( i ) )22(k',n
( i ) )252(km

2 2kn
2) is indepen-

dent of the layer parameters, and moves outside of the s
mation in Eq.~2.9!. The following orthonormality relation
then results:

(
i 51

N E
Ri 21

Ri
dr r @er ,m~r !hu,n~r !1eu,m~r !hr ,n~r !#5dmnCn8 ,

~2.10!

whereCn8 is the normalization constant to be used with s
tionary sources. A general relation for orthogonality simi
to this has been derived in Ref.@10#, although the proof there
was limited to waveguides containing only singly connec
domains of different dielectric constants; the proof provid
here applies to multiply connected domains typified by
coaxial structure of several axisymmetric layers of differe
dielectric constant. The explicit form ofCn8 is given in Eq.
~A14!.

However, when sources of radiation within the wavegu
are charge bunches moving parallel to, or along, the a
with velocity v, the correct symmetry is with respect toz
2vt, so that vm5kmv. Now (k',m

( i ) )22(k',n
( i ) )25(« im ib

2

21)(km
2 2kn

2), whereb5v/c, so from Eq.~2.9! one obtains
the modified orthonormality relation

(
i 51

N

~« im ib
221!E

Ri 21

Ri
dr r @er ,m~r !hu,n~r !1eu,m~r !hr ,n~r !#

5dmnbCn , ~2.11!

whereCn is the normalization constant to be used when
uniformly moving charge bunch is the source of the fiel
and where the factorb on the right-hand side is introduced
simplify the form of Cn ~see below!. The factor (« im ib

2

21) was introduced in Ref.@1# as anad hocweighting fac-
o
d

.

f
-
e.,

m-

-
r

d
d
a
t

e
is

a
,

tor in the Green’s function for wakefields in a two
dimensional waveguide; its precise origin is identified he
Carrying out the integration in Eq.~2.11! ~see Appendix A!
gives the following result for the normalization constant
terms of the eigenfunctionsez,n(r ) andhz,n(r ):

Cn5(
i 51

N
r 2

2 H « iF 1

k',n
2 S dez,n

dr D 2

1S 12
l 2

k',n
2 r 2Dez,n

2 G
1m iF 1

k',n
2 S dhz,n

dr D 2

1S 12
l 2

k',n
2 r 2Dhz,n

2 G J U
Ri 21

Ri

.

~2.12!

As further shown in Appendix A, from Eq.~2.11! it is pos-
sible to derive another, simpler form of the orthonormal
relation, namely,

(
i 51

N E
Ri 21

Ri
dr r @« iez,m~r !ez,n~r !1m ihz,m~r !hz,n~r !#

5Cndmn , ~2.13!

with Cn as in Eq.~2.12!. This latter form will be used to
solve the wave equation with a moving source for wakefie
in Sec II C while the form given by Eq.~2.11! will be used in
a calculation of the radiation power in Sec. II F.

C. Wave equations with moving charge bunch as a Source

We consider as a source for the wakefields a point cha
~or a short rigid bunch! of chargeq0 moving with a constant
velocity v in a dielectric-lined cylindrical waveguide of th
type discussed in Sec. II A. Its direction of motion is alo
thez axis, but its transverse position is displaced off the a
by an incrementr 0 in the direction chosen to beu050, i.e.,
along thex-axis. Thus for the point charge one has

r~r ,t !5q0

d~r 2r 0!

r
d~u!d~s!,

~2.14!
Jz~r ,t !5vr~r ,t !, Jr5Ju50,

wheres[z2vt. As will be shown below, the field solution
for a distributed source can be found by replacing thed func-
tion d(s) in Eq. ~2.14! by the distribution functionf (s),
where *ds f(s)51; now the solution can be constructe
from that for ad-function source by observing that

f ~s!5E
2`

`

ds8 f ~s8!d~s2s8!, ~2.15!

and that the solutions of Maxwell’s equations are linear
the source terms. Therefore, the solution for ad-function
source will be found first, and its extension to a distribut
source will then follow easily using the prescription of E
~2.15!.

One can expand the fields as in Eqs.~2.1!, and substitute
these into Maxwell’s field equations, with the source ter
given by Eq. ~2.14!. The longitudinal components of th
fields are found to satisfy Bessel’s equation with a sou
term on the right-hand side, e.g.,
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F d2

dr2 1
1

2

d

dr
1S k'

2 2
l 2

r 2D G S ez~r !

hz~r ! D5S ̃z~r !

0 D , ~2.16!

wherek'
2 [«mv2/c22k2, and

̃z~r !54pE
2`

`

dtE
2`

`

dzE
0

2p

du ei ~vt2kz2 lu!

3F1

«

]r

]z
1

m

c2

]Jz

]t G
58p2iq0k~12b2!

d~r 2r 0!

r
d~v2kv !, ~2.17!

since«5m51 in the vacuum channel. The transverse fie
components are given by Eqs.~2.3!, sinceJr5Ju50.

We now proceed to solve Eq.~2.16! by expanding the
fields ez(r ) andhz(r ) in terms of their eigenmodes, as

S ez~r !

hz~r ! D5 (
n51

`

AnS ez,n~r !

hz,n~r ! D . ~2.18!

Upon substituting Eq.~2.18! into Eq. ~2.16! and noting that
the eigenmodesez,n(r ) and hz,n(r ) satisfy the source-free
relation @Eq. 2.2# with eigenvaluek',n , one obtains

(
n51

`

An~k'
2 2k',n

2 !S ez,n~r !

hz,n~r ! D5S ̃z~r !

0 D . ~2.19!

Now the orthonormality relation@Eq. ~2.13!# can be used to
find the amplitudesAn , namely

An~k!5
W̃n~k!

k22kn
2 , ~2.20!

where

W̃n~k![
1

Cn
(
i 51

N
1

« im ib
221 ERi 21

Ri
dr rez,n~r ! ̃z~r !

52
8p2i

Cn
q0ez,n~r 0!kd~v2kv !. ~2.21!

SubstitutingAn(k) into Eq.~2.18!, using Eqs.~2.1! and~2.3!,
yields the following solution for the fields:

S Ez~r ,t !
Er~r ,t !
Hu~r ,t !
Hz~r ,t !
Hr~r ,t !
Eu~r ,t !

D 5
q0

ip (
l 52`

`

eil u (
n51

`
ez,n~r 0!

Cn
E

2`

`

dk
keiks

k22kn
2

3S ez,n~r !

k

k'
2

k',n
2

kn
S ier ,n~r !

2hu,n~r ! D
ihz,n~r !

k

k'
2

k',n
2

kn
S hr ,n~r !

ieu,n~r ! D
D . ~2.22!
In order to carry out thek integration in Eq.~2.22!, one
needs a prescription for handling the singularities in the
tegrand atk56kn ; this prescription is supplied by the re
quirement of causality. For the wakefield problem, t
proper causality condition is that there be no fields ahead
a source charge. This condition can be met by shifting b
poles into the lower half of the~complex! k plane, as shown
in Fig. 1. The k integration is then carried out along th
contours shown in Fig. 1, closing in the upper-half-plane
s.0, and closing in the lower-half plane fors,0. The con-
tour chosen for evaluation of a similar integral in Ref.@1#
only enclosed one pole in the lower-halfk plane, and thus
provided only half of the correct result. Evaluation of thek
integrals in Eq.~2.22! thus gives

E
2`

`

dk
eiks

k22kn
2 S k

k2/k'
2 D

522p i S coskns
~ ikn /k',n

2 !sinknsDQ~2s!, ~2.23!

where

Q~x!5H 1 if x.0

0 if x,0

is the Heaviside function. Substituting Eq.~2.23! into Eq.
~2.22!, and taking real parts, gives the field solutions as f
lows:

FIG. 1. Contours for integration in the complexk plane for
wakefields. Note that both poles are in the lower-half plane to
consistent with causality. The upper contour (s.0) corresponds to
the region ahead of the beam, while the lower contour (s,0) cor-
responds to the region behind the beam.
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S Ez~r ,t !
Er~r ,t !
Hu~r ,t !
Hz~r ,t !
Hr~r ,t !
Eu~r ,t !

D 522q0 (
l 52`

`

(
n51

`
ez,n~r 0!

Cn

3S ez,n~r !gz,n
0 ~s!coslu

S 2er ,n~r !

2hu,n~r ! Dg',n
0 ~s!coslu

hz,n~r !gz,n
0 ~s!sin lu

S 2hr ,n~r !

eu,n~r ! Dg',n
0 ~s!sin lu

D ,

~2.24!

where

S gz,n
0 ~s!

g',n
0 ~s! D[S coskns

sinknsDQ~2s!.

Sinceez,n(r ), er ,n(r ), and hu,n(r ) are even functions ofl,
and sincehz,n(r ), hr ,n(r ), andeu,n(r ) are odd functions ofl,
the terms under the summation in Eq.~2.24! are all even
functions ofl. Thus the summation may be condensed to
from 0 to `, doubling the value of all the terms except th
for l 50.

For a distributed source, as given by Eq.~2.15!, the fields
are still given by equations of the same form as Eq.~2.24!,
but the following generalization of theg functions is used:

S gz,n
0 ~s!

g',n
0 ~s! D→S gz,n~s!

g',n~s! D5E
2`

`

ds8 f ~s8!S gz,n
0 ~s2s8!

g',n
0 ~s2s8! D .

~2.25!

For a train ofM distributed bunches, the distribution functio
can be represented as

f ~s!5(
j 51

M

f j~s2sj !, ~2.26!

wheresj5z2zj2v j t, with zj the centroid for thej th bunch
and v j its velocity. This prescription may be employed
analysis of the wakefields for a train of bunches, but deta
discussion of multibunch wakes is beyond the scope of
paper.

D. Electric flux and Gauss’s law

A check on the accuracy of the overall field solution giv
by Eq.~2.24! can be obtained by calculating the total elect
flux that emanates from the charge bunch using Gauss’s
This check can be carried out easily in two limiting cases:~i!
numerically in the limit asg→`, and~ii ! analytically in the
limit as R1→0.

Only the monopole field components (l 50) contribute to
the total flux, after integration overu. Thus the electric field
components that contribute to the flux are
n
t

d
is

w.

S Ez~r ,t !

Er~r ,t !
D

l 50

52
4q0

R1
2 (

n51

`
ez,n~r 0!

C̄n

3S ez,n~r !gz,n
0 ~s!

2
kn

k',n
2

dez,n~r !

dr
g',n

0 ~s!D ,

~2.27!

where

C̄n[S 2

R1
2DCn5(

i 51

2 S r

R1
D 2F 1

k',n
2 S dez,n

dr D 2

1ez,n
2 G

Ri 21

Ri

.

~2.28!

For the monopole case, the only magnetic field componen
Hu(r ,t)5«bEr(r ,t).

We now consider a Gaussian pillbox, as shown in Fig
and calculate the total electric flux emanating from it. T
only nonvanishing contribution comes from field lines th
pass across surfaceA. If the location of surfaceA is taken to
be just behind the charge bunch~i.e., in the limit as s
→02) the preponderance of the contribution to the fl
comes in the vacuum channel. Furthermore, in the limit
g→`, uk',n

(1) u5kn /g→0, and thus the field becomes unifor
in radius, i.e., ez,n(r )5I o(uk',n

(1) ur )→1, and similarly
ez,n(r 0)→1. Therefore the total flux of electric fieldF ema-
nating from the pillbox becomes

F→pR1
2@2Ez~s→02!#54pq0(

n51

`
1

C̄n

. ~2.29!

It can be demonstrated by numerical evaluation that the s
in Eq. ~2.29! approaches unity, as it must to be consiste
with Gauss’s law.

FIG. 2. Gaussian pillbox used to calculate the electric flux a
power flow emerging out of the beam. Here, and in Figs. 5 and
the bunch is at the right-hand end of the plot and is moving tow
the right. For checking consistency with Gauss’s law, surfaceA is
positioned immediately behind the charge, while for calculat
power flow, surfaceA is positioned at an arbitrary distance behin
the charge. The pillbox is fixed in space, while the beam is movi
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Analytically, a proof of consistency with Gauss’s law ca
be obtained in the limit asR1→0. In this limit, the dispersion
relation for TM0n modes of the dielectric-filled waveguid
@Eq. ~2.8!# reduces to

J0~k',n
~2! R2!50, ~2.30!

and thusk',n
(2) 5 j 0n /R2 , whereJ0( j 0n)50. The electric field

components in the waveguide are now

S Ez~r ,t !
Er~r ,t ! D52

4q0

«R2
2 (

n51

`
1

J1
2~ j 0n! S J0~y!gz,n

0 ~s!

J1~y!

A«mb221
g',n

0 ~s!D ,

~2.31!

wherey[k',n
(2) r . We consider the same pillbox as shown

Fig. 2, and go to the limit ass→02. To carry out the proof,
we employ the following~relatively obscure! identity, which
can be proven from the general properties of orthogo
eigenfunctions; this identity was previously employed
Ref. @13#.

(
n51

` J0S r

R2
j 0nD

J1
2~ j 0n!

5
R2

2

2

d~r !

r
. ~2.32!

Use of Eq.~2.32! allows a computation of the flux, yielding
the result

F52pE
R1→0

R2
dr r @2Ez~r !#s→0254p

q0

«
, ~2.33!

again consistent with Gauss’s law.
Both of the demonstrations given in this section show t

the results obtained in this paper for the wakefields o
charge bunch are consistent with Gauss’s law, at least in
limits taken. Presumably, a general proof can be obtain
but such a proof is beyond the scope of this paper.

E. Forces arising from wakefields

A test chargeq that follows a drive bunch of chargeq0
will experience a Lorentz forceF, with components given by

S Fz

Fr

Fu

D 5qS Ez

Er2mbHu

Eu1mbHr

D . ~2.34!

Substituting the fields as given by Eq.~2.24! into this equa-
tion, and performing algebraic manipulations using Eq.~2.3!,
enables one to derive the following remarkably simple fo
for the components ofF:
al

t
a
he
d,

S Fz~r ,r !

Fr~r ,t !
Fu~r ,t !

D 522qq0 (
l 52`

`

(
n51

`
ez,n~r 0!

Cn

3S ez,n~r !gz,n
0 ~s!coslu

1

kn

dez,n

dr
g',n

0 ~s!coslu

2
1

kn

l

r
ez,n~r !g',n

0 ~s!sin lu
D .

~2.35!

It is important to point out that Eq.~2.35! satisfies the
Panofsky-Wenzel theorem@8#, in that it is consistent with the
relation

¹'Fz5
]

]z
F' . ~2.36!

Furthermore, one can immediately verify that the force giv
by Eq. ~2.35! can be written as the gradient of a scalar fun
tion w, namely,

F52q¹w, ~2.37!

wherew may be thought of as a pseudopotential defined

w~r ,t !52q0 (
l 52`

`

(
n51

`
ez,n~r 0!ez,n~r !

knCn
g',n

0 ~s!coslu.

~2.38!

This form can prove useful in exploring stability of th
beam.

The drag force on a drive bunch can be calculated
considering the bunch to have a finite length of uniform li
charge density, calculating the forces acting on each par
the bunch using Eq.~2.35!, and then taking the limit as the
bunch length goes to zero. Since the wakefields can exe
force only on those charge elements behind it, one obta
the drag force as

Fz,drag5
1

2
Fz~r ,t !U r→r 0

u→0
s→02

52q0
2 (

l 52`

`

(
n51

` ez,n
2 ~r 0!

Cn
.

~2.39!

The transverse components of the force of a point cha
bunch upon itself vanish sinceg',n

0 (s50)50. The factor of
1
2 appearing in Eq.~2.39! is often referred to as arising from
the fundamental theorem of beam loading, or Wilson’s theo-
rem @9#. This theorem can be proven for a general distrib
tion of charge in the bunch, as long as the bunch is narrow
s. This follows from a consideration of the integral:

E
2`

`

ds f~s!E
2`

`

ds0f ~s0!gz,n
0 ~s2s0!us,s0→02

5E
2`

`

ds f~s!E
2`

`

ds0f ~s0!Q~s02s!5
1

2
.

~2.40!
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The force terms given by Eq.~2.35! exhibit useful scaling
forms in the limit asg→`. Both the drive chargeq0 and the
test chargeq are moving in the vacuum channelr ,R1 where
ez,n(r )5I l(x)/I l(x1)→(r /R1) l , where x[uk',n

(1) ur . As g
→`, x→knr /g→0, so that the components of the force c
be written

S Fz~r ,t !
Fr~r ,t !
Fu~r ,t !

D 522qq0 (
l 52`

`

(
n51

`
1

Cn
S r 0

R1
D l

3S S r

R1
D l

coslugz,n
0 ~s!

l S r

R1
D l 21

coslu g',n
0 ~s!

2 l S r

R1
D l 21

sin lug',n
0 ~s!

D .

~2.41!

Close examination of Eq.~2.41! reveals that the forces enjo
no inverse-g scaling that might provide a qualitative adva
tage in stability, as compared with that for a conventiona
linac structure.

The monopole (l 50) and dipole (l 561) components
are of greatest interest in determining stability. The only s
nificant monopole component is

Fzu l 50522qq0(
n51

`
1

Cn
cosknsQ~2s!, ~2.42!

which is independent ofg, r 0 , and r. The monopole radia
forceFr u l 50 is zero to orderg21; the lowest order contribu
tion is of order g22, as a result of the near cancellatio
between electric and magnetic forces. The monopole
muthal forceFuu l 50 is identically zero to all orders, by sym
metry.

The dipole force is the most serious deflecting force t
arises from slight displacements of the bunch off axis,
account of the (r 0 /R1) l factor in Eq.~2.41!. Knowledge of
the dipole force is essential in analyzing the stability of bo
the drive bunch or bunches, and the test bunch. The long
dinal component of the dipole force is given by

Fz~x,y,s!u l 51524qq0

r 0

R1

x

R1
(
n51

`
1

Cn
cosknsQ~2s!,

~2.43!

since the displacementr 0 is taken to be in thex direction.
~The coordinatesx and y are not to be confused with th
argumentsx and y introduced after Eq.~2.4! in connection
with the dispersion relation.! A factor of 2 in Eq. ~2.43!
comes from summing contributions from thel 561 terms.
The dipole portion of the axial force is seen to be eith
decelerating or accelerating, depending upon the sign ox.
Such an effect can contribute to energy spread within
bunch. The transverse components of the dipole force
given by
f

-

i-

t
n

u-

r

e
re

Fx~x,y,s!u l 51524qq0

r 0

R1
(
n51

`
1

Cn

sinkns

knR1
Q~2s!,

and Fy~x,y,s!u l 5150. ~2.44!

One notes that the transverse dipole force is proportiona
r 0 , the displacement of the drive bunch off axis. Furth
more, the dipole force is zero in the direction normal to t
direction of the displacement; it is independent of the po
tion of the test charge, and is independent ofg.

F. Radiative power flow

Power radiated from a charge bunch moving along
waveguide leads to a loss of bunch energy, and is equiva
to application of an effective ‘‘drag force’’ on the bunch
This drag force can also be computed directly from t
wakefields within the bunch, as is shown in Sec. II E. In th
section energy loss due to radiation power flow is calculat
and the drag force derived from it is shown to equal th
found in Eq.~2.39!. When a train of bunches moves alon
the waveguide, this drag force acts in addition to forces fr
the wakefields from preceding bunches. Furthermore, the
diation generated by the bunch can, in principle, be coup
out of the waveguide and used, for example, as a sourc
radiation for spectroscopy, or for beam diagnostics, si
knowledge of the spectrum of radiated power can be use
infer the bunch size. For all these reasons it is necessar
develop a theory for the radiative power flow, i.e., for t
power that propagates away from the immediate vicinity
the moving bunch. As will be shown, this quantity cannot
computed from knowledge of the Poynting vector alone.

For a stationary source, radiation power flow pass
through any cross section at a point along a waveguide
be calculated using the Poynting vectorSz , e.g.,

Pz5E
0

2p

du(
i 51

N E
Ri 21

Ri
dr rSz , ~2.45!

with

Sz5
c

4p
~ErHu2EuHr !.

But for the case of a wakefield generated by a discr
bunch or bunches moving along the waveguide, we cla
that not all the power flow embodied in Eq.~2.45! is a ra-
diation power flow. This can be appreciated by consider
four problems that attach to Eq.~2.45!, should one interpret
it as radiation power flow.~i! Pz , as calculated from Eq
~2.45!, is not a uniform function ofz, but exhibits sharp
s-dependent peaks and valleys, as shown in computed re
given in Sec. III~Fig. 8!. The customary procedure of tim
averaging over a period of the radiation, as applied fo
stationary source, cannot be applied here because the in
ent symmetry with respect tos5z2vt does not have a natu
ral time period. Moreover, since the dielectric-lined wav
guide structure and the drag force on the bunch are unif
along z, it is difficult to understand a radiation flow that i
not also uniform ins. ~ii ! Pz , as calculated from Eq.~2.45!,
using Eq.~2.24! for the fields, cannot be written as a series
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terms that are decoupled eigenmode by eigenmode: c
terms will enter. The physical nature of these cross term
difficult to understand.~iii ! Pz , as calculated from Eq
~2.45!, is not equal to the work done by the drag force on
bunch, as given by Eq.~2.39!. ~iv! Pz , as calculated from
Eq. ~2.45!, is a positive quantity: the radiation would flow i
the same direction as the bunch. But since the fields ca
overtake the bunch, this supposed radiation never ‘‘g
away.’’

The origin of these problems can be traced to the na
of the wakefield source, which is manifestly convectiv
rather than stationary. As a drive bunch moves along,
Coulomb field attached to it also moves along; the Poynt
flux associated with this Coulomb field appears as a po
flow in Eq. ~2.45! when in fact it is not radiation at all. This
convected Coulomb field energy must be subtracted fromPz
in order to find the true radiation power flow.

To compute true radiation power flow, we invoke th
Poynting theorem as applied to a fixed volumeV that at the
moment of scrutiny surrounds the moving charge bunch
depicted in Fig. 2:

E
V
dVS ]U

]t
1“•SD5E

V
dV~2J•E!5W, ~2.46!

where U5(1/8p)(«E•E1mH•H) is the electromagnetic
energy density,S5(c/4p)E3H is the Poynting vector,J is
the current density, andW is the work done by charge within
the volumeV. What is significant in the wakefield problem
is that U and S are functions ofs5z2vt, so that one can
write Eq. ~2.46! in the form

E
V
dVF ]

]z
~Sz2vU !1“'•S'G

5E
A1A8

dAz~Sz2vU !1E
A9

dA'•S'5W.

~2.47!

If one chooses the areaA9 to be just outside the perfectl
conducting outer waveguide wall, and choosesA8 to be in
front of the bunch, fields are zero on these areas, and
~2.47! reduces to an energy balance equation

E
A
dAz~Sz2vU !5W. ~2.48!

Thus, in the case of wakefields, a modified Poynting vec
S̄z[Sz2vU emerges naturally for calculating the true rad
tion power flowP̄z , according to

P̄z[E
0

2p

du(
i 51

N E
Ri 21

Ri
dr rS̄z . ~2.49!

It is also seen that no quantity akin to a group velocity can
introduced to relate energy flow and Poynting flux, as h
been recently suggested@7#; in any case each waveguid
mode has its own group velocity, and no global definiti
exists for this quantity in multimode power flow.
ss
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It can be explicitly demonstrated that the radiation pow
flow as given by Eq.~2.49! overcomes all four difficulties
mentioned above. In Appendix B, where somewhat involv
algebraic manipulations are carried out, it is shown that
~2.49! can be reduced to

P̄z5E
0

2p

du(
i 51

N E
Ri 21

Ri
dr r ~« im ib

221!Sz . ~2.50!

Invoking the orthonormalization relation@Eq. ~2.11!# allows
Eq. ~2.50! to be cast into the remarkably simple form

P̄z52cq0
2b (

l 52`

`

(
n51

` ez,n
2 ~r 0!

Cn
Q~2s![2 (

l 52`

`

(
n51

`

Pln ,

~2.51!

where Cn is given by Eq.~2.11a!, and Pln is the power
radiated into the HEMln mode. Note the minus sign in Eq
~2.51!: radiation power flows in a directionoppositeto that
of the bunch.

As claimed, the radiation power flow given by Eq.~2.51!
is indeed in a form where contributions are decoupled m
by mode; this property is not enjoyed by eitherU or Pz .
Radiation power is a function independent ofs ~behind the
bunch!, and thus free of peaks and valleys even though
average over eitherz or t was performed. So, as expected, t
quantityP̄z is naturally uniform behind the bunch, consiste
with the uniform nature of the waveguide structure wher
the radiation is propagating. Finally, if one compares E
~2.51! and Eq.~2.39!, it is evident that

P̄z5vFz,drag, ~2.52!

as indeed it must if the theory is to be internally consiste
Clearly, sinceFz,drag is naturally uniform, and soP̄z must
also be.

G. Finite bunch length effects

We now consider effects associated with the finite len
of a charge bunch. As pointed out in Sec. II C, the on
formal change in the theory to allow for this extension fro
a point charge source is a modification of theg functions
according to the prescription given in Eq.~2.25!. To simplify
the discussion that follows, a rectangular charge distribut
is selected, with a distribution functionf (s)5D21 if 2D/2
<s<D/2, andf (s)50 otherwise. The integral in Eq.~2.25!
is straightforward, yielding

S gz,n~s!

g',n~s! D5
1

knD
S sinkns8
coskns8 DQ~s8!Us852s1D/2

s852s2D/2.

~2.53!

This expression can be evaluated in front of the beam, wit
the beam, and behind the beam, by taking into account
properties of the Heaviside function. In front of the beams
.D/2, and one finds

S gz,n~s!

g',n~s! D50. ~2.54!

Within the beamD/2.s.2D/2, and one finds
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S gz,n~s!

g',n~s! D5
1

knD S sinknS 2s1
D

2 D
cosknS 2s1

D

2 D21
D . ~2.55!

Finally, behind the beams,2D/2, and one finds

S gz,n~s!

g',n~s! D5an~D!S gz,n
0 ~s!

g',n
0 ~s! D , ~2.56!

where

an~D![
sin~knD/2!

~knD/2!
. ~2.57!

Equation ~2.54! indicates that, as expected, no fields a
found ahead of the bunch. Equation~2.55! indicates that the
longitudinal and transverse fields are oscillatory within t
bunch, but in a conjugate relationship; this feature is resp
sible for the so-called head-to-tail instability of a char
bunch, in which wakefields can lead to destructive shear
placements along the bunch. Equation~2.56! indicates that
the fields for a finite rectangular bunch are the same as th
for a point bunch, except for the form factoran(D). This
factor has the effect of reducing the mode amplitudes 1Cn
for a point charge bunch toan /Cn for the distributed bunch
From the familiar properties ofan(D), it is seen that higher-
order modes for whichknD.p are reduced in amplitude
Those are modes with half-wavelengths less than the bu
length. This demonstrates the rather obvious point that e
tation of short wavelength higher-order wakefield modes
quires short drive bunches.

III. EXAMPLES

The analytic solutions obtained in previous sections
this paper using the method of eigenmode expansion h
revealed a number of important features of wakefields
dielectric-lined waveguides that could not easily be revea
through other theoretical formulations. The compact a
relatively transparent analytic solutions@e.g., Eqs.~2.24! and
~2.35!# also permit numerical evaluations to be obtain
speedily and reliably, since singularities that are endemi
wakefields have been dealt with analytically, therefore ob
ating the need for delicate numerical integrations. In t
section, results of numerical evaluations will be shown a
discussed, and several unusual basic physics points as
ated with wakefields will be elucidated.

In order to generate a sharp wakefield, the drive bu
must excite many high-order waveguide modes. The sh
ness of the wake most critically depends on the bunch len
This fact can be seen from plots of the computed pow
spectrum as shown in Fig. 3. The parameters for this
ample areR150.05 cm,R250.50 cm,«59.5, q052 nC, g
561, Dz50.02 cm, andr 050. These parameters lead to
wakefield period of 2.63 cm, which is compatible with o
eration using anX-band rf linac to generate a bunch tra
synchronous with the wakefields. These parameters are
hered to in the balance of this paper, unless otherwise no
Only TM0n waveguide modes are excited in this case, si
r 050. Figure 3~a! showsPn , the power lost by the bunch t
n-
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radiation, as apportioned among the TM0n waveguide
modes, plotted versusn. The quantityPn is Pln as given by
Eq. ~2.51! with l 50, since contributions withlÞ0 vanish in
this case. As the bunch lengthDz grows, higher-order mode
are less strongly excited, and the wake will smear
quickly. At the same time, the total lost and radiated pow
drop rapidly together with a diminution in drag force. Low
drag is an indication of lower acceleration gradient. A me
sure of the total power lost to drag forces and radiated
given by Pt5(n851

n Pn8 . This quantity, and its dependenc
upon bunch length, is shown in Fig. 3~b!, also plotted versus
n. It is seen that as the bunch length decreases, an increa
number of modes must be included in the calculation in
der to account for all the lost and radiated power.

Mode dispersion is also a significant factor in determini
the nature of wakefields. Dispersion influences such fac
as peak amplitude of the fields, and spreading of the peak

FIG. 3. Power lost by the beam to wakefields as a function
mode numbern, for several values of the beam lengthDz; ~a! mode
spectrum, showing the powerPn lost into each moden; and ~b!
total integrated lost power in all modes up to and including thenth.
As Dz is increased, the higher mode contributions diminish rapi
and the total lost power decreases. These results show that is
portant to use a short bunch to generate strong wakefields.
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increasing distances behind the bunch. Furthermore, stud
stability properties of a bunch requires knowledge of
relative strength of mode amplitudes, and the relative lo
tions of the field peaks for modes with differentl values.
Typically, for a dielectric loaded waveguide, the dispers
line for each mode plotted in thev-k plane has a hyperbolic
shape whenk is small, but bends over to become a straig
line of slopec/A« when k is large. This leads to a nearl
uniform spacing of modes in the TE and TM like families f
large k. The TE-like modes have odd-n values, while the
TM-like modes have even-n values. Results of computation
to determine the eigenfrequencies are shown in Fig. 4,
monopole modes@ l 50, Fig. 4~a!#, dipole modes@ l 51, Fig.
4~b!#, and quadrupole modes@ l 52, Fig. 4~c!#. Parameters
are as for the results shown in Fig. 3. The figures sh
frequency differences between adjacent modes of the s

FIG. 4. Frequency separation between adjacent modes as a
tion of mode interval number for~a! monopole (l 50), ~b! dipole
( l 51), and~c! quadrupole (l 52) modes. The dots represent th
frequency separations between~TE-like! odd-n modes, while the
pluses represent frequency separations between~TM-like! even-n
modes. It can easily be shown that all mode separations approa
universal asymptotic frequency separationDv5pc/ b(R2

2R1)A«21c, in the limit of large n; for this example,Dv/2p
511.433 GHz. This near equality of frequency separations is
sponsible for creating localized wakefields with differentl values at
the samez locations, as shown in Fig. 7. Therefore, it is not possi
to separate the accelerating monopole field from the transv
components of the dipole field that can lead to instability. Disp
sion in the modes with lowern values leads to a smearing of th
wake as the distance behind the bunch increases.
of
e
-

t

r

w
me

type, plotted as a function of like-mode interval number. T
figures are qualitatively similar to one another, show sign
cant dispersion for low mode interval numbers, but sh
negligible dispersion at high mode interval numbers. A
mode intervals asymptotically approach the limiting val
D f 5c/@2(R22R1)A«2b22#511.433 GHz for the param
eters chosen, but the rate of approach to this asympto
gentler for higherl. The mode dispersion at low mode inte
val numbers leads to spreading of the wakefield peaks
distance behind the bunch increases. However, since
3~a! shows that short bunches excite lower-n modes more
weakly than intermediate-n modes, spreading is minimize
for wakefields excited by short bunches. The near equality
mode intervals for monopole, dipole, and quadrupole mo
indicates that transverse fields are not displaced away f
the bunch location to mitigate against destabilization, as p
viously speculated@10#.

In Fig. 5, computed wakefields and surface charges
shown. For this example, a 2-nC, 30.7-MeV (g561) charge
bunch with lengthDz50.05 cm is moving uniformly along
the axis in dielectric loaded waveguide. The waveguide ha
vacuum hole of radiusR150.2 cm, a conducting boundar
radius R250.5 cm, and a dielectric constant«53.0. The
bunch is located atz53.5 cm, and is moving toward th
right. For this example, parameters were chosen to allow

nc-

h a

-

se
-

FIG. 5. An example to show the structure of wakefields in
dielectric waveguide:~a! the electric flux lines;~b! the lineal surface
charge density induced on the wall of the conductor; and~c! the
accelerating gradientEz on the axis. Note that the flux appears
emerge uniformly out of a disk located at the beam position,
though the beam is assumed to be a charged rod of lengthDz
50.05 cm with infinitesimal radius. The electric flux lines are be
at the dielectric boundary (R150.2 cm), and terminate at the con
ducting wall charge (R250.5 cm). Note that excess charge is i
duced on the wall, and acts as a source of the trailing wakefi
The dielectric constant is intentionally chosen to be low («53.0) to
show the structure of the wake lines more clearly than for the c
of a higher dielectric constant, as in Fig. 6.
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crowded wakefield pattern to be easier to discern, in cont
to cases with more highly localized wakefield features. F
ure 5~a! shows the pattern of electric flux lines of th
wakefields. The coordinates of the flux lines@r (z)5const#
were obtained by numerically solving the differential equ
tion dr/dz5Er /Ez , where the fieldsEr andEz are given by
Eq. ~2.24!. One unusual feature is that the source of fl
appears to be distributed radially over a disk of radiusR1 at
the location of the bunch, even though the bunch actually
a vanishing radial extent. The field~for s,0) is similar to
that for a charged disk filling the vacuum hole. The dens
of flux lines is normalized such that the 2-nC bunch gen
ates ten flux lines. The electric flux lines are refracted at
vacuum-dielectric boundary, and some of them are ter
nated by polarization charge. But for the sake of visuali
tion, the plot shows the same number of the flux lines c
tinuing into the dielectric layer. The flux lines are reflected
the conducting boundary and the trailing pattern of the w
continues.

At the wall, surface charge is induced as shown in F
5~b!. The lineal charge densityS(z) is related to the electric
flux density Fw(z) on the wall through Gauss’s law a
Fw(z)52pR2Er(r 5R2 ,z)54pS(z)/«. It can be seen tha
excess surface charge is induced on the wall, as is nece
to act as the source of the trailing wakefield. By integrat
the surface charge from the bunch back toz52.9 cm, a net
positive surface charge of 5.5 nC is found; this is 2.75 tim
that of the drive bunch charge~with opposite sign!. This
feature is another peculiar feature of Cerenkov radiation
bounded system. Outside the Cerenkov regime, the tota
duced wall charge is equal to the source charge~with oppo-
site sign!, and there is no trailing wakefield formed.

The electric field on the axisEz(0,z), as plotted in Fig.
5~c!, exhibits localized peaks with alternating signs. It is e
dent that the leading edge of the axial field at the drive bu
nearz53.5 cm is slightly bent, a consequence of finite bun
length. The field contributions arising from different el
ments of the bunch superimpose to give this bend, and
peak value is comparable to the second peak. If the d
bunch were a point charge, the leading edge of the first p
would go its maximum immediately, and its height would
roughly half that of the first negative peak. This factor o1

2

would be consistent with Wilson’s theorem@9#; but here it is
seen that the conditions for validity of the theorem are v
lated for finite bunch length, even thoughDz50.05 cm is
clearly smaller than any other dimension of the system. M
tiple drive bunches can be used to enhance the acceler
field by carefully choosing their spacing to coincide with t
positive peaks, and acceleration of a test bunch occur
locations of negative peaks@3#. Discussion of wakefields
from multiple drive bunches are beyond the scope of t
paper.

In Fig. 6, a wakefield flux pattern is depicted for para
eters that are optimized for high acceleration gradient. H
R150.05 cm, R250.15 cm, «59.5, q052 nC, g561, and
Dz50.02 cm. In this case, it is seen that the wake is mu
sharper than that shown in Fig. 5~a!. The Cerenkov cone is
clearly in evidence. It can be easily verified that the co
angle is essentially that for Cerenkov radiation in an u
bounded medium, i.e., cos21(1/b«)'84°. The peak acceler
ating field on axis atz51.85 cm in this case is 155 MeV/m
st
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In Fig. 7, the forces acting on a test bunch of unit cha
trailing a 2-nC drive bunch are shown, as a function of t
distance behind the drive bunch. The parameters of
waveguide and the drive bunch are chosen identical to th
as in Fig. 3, except that the drive bunch is now movi
parallel to but displaced from the axis byr 050.010 cm in the
x direction. This radial displacement produces azimutha
asymmetric modes (lÞ0), in addition to the symmetric one
( l 50). Figures 7~b! and 7~d! show the longitudinal and
transverse fields near the drive bunch, whose axial exten
indicated by the filled rectangle; while Figs. 7~a! and 7~c!
show the fields near the location for a test bunch, indica
by the open rectangle. The longitudinal forceFz , as shown
in Figs. 7~a! and 7~b!, acts either to accelerate or decelera
elements of the test bunch, depending on its sign. The tr
verse forcesFx , as shown in Figs. 7~c! and 7~d!, is respon-
sible for the stability of the test charge. It is assumed that
test charge is also displaced in thex direction by 0.01 cm.
Since the dipole force is the main component of conc
regarding the stability, and since it is uniform over the cro
section of the vacuum hole, the test particle is always ac
erated radially in the same direction as the displacemen
the drive bunch. For ease of comparison, the plots in F
7~a!–7~d! show the dipole force multiplied by a factor of 10
and the quadrupole force multiplied by a factor of 100. Fro
Fig. 7~a! it is apparent that the drag force on each part of
bunch is different, and thus different segments of a bun
with finite length will lose different amounts of energy. If th
beam were a point charge, the average drag force would
half of the accelerating force shown in Fig. 7~a!, a limiting
circumstance that is the basis of Wilson’s theorem@9#. But in
the example shown here the beam length is finite, and
drag force builds up to more than half the accelerating for
It is also apparent from Figs. 7~c! and 7~d! that both the
accelerating bunch and the drive bunch are in regions wh
the transverse force varies rapidly. As a result, a finite len
beam will tend to distort into a banana shape. This unavo
able feature is intrinsic to wakefields, as a consequenc
the Panofsky-Wenzel theorem@8#.

A comparison, near the location of a test bunch, betw
the transverse force shown in Fig. 7~c! with the longitudinal
force shown in Fig. 7~a!, reveals their ratio to be about 1/10
Considering the small radius of the waveguide and the
that the dipole force increases in proportion to the deviat
from the axis, it is clear one must either keep the drive be

FIG. 6. Wakefield flux lines for a more realistic case than tha
Fig. 5. Here R150.05 cm, R250.15 cm, «59.5, and Dz
50.02 cm. Note that the wake is much sharper than the case sh
in Fig. 5, and clearly illustrates the qualitative notion that the ou
conducting boundary serves to periodically reflect the Ceren
cone back toward the axis. The cone angle closely agrees with
customary value cos21 (1/«b) for Cerenkov radiation in an un
bounded system.
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FIG. 7. Forces on a test particle with unit charge following a 2 nC,Dz50.02 cm drive bunch for monopole, dipole, and quadrupole fie
These fields are generated by the drive bunch moving parallel to the axis, but displaced in thex direction by an incrementr 050.01 cm, in
a waveguide withR150.05 cm,R250.50 cm, and«59.5. For the sake of clarity, the dipole force (l 51) is multiplied by factor of 10, and
the quadrupole force (l 52) is multiplied by a factor of 100.~a! Longitudinal forces near the first accelerating peak, where the locatio
a would-be accelerating bunch is indicated by the open box at the peak of the main accelerating force. Note that the dominant co
to the accelerating gradient is from thel 50 component.~b! Longitudinal forces near the drive bunch.~c! Transverse forces near the fir
accelerating peak. Note that different parts of the would-be accelerating test bunch will experience quite different transverse force
to a head-to-tail instability that will result in a banana-shaped bunch.~d! Transverse forces near the drive bunch. Again, head-to
instability is evident.
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test
close to the axis, or keep the dielectric waveguide sh
Therefore, it appears necessary to employ strong focusin
minimize deviations of the beam from the axis, and/or
evolve a scheme with short waveguide modules having h
wakefield gradients. Further discussion on bunch stabi
focusing and use of short~cavity! dielectric resonator accel
erating modules is beyond the scope of this paper.

Figure 8 illustrates important issues in regard to the d
tinction in the wakefield context between radiation pow
and mere convection energy of the Coulomb fields. Th
issues are intrinsic for any convecting system, such as in
case of wakefields from a charge bunch. Figure 8~a! shows
the usual power flowPz calculated using the customar
Poynting vector; this quantity is seen to be nonuniform, w
distinct peaks where the wakefield is peaked on axis. N
also that these peaks also coincide with either the locatio
the drive beam or the peaks of the induced wall charge at
boundary of the dielectric. These locations are where one
also expect strong Coulomb fields. In Fig. 8~b!, the con-
vected energyvU is shown; this quantity includes both th
radiation energy and the convecting Coulomb energy. It a
shows distinct peaks similar to those in Fig. 8~a!. Figure 8~c!
shows the difference between Figs. 8~a! and 8~b!, namely,
Pz2vU, which was identified as the true radiation fieldPrad
in Sec. II. It is clear that all the peaks are essentially c
t.
to

h
,

-
r
e

he

te
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e

an

o

-

celed, thereby resulting in a uniform flow of radiation. No
also that the sign ofPrad is negative, indicating that the ra
diation power flow is opposite to the directions of the bun
motion, ofPz and ofvU. To our knowledge, this fundamen
tal distinction has not been previously noted.

IV. DISCUSSION

In this paper, a derivation is presented for the gene
analytic solution using the method of eigenfunction expa
sion for wakefields induced by a charge bunch moving p
allel to the axis of a cylindrical dielectric-lined channe
Wakefields, equivalent to Cerenkov radiation in a bound
system, are electromagnetic shock waves similar to M
waves in acoustic systems: they contain a singularity at
wake front. Because of this singularity, and the fact that
fields of greatest interest are highly concentrated in a nar
region, a purely numerical approach to solve Maxwel
equations with a moving source is computationally intens
and susceptible to error. An analytic solution, on the ot
hand, allows straightforward checks of the accuracy to
carried out, such as consistency with Gauss’s law. A wa
field solution in terms of orthonormal eigenfunctions al
leads to intuitively satisfying and remarkably compact e
pressions for the forces experienced by drive and
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PRE 62 1279THEORY OF WAKEFIELDS IN A DIELECTRIC-LINED . . .
bunches, and for the power radiated by a drive bunch. A
lytical consistency of the solution with the Panofsky-Wen
theorem@8# and with Wilson’s theorem@9# is also straight-
forward to establish.

There have been attempts to solve for wakefields i
dielectric waveguide by the method of direct integration
the Green’s function@4,5#. In this approach, an analytic ex
pression for the fields can be obtained in terms of a sum
residues over an infinite number of poles, each correspo
ing to an eigenmode. However, this kind of solution is use
only when the system is not bounded or when only a f
modes are adequate, because the residues must each be
by numerically differentiating the dispersion relation at ea
pole. As seen in Sec. III, over 100 modes can be require
describe accurately a relatively sharp wakefield. Althou
the prescription for evaluating the residues at the pole
given, no explicit form is available. Thus this type of sol
tion can be cumbersome to use for obtaining numerical
sults, does not shed light on the physical nature of the wa
field, and does not lead naturally to the consistency che
mentioned above.

In order to apply the method of eigenfunction expansi
it is essential to have an orthonormality relation to solve
mode amplitudes. For a cylindrical waveguide loaded w
concentric dielectric layers, it seems that no such gen
relation had until now appeared in the literature, except
azimuthally symmetric modes@11#. Due to the nature of a
structure with multiply connected regions, the available

FIG. 8. Three different types of energy flow associated w
wakefields of a moving source.~a! Power flow Pz , as calculated
from the Poynting vector. Note that this power flow is not unifor
but is highly peaked, particularly near the peaks of the wakefield
the axis. This power flow includes a contribution from the elect
static Coulomb field energy affixed to the charge.~b! Convecting
energy flowvU. ~c! The differencePz2vU, representing the true
radiated powerPrad. Note that the magnitude ofPrad is uniform in
z, and that its sign is negative, indicating that it flows backwar
i.e., receding away from the moving source.
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gument to prove orthonormality@12# does not apply. In this
paper a generalized orthonormality relation is derived for
first time, to our knowledge, both for a stationary source a
for a convected source such as a charge bunch moving a
a dielectric-loaded waveguide. Since the orthogonality re
tion is in an explicit form, it is straightforward to calculat
numerical values for the fields, and also to clarify many
lated physical issues, as shown in Sec. II.

Another point discussed in this paper stems from the f
that a uniformly moving charge bunch in a dielectric-line
waveguide is a convecting system, rather than a station
system such as a linear microwave tube. This fact requ
care in deriving an appropriate orthogonality relation,
mentioned above and shown in Sec. II B. Another feat
peculiar to a convecting system is in regard to radia
power. In Sec. II F and as shown in Fig. 8, it is erroneous
a convecting system to interpret the Poynting vector as
diation power. In a convecting system, Coulomb field ene
appears as a power flow that contributes to the Poyn
vector. Therefore, as is shown in this paper, for the first ti
to our knowledge, one must subtract this contribution fro
the Poynting vector to obtain the true radiation power. W
have shown that the radiation power is uniform behind
bunch, and is flowing backward away from the source;
deed, causality prevents radiation from flowing forward.
has also been shown in this paper that the radiation powe
equal, as it must be, to the work done by the self-drag fo
which, for a point charge, is consistent with Wilson’s the
rem @9#. Furthermore, we have shown that this radiati
power flow can be decoupled into individual wavegui
modes, while the Poynting vector cannot. The final analyti
expression for the radiated power@Eq. ~2.51!# is a remark-
ably simple form.

The condition for nonvanishing of the radiation pow
Prad coincides with the condition for generation of Cerenk
radiation, namely,b2«.1. When this condition is met, the
solution of the wave equation goes to a shock wave solut
The transition into the Cerenkov regime introduces seve
interesting features that are fundamentally different from
dinary wave solutions.~i! The wake possesses a sharp d
continuous front, such that the field vanishes ahead of it.~ii !
This feature is the result of the causality condition, which
imposed for evaluation of a contour integral by requiri
both poles to lie in the lower-half plane of the complexk
plane, as shown in Fig. 1.~iii ! The wake front in the dielec-
tric region is bent backward at the Cerenkov ang
cos21(1/«b), as shown in Figs. 5 and 6.~iv! Excess wall
charge is induced on the conducting boundary, which act
the source of the trailing wake, as shown in Fig. 5.

Analysis of the power spectrum in a wakefield shows t
it is necessary to use a short bunch in order to produc
sharp wake. A sharper wake implies less dispersion, an
higher accelerating gradient. A less dispersive wake is c
cial for applications using multiple drive bunches, either in
waveguide or a cavity configuration. From the examp
shown in Sec. III, it would not appear to be unreasonable
design and build a wakefield accelerator with an accelera
gradient of 150 MeV/m or more.

Of course, the usefulness of the wakefields to prov
high gradient acceleration depends critically on the stabi
of the drive and test bunches. The solution obtained in

n
-
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paper provides the means to calculate transverse and lo
tudinal forces on an nonaxisymmetric bunch. The analy
form of the solution presented allows a remarkably sim
form of the force to be obtained, which checks with t
Panofsky-Wenzel theorem. The consequence of this theo
is that one cannot separate stability problem from achie
ment of a high accelerating gradient, a condition that prev
in any accelerating structure. It is also shown that the fo
vector can be derived as the gradient of a pseudopoten
The accelerating gradient depends sensitively on the vac
hole size. However, use of a small hole exacerbates the
bility issue, since any but very small deviations from a
symmetry are intolerable. It has also been shown that pe
of the dipole fields overlap peaks of the longitudinal fie
This requires that a compromise be reached betw
achievement of a high accelerating gradient and achievem
of bunch stability. Of course, the transverse forces van
when the drive bunch moves to the waveguide axis,
therefore it is critically important to study stability with a
external focusing force, such as can be provided by qua
pole magnets. Our analytic solution presented in this pa
will provide an essential tool for such a study.

Future steps to be undertaken in the quest to unders
and employ wakefields for acceleration include use of a m
tibunch drive train, use of a short dielectric resonator, a
use of external beam focusing to provide stability.
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APPENDIX A: GENERALIZED ORTHONORMALITY
RELATION

Consider the following overlap integral between rad
eigenfunctions for two different modes:

Cmn
~ i ! 5E

Ri 21

Ri
dr r @er ,m~r !hu,n~r !1eu,m~r !hr ,n~r !#,

~A1!

where the modes have transverse wave numbers

k',m
2 5« jm i

vm
2

c2 2km
2 and k',n

2 5« im i

vn
2

c2 2kn
2, ~A2!

and (vm ,km) and (vn ,kn) represent two arbitrary points tha
satisfy the dispersion relation Eq.~2.8!. Using Eq.~2.3!, one
can write Eq.~A1! as
gi-
c
e

m
e-
ls
e
al.
m

ta-

ks
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u-
er

nd
l-
d

.
y
is

of

l

Cmn
~ i ! 5

1

k',m
2 k',n

2 E
Ri 21

Ri
dr r H kmkn

l

r

d

dr
~ez,mhz,n!

1« im i

vm

c

vn

c

l

r

d

dr
~hz,mez,n!1km« i

vn

c S dez,m

dr

dez,n

dr

1
l 2

r 2 ez,mez,nD1knm i

vm

c S dhz,m

dr

dhz,n

dr

1
l 2

r 2 hz,mhz,nD J . ~A3!

The first two terms are already in the form of total deriv
tives. The first parts of the third and the fourth terms can
integrated by parts, and then the differential equation~2.2!
can be used to obtain

k'm
2 k'n

2 Cmn
~ i ! 5Fkmknlez,mhz,n1« im i

vm

c

vn

c
lhz,mez,n

1« ikm

vn

c
rez,m

dez,n

dr

1m ikn

vm

c
rhz,m

dhz,n

dr G
Ri 21

Ri

1« ikmk'n
2 vn

c E
Ri 21

Ri
dr rez,mez,n

1m iknk'm
2 vm

c E
Ri 21

Ri
dr rhz,mhz,n . ~A4!

The last two remaining integrals in Eq.~A4! are performed
as follows. Equation~2.2! is recast as

1

r

d

dr S r
dez,n

dr D1S k'n
2 2

l 2

r 2Dez,n50. ~A5!

For nÞm, one multiplies Eq.~A4! by ez,m , and subtracts a
similar equation withm andn interchanged. This yields

~k'm
2 2k'n

2 !E
Ri 21

Ri
dr rez,mez,n

5F rez,m

dez,n

dr
2rez,n

dez,m

dr G
Ri 21

Ri

, ~A6!

and, similarly,

~k'm
2 2k'n

2 !E
Ri 21

Ri
dr rhz,mhz,n

5F rhz,m

dhz,n

dr
2rhz,n

dhz,m

dr G
Ri 21

Ri

. ~A7!

Employing Eqs.~A6! and~A7!, rearranging, and making us
of Eq. ~2.3!, leads to



n
,

i

nt
f

e

nd

ity

or-

y
s in
-

of
-

-

PRE 62 1281THEORY OF WAKEFIELDS IN A DIELECTRIC-LINED . . .
~k'm
2 2k'n

2 !Cmn
~ i ! 5H r F S kmez,mhu,n1m i

vm

c
hz,mhr ,nD

2S kneu,mhz,n1« i

vn

c
ez,mer ,nD G J

Ri 21

Ri

.

~A8!

Equation~A8! is written in terms of quantities for which it is
convenient to apply boundary conditions, such as the co
nuity of (ez ,hz ,eu ,hu ,«er ,mhr) at a dielectric interface
and the vanishing of (ez ,hr ,eu) at the conducting wall. Ap-
plying these boundary conditions leads directly to

(
i 51

N

~k'm
2 2k'n

2 !Cmn
~ i ! 50 for nÞm. ~A9!

This is the generalized orthogonality relation. Forn5m, a
different procedure is required to carry out the integrals
Eq. ~A4!. One multiplies Eq.~A5! by r 2(dez,n /dr), and in-
tegrates by parts, to obtain

k'n
2 E

Ri 21

Ri
dr rez,n

2 5H r 2

2 F S dez,n

dr D 2

1S k'n
2 2

l 2

r 2Dez,n
2 G J

Ri 21

Ri

,

~A10!

and, similarly,

k'n
2 E

Ri 21

Ri
dr rhz,n

2 5H r 2

2 F S dhz,n

dr D 2

1S k'n
2 2

l 2

r 2Dhz,n
2 G J

Ri 21

Ri

.

~A11!

Substituting these into Eq.~A4!, one obtains

k'n
4 Cnn

~ i !5H S kn
21m i« i

vn
2

c2 D lez,nhz,n1« ikn

vn

c

3F rez,n

dez,n

dr
1

r 2

2
XS dez,n

dr D 2

1S k'n
2 2

l 2

r 2Dez,n
2 CG

1m ikn

vn

c F rhz,n

dhz,n

dr
1

r 2

2
XS dhz,n

dr D 2

1S k'n
2 2

l 2

r 2Dhz,n
2 CG J

Ri 21

Ri

, ~A12!

which can be used to calculate the normalization consta
Two particular cases are of interest, namely, that o

stationary source where it is legitimate to setvm5vn , and
that of a moving charge bunch as a source where it is n
essary to setvm5kmv. In the first instance, Eq.~A9! reduces
to

~km
2 2kn

2!(
i 51

N

Cmn
~ i ! 50 for mÞn, ~A13!

from which, sincekm
2 Þkn

2, the orthonormality relation for
stationary sources is found, namely,
ti-

n

.
a

c-

(
i 51

N

Cmn
~ i ! 5dmnCn8 , ~A14!

with Cnn
( i ) as given by Eq.~A12!.

When the source is moving with constant velocity a
exited modes satisfy the relationvm5kmv, as for Cerenkov
radiation in the dielectric-lined waveguide, orthogonal
takes a form different from Eq.~A13!. This follows since
(km

( i ))25km
2 (« im ib

221) is a quantity which varies from
layer to layer. Thus

~km
2 2kn

2!(
i 51

N

~« im ib
221!Cmn

~ i ! 50 for mÞn,

~A15!

sincekm
2 Þkn

2. Therefore, one obtains the relevant orthon
mality relation

(
i 51

N

~m i« ib
221!Cmn

~ i ! 5dmnCn , ~A16!

so that

Cn5(
i 51

N

~m i« ib
221!Cnn

~ i ! , ~A17!

with, as above,Cnn
( i ) given by Eq.~A12!. However, in this

case the form of Eq.~A12! can be simplified somewhat b
expressing the first terms in the second and third bracket
terms of hu,n and eu,n , and by invoking boundary condi
tions. As a result, the following form forCn is found.

Cn5(
i 51

N H r 2

2
« iF 1

k'n
2 S dez,n

dr D 2

1S 12
l 2

k'n
2 r 2Dez

2G
1m iF 1

k'n
2 S dhz,n

dr D 2

1S 12
l 2

k'n
2 r 2Dhz

2G J
Ri 21

Ri

.

~A18!

For finding the orthonormality relation in the case
wakefields whenvm5bckm , an alternative form can be de
rived that is less cumbersome to compute than is Eq.~A18!.
This form is found from Eq.~A4!, using the relations be
tween field components as given from Eq.~2.3!, namely

«
vn

c

dez,n

dr
5k',n

2 hu,n2kn

l

r
hz,n ,

~A19!

m
vn

c

dhz,n

dr
5k',n

2 eu,n2kn

l

r
ez,n ,

to obtain
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k',n
2 Cmn

~ i ! 5F rkmez,mhu,n1r
vm

vn
hz,mS kneu,n1

l

r
ez,nD G

Ri 21

Ri

1E
Ri 21

Ri
dr r S km

vn

c
« iez,mez,n

1kn

vm

c
m ihz,mhz,nD . ~A20!

The quantities in square brackets in Eq.~A20! vanish upon
summation over layers. Thus one obtains

(
i 51

N

k',m
2 Cmn

~ i ! 5(
i 51

N E
Ri 21

Ri
dr r

3S km

vn

c
« iez,mez,n1kn

vm

c
m ihz,mhz,nD .

~A21!

Now, for the wakefield case, one hask',m
2 5(« im ib

2

21)km
2 . Thus, employing Eqs.~A16! and~A20! leads to the

relatively simple alternative form for the orthogonality rel
tionship:

(
i 51

N E
Ri 21

Ri
dr r S km

vn

c
« iez,mez,n1kn

vm

c
m ihz,mhz,nD

5Cndmn . ~A22!

As stated in the text, it is this form that was used in Sec. I
to solve the wave equation with a source term.

APPENDIX B: POWER FLOW

In this appendix, we shall calculate the radiation pow
flow P̄z as defined by Eq.~2.49!. The algebra is lengthy bu
straightforward, and the result that emerges is surprisin
simple. Substituting the fields from Eq.~2.24! into Eq.
~2.49!, and carrying out the elementary integration overu,
yields

P̄z52cq0
2 (

l 52`

`

(
n,n851

`

(
i 51

N
ez,n~r 0!ez,n8~r !

CnCn8

3F C̄n,n8
~ i ! g',n

0 ~s!g',n8
0

~s!2
b

2
Fn,n8

~ i ! gz,n
0 ~s!gz,n8

0
~s!G ,

~B1!

where

C̄n8
~ i ![Cn,n8

~ i !
2

b

2
Vn,n8

~ i ! ,

Cn,n8
~ i ! [E

Ri 21

Ri
dr r @er ,n~r !hu,n8~r !1eu,n~r !hr ,n8~r !#,

Vn,n8
~ i ! [Ve;n,n8

~ i !
1Vh;n,n8

~ i ! ,

~B2!
Ve;n,n8

~ i ! [E
Ri 21

Ri
dr r« i@er ,n~r !er ,n8~r !1eu,n~r !eu,n8~r !#,

Vh;n,n8
~ i ! [E

Ri 21

Ri
dr rm i@hr ,n~r !hr ,n8~r !1hu,n~r !hu,n8~r !#,

Fn,n8
~ i ! [E

Ri 21

Ri
dr r @« iez,n~r !ez,n8~r !1m ihz,n~r !hz,n8~r !#.
r

ly

The first quantityCn,n8
( i ) was obtained in Eq.~A4! and, since

vn /c5knb, it can be written as

Cn,n8
~ i !

5
kn

k',n
2

kn8

k
',n8
2 H F l ~ez,nhz,n81« im ihz,nez,n8!

1br S « i

dez,n

dr
ez,n81m i

dhz,n

dr
hz,n8D G

Ri 21

Ri

1bk',n
2 Fn,n8

~ i ! J . ~B3!

Next we considerVe;n,n8
( i ) . The integration overr can be car-

ried as in Appendix A. Using Eq.~2.3!, this quantity can be
written

Ve;n,n8
~ i !

5« i

kn

k',n
2

kn8

k
',n8
2 E

Ri 21

Ri
dr r H m ib

l

r

d

dr
~ez,nhz,n8

1hz,nez,n8!1S dez,n

dr

dez,n8
dr

1
l 2

r 2 ez,nez,n8D
1m i

2b2S dhz,n

dr

dhz,n8
dr

1
l 2

r 2 hz,nhz,n8D J . ~B4!

The second and third terms in Eq.~B3! can be integrated by
parts, and Eq.~2.2! can be used to obtain

Ve;n,n8
~ i !

5« i

kn

k',n
2

kn8

k
',n8
2 H Fm ib l ~ez,nhz,n81hz,nez,n8!

1r
dez,n

dr
ez,n81m i

2b2r
dhz,n

dr
hz,n8G

Ri 21

Ri

1k',n
2 E

Ri 21

Ri
dr r ~ez,nez,n81m i

2b2hz,nhz,n8!J .

~B5!

ThenVh;n,n8
( i ) can be obtained from Eq.~B5! by interchanging

(« i↔m i) and (e↔h). Combining, we obtain

Vn,n8
~ i !

5
kn

k',n
2

kn8

k
',n8
2 H F2« im ib l ~ez,nhz,n81hz,nez,n8!

1~11« im ib
2!r S « i

dez,n

dr
ez,n81m i

dhz,n

dr
hz,n8D G

Ri 21

Ri

1k',n
2 ~11« im ib

2!Fn,n8
~ i ! J . ~B6!

Now, from Eqs.~B1! and ~B5! one obtains
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C̄n,n8
~ i !

5
kn

k',n
2

kn8

k
',n8
2

12« im i

2 H F2lez,nhz,n8

1br S dez,n

dr
ez,n81

dhz,n

dr
hz,n8D G

Ri 21

Ri

1k',n
2 bFn,n8

~ i ! J .

~B7!

The derivative terms may be eliminated using

« ib
dez,n

dr
5

k',n
2

kn
hu,n2

l

r
hz,n ,

m ib
dhz,n

dr
5

k',n
2

kn
eu,n2

l

r
ez,n ,

so that one finally obtains

C̄n,n8
~ i !

52
1

2kn8 H F r ~hu,nez,n81eu,nhz,n8!

1
knl

k',n
2 ~ez,nhz,n82hz,nez,n8!G

Ri 21

Ri

1knbFn,n8
~ i ! J .

~B8!

Applying the continuity conditions and vanishing at the co
ducting boundary on the fields, the first term in Eq.~B8!
vanishes upon summation over layers. As a consequence
~B1! becomes
i,

, J

,

-

-

Eq.

P̄z52cq0
2 (

l 52`

`

(
n,n851

`
ez,n~r 0!ez,n8~r 0!

CnCn8

3H FLn,n81
b

2

kn

kn8
(
i 51

N

Fn,n8
~ i ! Gg',n

0 ~s!g',n8
0

~s!

2
b

2 (
i 51

N

Fn,n8
~ i ! gz,n

0 ~s!gz,n8
0

~s!J , ~B9!

where

Ln,n85(
i 51

N
1

2kn8

kn

k',n
2 l ~ez,nhz,n82hz,nez,n8!U

Ri 21

Ri

,

with k',n
2 5(e im ib

221)kn
2. It can be seen thatLn,n8 is anti-

symmetric upon the interchange (n↔n8), but thatLn,n8 is
multiplied by quantities that are symmetric with respect
this interchange. Thus the first term in Eq.~B9! vanishes
upon summation overn and n8. If one now invokes the
orthonormalization relation@Eq. ~2.11!#, Eq. ~B9! then be-
comes simply

P̄z52vq0e (
l 52`

`

(
n51

` ez,n
2 ~r 0!

Cn
Q~2s!, ~B10!

sinceg',n
2 (s)1gz,n

2 (s)5U(2s). It should be noted that the
remarkably simple form of Eq.~B10! resulted even though
no average was taken over eitherz or t. Radiated powerP̄z is
‘‘naturally’’ independent ofz and t. This, of course, is as it
should be, since it results from the uniform drag on t
charge bunch and therefore must itself be uniform. The
nus sign in Eq.~B10! indicates that the radiated power flow
in a direction opposite to that of the charge bunch, since
convected Coulomb field energy exceeds the Poynting fl
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