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Collective beam-beam effects in hadron colliders
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Collective beam-beam effects in hadron colliders were studied with a strong-strong beam-beam simulation
on the CERN Large Hadron Collider, including multipole field errors in the lattice and beam-beam interactions
at two high-luminosity interaction points. It was found that the beam-beam interaction could result in two
distinct dynamics for hadron beams: a slow beam-size growth and an unstable beam-centroid oscillation. The
instability of the beam-centroid oscillation has typical characteristics of the chaotic transport, i.e., the ampli-
tude increase of the oscillation consists of slow escape from the remnants of invariant manifolds and fast
diffusion in fully developed chaotic regions. The simulation results indicate that there is a threshold of the
beam-beam parameter below which no unstable beam-centroid motion was observed. The escape rate of the
unstable beam-centroid motion, on the other hand, increases with the nonlinear field errors in the lattice. As the
slow beam-size growth is strongly enhanced by the beam-centroid oscillation, an elimination of the centroid
motion with feedback can effectively suppress the beam-size growth. No steady state of coherent beam-beam
oscillation was observed.

PACS numbds): 29.27~a, 29.20--c, 41.85-p

[. INTRODUCTION beam effect. Two different types of theoretical models have
been proposed for understanding the coherent beam-beam
In a colliding beam storage ring, the motion of particles ininstabilities in electron storage ring collidef38-5]. In the
one beam is perturbed at the collision points by the electrofirst type of model nonlinear maps for the moments of beams
magnetic field exerted by the counter-rotating beam. Thisre obtained by a truncation of a moment expansion for the
beam-beam interaction is one of the sources of the growth distribution functions, while in the second the type of model
the transverse beam size, and limits the luminosity of storagmstabilities of an equilibrium distribution of beams are ana-
rings. Since the evaluation of the beam-beam interaction rdyzed with the linearized Vlasov equation. In both models,
quires a knowledge of beam-particle distributions that, insteady states of the coherent oscillations were obtained. For a
turn, evolve under the perturbation of the beam-beam interhigh-energy electron beam, because of the radiation effect,
action, a complete understanding of beam-beam effects reéhe time required for a beam to reach equilibrium distribution
quires a solution of the nonlinear Vlasov equation. As anis much less than the storage time. Consequently, the study
exact formalism for a direct calculation of this time- of beam dynamics can be focused on the behavior of the
dependent nonlinear collective effect is not available, thelistribution near its steady states. Moreover, a fast damping
study of the beam-beam effects has mostly relied on particlef high-order fluctuations permits a truncation of the moment
tracking. Due to the difficulty of computing the particle dis- expansion at fairly low orders. On the other hand, self-
tribution during the tracking, the beam-beam effects are coneonsistent computer simulations of the beam-beam interac-
ventionally studied with the strong-weak approximation, intion (strong-strong beam-beam simulatiomave also been
which a few testing particles are tracked with a time-conducted for electron beams in a linear ring by using the
independent beam-beam force, usually with the assumptioparticle-in-cell methodi6—9]. Coherent beam-beam instabili-
of a Gaussian distribution for the beam-beam force. Al-ties were observed in the simulations, and the results agreed
though such a single-particle description has provided somegualitatively with the theoretical models.
useful insight into the nature of nonlinear resonances of the Contrary to electron storage ring colliders, much less
beam-beam effects, and has been a conventional method fprogress has been made toward an understanding of the col-
a routine check of the dynamic aperture of a colliding beaniective beam-beam effects in hadron colliders. This is mainly
storage ring, the validity of this strong-weak approximationdue to the different behavior of the particle distributions in
has not been well understood for two colliding beams ofelectron and hadron storage rings. For a high-energy hadron
similar emittance. Moreover, the strong-weak simulationsbeam, the damping time is usually larger than the storage
cannot provide an insight into the collective nature of thetime, so that the motion of beam particles is determined by
beam-beam effects that could be important to the limitatiorHamiltonian dynamics. In the presence of nonlinear pertur-
of the luminosity of a colliding beam storage rififj]. bations due to either beam-beam interactions or nonlinear
The collective(or coherentbeam-beam effects are char- field errors in the lattice, the particle distribution may not
acterized by coherent oscillations of the particle distributiongeach any steady state within a fraction of the storage time.
of two colliding beams, and have been observed in electro@onsequently, approximations of the truncation of high-
storage ring collidergl,2]. One such example is the flip-flop order moments for the moment map or the linear stability
instability in which beams that start out with equal transversenalysis of equilibrium distributions of the Vlasov equation
beam sizes end up in a steady state with very unequal beaare no longer valid. Experimentally, since the time scale for
size. Because of the reduction of the overlap between ththe relaxation is much longer than the time scale of the ob-
beams, the luminosity is reduced by this coherent beamservation, it may not be possible to observe a stationary co-
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herent oscillation of beam-beam effects in hadron colliderschaotic oscillation of the beam centroids, the elimination of
On the other hand, the lack of damping makes the slovthe centroid motion with feedback can effectively suppress
beam-size growth important in hadron colliders. Observathe beam-size growth. This paper is organized as follows. In
tions have shown that the growth of tails of the particle dis-Sec. I, the test lattice for the LHC during collisions is pre-
tribution is a serious problem, as it enhances the backgroungented and the particle-in-cell method for the strong-strong
level in detectors. The methods of perturbation expansion foPeam-beam simulation is discussed. The results of strong-
the distribution function, using the techniques of multiple Strong beam-beam simulation of proton beams in the LHC
scales or projection operators, were found to be effective foR'® Presented in Sec. lll. Section IV contains a summary.
studying the evolution of the particle distribution in hadron

storage rings when weak nonll_near f|§ld errors were _conS|d- Il SIMULATION MODEL
ered[10,11]. For beam-beam interactions, it is possible to
obtain numerically a self-consistent perturbation expansion A. Test lattice

of the distribution function. The expansion procedure, how-  The test lattice used in this study is the LHC version 5.0
ever, becomes too compllcated_ to be practl_cal, especiall 16]. The LHC has four interaction regioritR’s): IR1 and
with a strong nonlinear pertu_rbatlon. Cor_13|der|ng the case Ofrg gre high-luminosity interaction pointgt =0.5 m), and
weak beam-beam perturbation, Alexalit?] and Kokoya |ro and IR8 are low-luminosity points. Each inner triplet of
et al. [13] studied coherent oscillation with the linearized |pq comprises four superconducting high gradient quadru-
Vlasov equation, with the assumption that the equilibriumpo|eS:Ql Q2A, Q2B, andQ3. Due to the beam separation
distribution is a Gaussian in action variables. These studiegq the IérgeB functions. the dominant nonlinearities in the
provided many insights into the characteristics of the beaniq at collision energy are the field errors of the high gradi-
filamentation when a weaknearly integrable beam-beam ¢ quadrupoles in IR's. Sing,., (~4700 m in the trip-

perturt.)atlon. IS considered. Many guestions on _the beaMgys of IR1 and IR5 is more than ten times larger that of IR2
beam instability that usually occurs in a highly nonintegrable, 4 |rs the field quality in the triplets of IR1 and IR5 is far
regime remai'n open. In order to have a better understand_iryq';]ore im,portant than that of IR2 and IR8. In this study we
of the collective beam-beam effects and the slow beam-sizg o etore consider only those field errors of the quadrupoles
growth of hadron beams, a strong-strong beam-beam simy; |R1 and |R5. Both KEK and Fermilab will build 16 of
lation needs to be conducted for hadron colliders. Since fof,se 32 |R quadrupoles. Reference harmonics of version 2.0
large hadron colliders the magnetic-field error in the lattice i, Farmilab quadrupoles and of version 3.0 for KEK qua-

the major nonlinearity besides the beam-beam interactiorwdrupmes are used in this stufly7,18. All multipoles up to

and it plays an important role in beam-size growth, the simuynih order in the field errors are included. The uncertainty of

lation of the beam-beam effects should also include nonling gystematic error in the error tables is simply added to the
ear fields in the lattice.

| b b imulati he b b systematic error in such a way that it maximizes the system-
n a strong-strong beam-beam simulation, the beam-beaitl;c eror. The random multipole components of the field
force exerted on each beam needs to be calculated se

stently duri h ki o | hi rrors are chosen with Gaussian distributions centered at
consistently during the tracking. One way to evaluate thi ero, and truncated at3"bn+1 or i3Uan+1, wherecrbnﬂ

self-consistent beam-beam force is the particle-in-cel d h | ¢ thath-ord "
method, that has been widely used for simulations with par@"d 7a,., aré the rms values of theth-order normal an

ticles in computational plasma physics and computationa$kew multipole coefficientin the European conventigre-
cosmology[14,15, and has also been used for strong-strongsPectively. Due to the consideration of a larger systematic
beam-beam simulation in electron storage ring colliderd1oin KEK quadrupoles, the mixed configuration is adapted,
[6-9]. In the tracking of particles with the particle-in-cell i-€., the Fermilab quadrupoles are installe@2®A andQ2B
method, a number of macroparticles is distributed in theand the KEK quadrupoles &1 andQ3 [18]. To compen-
phase space initially for each beam according to the initiapate for the field errors in the IR’s, correctors in each IR are
distribution of beams. When the beams cross an interactioproposed for eliminating the multipole field errors upktg
point during the tracking, the beam-beam force for eactfndag [18]. In this study, the crossing angle of two counter-
beam is calculated on a mesh in a configuration space basé@atating beams is taken to be 3@@ad, which is the current
on the density of macroparticles of the counter-rotatingnominal LHC value. The lattice is linearly decoupled glo-
beam. In order to produce a reliable tracking result, a suffibally and locally at the high-luminosity interaction points
ciently large number of macroparticles has to be used. OulP1 and IP$. The fractional parts of horizontal and vertical
study showed that the number of macroparticles needed fdunes of the LHC arer,=0.31 andv,=0.32, respectively.
the study of the slow beam-size growth in hadron colliders isTracking of particle motion has been done without synchro-
much larger than that for the strong-strong beam-beam simuron oscillations and momentum deviations.
lation in electron storage ring colliders. Without beam-beam interactions, the dynamic aperture of
In this paper we study the strong-strong beam-beam efthe LHC collision lattice is calculated with ¥Qurn tracking
fects of proton beams in the CERN LH@rge hadron col- on 100 different samples of random field errors generated
lider), including magnetic field errors in the lattice and with different seed numbers in a random number generator
beam-beam interactions at two high-luminosity interactionroutine. Without any IR corrector, the worst case of these
points, by using the particle-in-cell method. It was found that100 samples has a dynamic aperture of 6vhereo is the
beam-beam interactions can result in a slow beam-siztransverse beam size. At IP1 and IR6=15.9 um. With
growth and an unstable oscillation with chaotic transport oflocal IR correctors ob, anda, for n=3, 4, 5, and 6 in each
beam centroids. As the beam-size growth is enhanced by taplet, the dynamic aperture of this case becomes. 14 the
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following, we use this sample for the strong-strong beambeam. This task consists of three major stépsThe charge
beam simulation. Since head-on beam-beam interactions adistributions on the meshes are first obtained by assigning
the dominant beam-beam perturbations at beam cores, th@lye macroparticles to the grid points using a four-point
are more important than the long-range beam-beam interagioud-in-cell techniqug14]. (b) The fields are calculated at
tions for the collective beam-beam effects. In this study, onlythe grid points by using Eq1), with precalculated Green’s
head-on beam-beam interactions at IP1 and IP5 are includednctions of Eq.(2). (c) The fields are then interpolated to

in the strong-strong beam-beam simulation. the position of every macroparticle. In order to preserve the
conservation of momentum, the same cloud-in-cell technique
B. Formulas for beam-beam interactions is employed for the interpolation of the fields and the assign-

Consider a head-on collision of two ultrarelativistic pro- ment .Of the charge distributions. If th_e nu_mber of macropar-
- ) i ticles isN,, and the number of the grid poink;, the num-
ton beams. Lep(r) denote the particle density of one beam e of computer operations needed for each beam-beam
in normalized transverse configuration space, where crossing is proportional tl,,N; . It should be noted that the
=(x,y) and the dimension af is m"2 The beam-beam kick field calculation in steggb) can also be done by solving the
force in transverse phase space on a test particle in thReoisson equation for the electric potential with a partial-
counter-rotating beam is differential-equation solvef15]. For larger values oNg,
this method has an advantage in computational speed as the
SN NG T number of calculations goes &k,N, In, N, for each beam-
K(r) fdr p(r)G(r=r", @ beam crossind15]. On the other ghand,g since there is no
boundary condition involved in the beam-beam interactions,
where the fields can be directly calculated from Ed) with better
- accuracy. In order to keeNgy not too large, however, the
é(;_ "_T)ZGO (r=r’ ) mesh has to be terminated at a certain point in the configu-
(Xx—x")2+(y—y")? ration space. For the beam-beam simulation, the mesh should
be large enough to cover the beam core. As a matter of fact,
is the Green's function for the beam-beam kick aBg  the particles in the beam tails have very little effect, and only
=2Nry/y. N is the number of protons per bunch, the respond to the beam-beam force. In particular, they have
classical proton radius, andthe relativistic factor. Equation very little forces on the collective beam-beam effects. For the
(1) can be directly used for the field calculation in the strong-particles in the tails that are not covered by the meshes, a
strong beam-beam simulation. For the case of a round beastrong-weak calculation of the beam-beam force is therefore
that is Gaussian in both transverse coordinates with standargsed.
deviationso,= o= oy, the kick force becomes In the numerical implementation, the size of the mesh and
the grid constan{the length between nearest neighboring
1 exp( r2 grid pointg have to be carefully tested. To choose the size of
20'(2)
1/2

@) the mesh, we monitor the number of macroparticles that es-
cape to the outside of the mesh, and require this number to
Note that the dimension af, is mY2 The beam-beam kick be small(negligible compared to the total number of mac-
in Eq. (3) is usually employed in the strong-weak beam-oparticles. The grid constant, on the other hand, should be
beam simulation for round beams. The strength of the beanfUch smaller tham. However, it cannot be too small for a
beam interaction can be conveniently parametrized by th@/Ven number of macroparticles, otherwise one may have a
beam-beam tune shifbeam-beam paramejehat is defined very non-smoo_th charge d_lstrlbutlon function because_the
by £€=Nr /4me, wheree, is the normalized transverse emit- number of particles falling in a cell becomes small, which

tance. The kick strenatB is related toz by Ga= 8 o2¢. will result in significant fluctuations from cell to cell. The
9%o 0¢ by Go=8map¢ criterion here is that the initial field calculated by using the

o particle-in-cell method deviates as little as possible from the
C. Particle-in-cell method exact initial field. To obtain a reliable result, these simulation
In the strong-strong beam-beam simulation, each beam igarameters were also tested, such that the tracking results are
represented by a large number of macroparticles distributetbbust when the parameters vary around the chosen values.
in transverse phase space and tracked for a large number b¥f this study, we found that a uniform mesh extending to
turns, with each turn consisting of transport between the in6oy in all directions of the normalized configuration space is
teraction points and beam-beam collisions. In this study, thgood enough. The grid constant was chosen to be{.2
initial phase-space distributions of two counter-rotating For a given mesh, there is a minimum number of macro-
beams are chosen to be identical round Gaussian beams particles above which the tracking results tend to be indepen-
the normalized transverse phase space with standard devident of the number of particles. Figure 1 plots the percentage
tion o, and truncated at 40, whereso=0/\/B*. o and  increase of horizontal rms emittance of one beam calculated
B* are the LHC nominal transverse beam size and the valugith N,,=10% 1¢°, 5x1°, and 16. The horizontal rms
of the 8 function at the interaction point, respectively. emittance is defined ag.=(x?+ pZ)/2, wherex and p, are
The self-consistent beam-beam interactions at the collithe normalized horizontal coordinate and the momentum, re-
sion points are calculated by using the particle-in-cellspectively, and - - -) denotes the average over all the par-
method, in which the electromagnetic fields are calculated oticles in each bunch. The vertical rms emittance is defined in
a rectangular mesh in transverse configuration space for eaehsimilar way.¢, is the initial emittance that can be evaluated




PRE 62 COLLECTIVE BEAM-BEAM EFFECTS IN HADRON COLLIDERS 1261

0.086 — 05F
0.4F
s 0.04
~ s 03
S < :
: ] s
£ 0.02 v 02
w
~ 01}
0.00 PR TR T [ SN TN TR [N T T T AN TR N T R T 0.0-
0.0 0.2 0.4 0.6 0.8 1.04 [
10%) N
turn (x JF Y0 [ ST N R R
_ _ _ _ 0.0 0.5 1.0 1.5 2.0,
FIG. 1. Evolution of the horizontal rms emittance in LHC cal- turn (x10%)

culated by a particle-in-cell simulation witta) 10%, (b) 10°, (c) 5

X 1P, and(d) 10° macroparticles. Note that curves f@) and (d) FIG. 2. Emittance growth whefa) £=0.0034,(b) £=0.0136,
overlap. The initial emittance is,= ¢?/(28*). Magnetic field er-  (c) £&=0.03,(d) £=0.034, ande) £=0.04. Magnetic field errors in
rors in the triplets and beam-beam interactions at IP1 and IP5 arthe triplets and beam-beam interactions at IP1 and IP5 are included
included in the simulationé=0.0136. in the simulation.

by eo= 0%/ 8*. Figure 1 clearly shows that the character of A. Unstable beam-centroid motion

the emittance growth becomes independent gfonly when With initially centered beams, no significant beam-
N,,=5x% 10° for a grid constant of 02. A plot of the verti-  centroid motion is observed far<&.. When¢>§&., how-

cal emittance or of the emittance of the counter-rotatingever, the phase-space area near the origin becomes unstable
beam shows a similar behavior. In order to have a reliabléor beam centroids, and the beam-beam interactions induce
beam-beam simulation for proton beams, the number of ma@n unstable off-center oscillation of the beams. Figures 3 and
roparticles therefore has to be large enough. For high-energy Plot two typical cases of the unstable motion of one beam

electron beams, on the other hand, it has been reported thafgntroid for§=0.032 and 0.04, respectively. A similar plot
much smaller number of macroparticles {0%) is possible for the counter-rotating beam shows that two beams oscillate

for the strong-strong beam-beam simulation. The differenfPPOSitely(dipole oscillation due to the conservation of the

requirement here could stem from the different behavior 04etﬁrr; :Lansve:sglmom?ntur?.blt can betse%n from .Flgs.fs agd
the particle distribution in electron and hadron colliders. at the unstable motion ol beam centroids consists of sud-

. o .—den jumps of the oscillation amplitude that are in distinct
Since the dissipation of electron beams suppresses high- ; )
; : S contrast to the slow increase of the amplitude observed most
order fluctuations, the particle distribution tends to be

th q be simulated with f ficles. O thof the time. Such a combination of a sudden jump and a slow
smoother, and can be simulated with Tewer particles. Un Mg, -.aa5e of the amplitude is the characteristic of chaotic

other hand, the lack of dissipation for hadron beams makeﬁansport in phase spafe9—21. In Fig. 5, the trajectory of

the fine structures of Hamiltonian dynamics important. Conyaam centroids is plotted in the horizontal phase space for
sequently, a larger number of particles is needed in order tghe cases of Figs. 3 and 4. In both cases the phase space
obtain enough detailed information about the phase-spacgntains nearly regular regions and fully developed chaotic
structures for the time scale of interest. In this Study, thQ‘egionS' The near]y regu]ar regions consist of bands of reso-

number of macro-particles was chosen to be1%’. nance and remnants of invariant manifolds that are partial
barriers to globally unstable motions, and the fully developed
ll. SIMULATION RESULTS chaotic regions are between the nearly regular bands. Due to

) ) ) ) ) a slow chaotic transport near the remnants of invariant mani-
Including the nonlinear field errors in the triplets and thef0|ds, beam centroids have to spend a long time in a nearly
head-on beam-beam interactions at IP1 and IP5, we studie,}ggmar band before they wend their way through those par-
the evolution of beam sizes and the dynamics of beam cenga| barriers. After crossing a nearly regular band, beam cen-
troids for various beam-beam parametérdNote that in the  troids can quickly pass through a fully developed chaotic
current design of LHC¢=0.0034. Foré<0.03, no signifi-  region and reach the next nearly regular band. The amplitude
cant emittance growth was found in overrrn trackings.  of the motion of beam centroids therefore suddenly jumps. A
Figure 2 plots the evolution of horizontal rms emittance incomparison between horizontal and vertical motions of beam
the first 2<10* turns for different¢, and shows that the centroids in Figs. 3 and 4 shows that in a nearly regular band
beam-beam instability occurs when>0.03. Such a beam- the dynamics of beam centroids is nearly two dimensional in
beam instability can be characterized, as shown in the folthe x-p, plane, while in a chaotic region it becomes four
lowing, by an unstable oscillation of beam centroids and alimensional in bothx-p, and y—p, planes. It should be
significant growth of beam size. A plot of the vertical emit- noted that the asymmetry in the horizontal and vertical dy-
tance or the emittance of the counter-rotating beam alspamics of beam centroids is due to the different horizontal
show similar behaviors. Within the time scale of observationand vertical betatron tunes. A simple exchange of the hori-
there is clearly a threshold of the beam-beam paramétgr ( zontal and vertical tunes can switch the horizontal and ver-
for the beam-beam instability. For the current version of thetical dynamics, which suggests that the onset of the beam-
LHC collision lattice with two interaction points;.~=0.03. beam instability could strongly depend on the working point
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FIG. 3. The unstable motion of beam centroids in transverse
phase space fof=0.032, where(x), (p,), (y), and(p,) are the
normalized coordinates and momenta averaged over each bunch of
particles. The initial beams are centered Gaussian beam with staffiteractions. Second, the inclusion or exclusion of the multi-
dard deviationo,. Multipole field errors in the triplets without IR  pole field errors in the lattice should also expedite or delay
correctors are included in the tracking. the amplitude jumps. Figure 6 plots the motion of beam cen-

troids without the multipole field errors in the triplets fér
of a collider. In the case of=0.04, beam centroids eventu- =0.04. A comparison between Figs. 4 and 6 shows that the
ally cross the separatrix of the fourth-order resonance, andonlinear fields in the lattice indeed enhance the chaotic mo-
are then trapped in the resonari€égs. 4 and H)]. For ¢  tion of beam centroids. On the other hand, wiiené., the
=0.032, beam centroids are able to cross the fourth-ordgphase-space area near the origin of the motion of beam cen-
resonancgFigs. 3 and &)]. It should be noted that the ap- troids contains invariant manifolds that prevent the global
pearance of the strong fourth-order resonance is a conséstability. Figure 7 plots the motion of beam centroids for
guence of the collective beam-beam effect, since with th&=0.0136, with both beams being initially off-centered. It
strong-weak model in Eq3) this resonance should not ap- shows that even with off-centered beams, no unstable beam-
pear in that phase space location with the given beam-beamentroid motion is developed fa@r<¢..
parameter. It should be noted that for two mathematically symmetric

For a nonlinear system of interest, usually the stronger théperfect round beams centered at the origin in phase space
nonlinear perturbation, the more severe the breakup of infp(—X,y)=p(X,y) and p(x,—y)=p(X,y) in Eq. (1)], the
variant manifolds. The strength of the nonlinearity can therenhet beam-beam force on the beam centers of mass is always
fore affect the chaotic transport rate, which can be used taero, and no centroid motion can be developed in the case of
test the interpretation of the unstable beam-centroid oscillalinear lattice. Wheré>£., however, the origin becomes an
tion based on chaotic transport. First, a comparison betweamnstable point for the beam centroids, and any fluctuation on
Figs. 3 and 4 shows that the stronger the beam-beam intethe symmetry of the beams can develop into an unstable
action is, the earlier the amplitude jumps occur. This indi-beam-centroid oscillation. Similar to real beams, the initial
cates that the transport rate of the beam-centroid motion inbeams used in the simulation are only statistically symmet-
creases, in general, with the strength of beam-beamic, i.e., the beams are overall symmetric, but individual par-

FIG. 4. The same as in Fig. 3, but f§r=0.04.
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FIG. 7. Horizontal phase-space plot of the motion of beam cen-
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beams are initially off-centered byg) 0.50, (b) 0.750, and(c)
1.00%.

B. Beam-size growth

The rms transverse beam sizes are the second-order mo-
ments of the beams that are defined by,
=((z—(2))?+ (p,— (P,))?)/2, wherez=x or y for hori-
zontal or vertical beam sizes. In this study, the initial beams
are two identical round Gaussian beam in four-dimensional
normalized transverse phase space. The initial beam size is
thusog in both horizontal and vertical directions. Due to the
nonlinearities in the system, the initial distributions of the

FIG. 5. The horizontal phase-space plot of the motion of beamhyeams are mismatched with the invariant manifold of the
centroids. Beam-beam interactions at IP1 and IP5 and multipolg,itig) phase space. Beam sizes increase during the first few
field errors in the triplets without IR correctors are included in the hundred turns as a result of beam filamentatisze Fig. 2

tracking.(a) £=0.032, and the trajectory of the first 130 000 turns is
plotted. (b) ¢€=0.04 and the trajectory of the first 20 000 turns is

plotted.

After this initial beam filamentation, no significant beam-size
growth is observed wheg<¢. while the onset of beam-

beam instability results in an enhanced slow beam-size
growth whené>¢... Figure 8 plots the size of one beam as a

ticles in the beams are not one-to-one symmetric in phasginction of turn number for the case of Fig. 8€0.032) and
space. The lack of perfect symmetry in real beams or nuis a typical example of the beam-size growth after the onset
merical beams is therefore the initial fluctuation that induceof the beam-beam instability. A similar plot for the counter-
the beam-beam instability whej» & .
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rotating beam shows a similar characteristic. Wigené.,

the growth of the beam size is found to consist of a smooth
increase with small jumps. A comparison between Figs. 3
and 8 shows that each jump in beam size corresponds to a
sudden increase in the oscillation amplitude of beam cen-
troids. Moreover, the growth rate of the smooth beam-size
growth (the slop ofa, ) increases with the oscillation am-
plitude of beam centroids. When beam centroids are trapped
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FIG. 8. Evolution of the rms beam size for the case of Fig. 3.

FIG. 6. The same as in Fig. 4, but without multipole field errors The upper curve is the horizontal beam size, and the lower one the
in the triplets.

vertical beam size.
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FIG. 9. Evolution of the horizontal rms beam size 6+ 0.04.

The simulation was done witta) multipole field errors in the trip- also conducted fog=¢., with a feedback for the beam-

centroid oscillation. It was found that the beam-size growth

lets and without IR corrector&he case of Fig. ¥ (b) the linear S
! ) TR was largely suppressed by the elimination of unstable beam-
lattice (the case of Fig. 6 (c) the situation is the same as(@, but centroid motion(curvesc and d in Figs. 9 and 10 The

with the beam-centroid motion removed in each turn with feedbaekbeam-size rowth after the onset of the beam-beam instabil-
and (d) the situation is the same as {b), but with the beam- 9

centroid motion removed in each turn with feedbagd. Strong- ity is therefore due mainly to the_unst_able oscillation of the.
weak beam-beam simulation in the same situatio(ahs- bgam centroids. As bear_n centrou:js circulate around the ori-
gin of phase space, the filamentation of the beams can result
in a growth of beam sizes as the beams gradually spread
into a resonance, on the other hand, the growth of beam sizedong invariant manifolds in the phase space. However, in
gradually slows down—as shown by the curves in Figs. @he case without feedback, the number of particles escaping

and 10, in whichay , are plotted for the case of Fig. 4 ( to the tails of the distributions during the tracking is much
=0.04). larger than that in the case with feedback. Since the filamen-
To examine the effect of nonlinear field errors in the lat-tation itself does not result in the escape of particles across

tice on the beam-size growth, in Figs. 9 and 10 we also p|Oi£nvariant manifolds, the filamentation of the beams may not
oy, for the case of Fig. 6, in which the beam-beam simulae the only cause of the enhanced beam-size growth after the

tion was conducted on the linear LHC lattice witk 0.04. A Onset of the beam-beam instability. .
comparison between curvesandb in Figs. 9 and 10 shows One phenomenon of coherent beam-beam effects in elec-

that the growth of beam sizes is significantly enhanced b ron storage-ring colliders is the coherent oscillation of beam
the nonlinear field errors. Such an enhancement can be up e~ " which the sizes of two counter-rotating beams vary

derstood ticles with lar molitudes in the tails of th eriodically from turn to turn. Usually, such an oscillation is
erstood as particles arge amplitudes etailso nticorrelated, i.e., one beam is dense while the other is hol-

distributions be_c_ome globally unstable due_to fiel_d errors. Tqq,, [6,8]. It is clear from Fig. 11 that there is a pefiod-2
check the validity of the strong-weak simulation of the ygejjation of beam sizes after the onset of the unstable
beam-beam effectsyy , were also calculated with & strong- peam-centroid oscillation of hadron beams, even though the
weak simulation by using Eq3), and compared with the yarjation of beam sizes during this oscillation is only about
results of the strong-strong simulation. Cuevis Figs. 9 and  0.49% of beam sizes. A plot of both beam sizes as a function
10 is the case o£=0.04 including the field errors in the of the turn number shows that two counter-rotating beams
triplets. A comparison between curvagndein Figs. 9 and  oscillate correlativelyin phase. After eliminating the beam-
10 shows that the strong-weak model of beam-beam intera@entroid oscillation with feedback, however, the oscillation
tion is not suitable for a study of the beam-size growth due tmf the beam sizes disappears. Such a beam-size oscillation in
the beam-beam effects in proton-proton colliders. hadron colliders is therefore a result of the beam-centroid
During the operation of a hadron collider, the motion of oscillation, and is not the same spontaneous oscillation as
beam centroids can be easily detected and eliminated witthat in electron storage-ring colliders. Since the centroids of

feedback. Similar beam-beam simulations were thereforévo counter-rotating beams oscillate correlatively due to the
conservation of the beam transverse momentum, the oscilla-

tions of beam sizes are also correlated in hadron colliders.

0.2 T

IV. SUMMARY

Collective beam-beam effects in hadron colliders were
studied with a strong-strong beam-beam simulation on LHC
with working points of »,=0.31 and»,=0.32. Multipole
field errors in the lattice and beam-beam interactions at two
high-luminosity interaction points were included in the simu-
lation. A threshold of the beam-beam paramefgrwas
. o found for the onset of the _b.eam-bea.m instability of hadron
0 1 2 3 4 5 beams. Wherf< £, no significant emittance growth due to

turn (x10%) beam-beam interactions was observed; however when
>¢., a beam-beam instability characterized by an unstable
FIG. 10. The same as in Fig. 9, but for the vertical beam size.oscillation of beam centroids and an enhanced beam-size
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growth occurs. Due to the onset of the beam-beam instabilributions of hadron beams are practically governed by the
ity, the phase-space area nearby the origin becomes unstatbl@miltonian dynamics that is characterized by a chaotic
for beam centroids, and two initially centered counter-transport of beam particles from the beam core to the tails
rotating beams develop a spontaneous unstable off-center odue to nonlinear perturbations. Because of this slow particle
cillation. The dynamics of the unstable beam-centroid oscilescape and the lack of fluctuations dissipation, the particle
lation has characteristics typical of chaotic transport in phasélistributions may not be able to reach any equilibrium or
space, and the slow beam-size growth is Signiﬁcant'y ensteady Stat_es durlng the_lumanSI_ty I|fet|me,_ and this makes
hanced by this unstable beam-centroid oscillation. Théhe dynamics of a transient stattme evolutior) of beam

growth rate of beam sizes is found to increase with the ogdistributions important to hadron beams. It is therefore im-
cillation amplitude of beam centroids. The nonlinear fielgPortant to recognize the difference between hadron and elec-

errors in the lattice, on the other hand, could significantlytron beams when attempting to develop theoretical models

enhance the instability of the beam-centroid motion and thd?" the collective beam-beam effects of hadron beams.

growth of beam sizes. This study showed that the beam- The many interesting features observed in this work sug-
beam instability of hadron beams could be effectively Sup_gest that collective beam-beam instabilities in high-intensity

pressed by an elimination of the beam-centroid motion Witrpadron beams may in fact be m.uc.h more comphcgted thgn
feedback. After the removal of the unstable beam-centroid'® have be_en accustomed to thinking. Man_y que_stlons aris-
oscillation, the enhanced beam-size growth is largely elimi:"9 from this study need to be addressed, mcludmg the de-
nated, and the nonlinear field errors in the lattice becom endence of; on the system parameters, espemally the be-
dominant nonlinearities to cause the slow beam-size growt atron tunes and the mechan!sm Of.a beam-3|ze growth "’!ﬂer
For the current design of LH, is about nine times the size he onset of the beam-beam instability. It is thus worthwhile

of the nominal beam-beam parameter when two interactioﬁ0 conduct a more 'ghorough s_tudy of numerical simqlation_s
points (IP1 and IP5 are considered. If two additional inter- &5 well as a theoretical modeling of the beam-beam instabil-

action points(IP2 and IP8 are also used for the experiment, ity qf had_ron begms. Since a very large number of macro-
the beam-beam parameter of LHC could be much closer ;[Ea_rtlcles is required for the strong-strong beam-beam simu-
its threshold. By using feedback to control the beam-beal gtion (.)f ha_ldron beams,_ such a study with num_encr_;ll
instability, however, the head-on beam-beam effects shoulﬁ'mmaﬂons 1S hz_;\rdly feasible l_mless parallel computing is
not be a limit for future luminosity upgrades in LHC. It is, employed with high-power multiprocessor computers.
however, clear that in weak-strong beam-beam simulations
long-range beam-beam interactions are important to the
beam-size growtf22,23. A thorough study of the LHC The authors would like to thank Professor S. Ohnuma for
beam-beam limit should also include long-range beam-beamany stimulating discussions. This work was supported by
effects in the strong-strong beam-beam simulation. the National Science Foundation under Grant No. PHY-

One important characteristic of the collective beam-bean®722513, and the University of Kansas General Research
effects in hadron colliders is the nonexistence of steadyund. We would like to thank the Center for Advanced Sci-
states for coherent oscillations, as shown in this study. Duentific Computing at the University of Kansas for the use of
to a large damping time scale, the dynamics of particle disthe supercomputer.
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