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Modeling of electron-cyclotron-resonance-heated plasmas
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This article describes the behavior of electron-cyclotron-resonance-heated plasmas, with particular attention
paid to mirror-confined plasmas, which are of great interest in plasma processing and in highly charged ion
production. Using a one-dimensional~in velocity! description of the electron distribution function, we calculate
the electron density and confinement time. The theoretical results are compared with experiments, and it is
shown that a maximum critical density can be achieved in such plasmas.

PACS number~s!: 52.65.Ff, 29.25.Ni, 52.50.Gj, 52.55.Jd
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I. INTRODUCTION

Electron-cyclotron-resonance~ECR! heated plasmas ar
encountered in various fields of research and industry@1#.
They can be used for ion implantation, surface treatment,
coating in industry; on the other hand mirror-confined EC
heated plasmas have proved to be very efficient for the
duction of multiply charged ions~MCIs!. This paper deals
mainly with such mirror-confined plasmas, but some of
results can be used for other types of ECR-heated plasm

In order to produce MCIs in a plasma some criteria ha
to be fulfilled:~1! Electrons should reach energies larger th
the ionization potential of the desired ion.~2! Ions should
stay in the plasma for a time sufficient to reach the des
charge state. This criterion follows from the dominant str
ping process in the plasma, which is the step by step ion
tion of atoms and ions.~3! The neutral pressure should b
kept low enough so that charge exchange processes bet
ions and atoms are negligible. As can be easily underst
these criteria are ideally achieved in a mirror-confined EC
heated plasma: electrons are pushed toward high ene
owing to the ECR heating~ECRH!; the confinement time is
good because of the mirroring of the particles between
two maxima of the magnetic field; the third criterion is fu
filled when only a small amount of gas is injected into t
plasma. Figure 2 of@2# shows the currents of MCIs that ca
be delivered by the SERSE, source, which is a high per
mance superconducting ECR ion source~ECRIS!.

Figure 1 shows a schematic drawing of an ECRIS:
minimum-B structure is achieved with coils~1! and ~2! for
the mirror field and permanent magnets~3! for the multipole
field ~usually hexapolar!. The electrons interact resonant
with the wave close to the resonance surface~4! which is
shaped like an ellipsoid. The high frequency~HF! wave is
injected along the magnetic field~the magnetic beach struc
ture! and the whole chamber is biased at typically120 kV.
Ions are then extracted through a grounded extraction e
trode.

Some theoretical work has already been done to exp
the production of MCIs. The dominant stripping process
step by step electron impact ionization, and among the
combination processes the most important one is charge
PRE 621063-651X/2000/62~1!/1182~8!/$15.00
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change. But all these studies made the assumption tha
electron distribution function~EDF! is Maxwellian @3# or
weakly non-Maxwellian@4#. Moreover, the input parameter
of these codes, which are usually the electron density
temperature, have to be adjusted to fit the experimental
sults. These limitations of existing theoretical studies are
vere since the electron density and temperature are not i
parameters for the experimentalist but rather the results
the source optimization. Therefore these codes may be
limited interest. A new code was recently presented@5#
where the input parameters are much closer to reality: the
power and the gas flux were taken as input parameters
the other parameters of the plasma were calculated. Bu
this study the EDF was also supposed to be Maxwelli
which led to unphysical values of the plasma potential.
useful and accurate simulation of the plasma requires
calculation of the EDF.

Some articles have dealt with the problem of ECRH
mirror-confined plasmas. The first theoretical studies c
cerned stochastic~or quasilinear! electron heating, and wer
published in the early 1970s@6#. A relativistic theory of
ECRH was later presented by Bernstein and Baxter@7#. The
problem of electron heating in tandem mirrors~which are
also open devices, but different from ion sources! was also
extensively studied@8#. However, in these devices, the ion
are hot, the plasma is not necessarily created only by EC
and some approximations can be made concerning the
and collision diffusion coefficients, which are not relevant

FIG. 1. Principle of an ECRIS.
1182 ©2000 The American Physical Society



R

n
ug
on
an
d

te
t

. A
an
ce
Th

ro
d

si
er
at
s

I t
r

im
rn

c

f

e
a
g

er

on

h
u

a
d,
d of
ase
gen-
ned
x-

i-

s.
em

ic
tem
on

-
the

edi-

n-

PRE 62 1183MODELING OF ELECTRON-CYCLOTRON-RESONANCE- . . .
our devices. The most exhaustive study in the field of EC
in mirrors was presented by Mauel@9#, who calculated the
EDF theoretically and applied his calculations to the Co
stance 2 ECRH experiment. In that experiment it was s
gested that the HF itself could enhance the loss of electr
However, only a transient state was modeled by Mauel
no conclusion was drawn about the steady state that coul
reached in ECR-heated plasmas. A few years later@10# the
role of HF-induced losses in a micro-unstable ECR hea
plasma was discussed. In the present article, however,
plasma will be supposed to be free of any such instability
recent paper@11# presents new experimental results on
ECRIS and also discusses the influence of the HF-indu
transport of electrons on the performance of the ECRIS.
present article explains the results obtained in@11# and gives
a theoretical background to the conclusions drawn there f
the experimental results. It is also the first step towar
complete self-consistent description of an ECRIS.

This paper is organized as follows. In Sec. II the ba
ingredients of the code are presented. The collisional t
and the HF term are described and the source term th
necessary to obtain a steady state is also explained. The
plifications made are described and discussed. In Sec. II
numerical results are shown, and the major transport p
cesses are discussed. Comparisons are made with exper
tal results. In Sec. IV some important conclusions conce
ing ECR-heated plasmas are drawn.

II. DESCRIPTION OF THE CODE

We assume that the system is uniform in physical spa
The time-dependent equation for the EDF is given as

] f e

]t
5C~ f e!1Q~ f e!1S~ f e!. ~1!

Here C( f e) is the collision term for electrons colliding of
other charged species~including electrons themselves!,
Q( f e) is the quasilinear heating term which describ
ECRH, andS( f e) describes the ionization processes th
generate electrons. Our starting point is the bounce-avera
quasilinear Fokker-Plank equation@12#. We consider the
time evolution of the EDF over time intervals much long
than both the cyclotron period 2p/vc and the bounce period
tB . The characteristic time scale over which we analyzef e
has therefore the same order of magnitude as the collisi
time.

Since we wish to calculate the density that can be reac
in an ECR-heated plasma, it is important to take into acco
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the correct collision term. In most of the HF-wave–plasm
interactions, the full integro-differential term is not use
since it is possible to assume that the plasma is compose
a bulk of electrons and a HF-wave-generated tail. In our c
such an assumption is not possible since the plasma is
erated by the HF wave itself and the density that is obtai
is not always sufficient to ensure a strong collisional rela
ation toward a Maxwellian bulk. Therefore the full coll
sional term must be used. Then Eq.~1! is a nonlinear, partial,
integro-differential equation in four independent variable
We employ the usual spherical polar coordinate syst
(v,m,w) in velocity space, wherev is the speed, arcosm is
the pitch angle, andw is the angle about the axial magnet
field. With this coordinate system, we assume that the sys
is azimuthally symmetric. Hence the resulting distributi
function is of the formf e(v,m,t). When no ambipolar field
is present, the loss cone angle is given by

m lc5A121/Rm

with Rm5Bmax/Bmin the mirror ratio. When a positive poten
tial VP is present and reduces the loss of electrons,
boundary of the velocity domain is modified:

m lc~v !5F12
1

Rm
S 12

vpe
2

v2 D G1/2

where

vpe5A2eVP /me.

We assume that electrons in the loss cone are lost imm
ately. Figure 2 shows the confined domainUe ~solid lines!.

The Fokker-Planck collision term was derived by Rose
bluth, MacDonald, and Judd@13# in the form

FIG. 2. Velocity domainUe .
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wheree stands for electrons andi for ions. Here

Le/a5S Zae2

«0me
D 2

l

with l the Coulomb logarithm,Zae the charge of particles o
speciesa, andwa ,ca the Rosenbluth potentials,

wa~v,t !52
1

4p E
R3

f a~v8,t !

uv2v8u
dv8,

ca~v,t !52
1

8p E
R3

uv2v8u f a~v8,t !dv8,

in the form given by Trubnikov@14#. Since the ions are cold
and highly collisional, they are assumed to form a fix
Maxwellian background,

f i~v !5
ni

~2pkTi /mi !
3/2e2~mi /2kTi !v

2
, ~3!

where ni is the ion density,mi is the ion mass,k is the
Boltzmann universal constant, andTi is the ion temperature
The corresponding Rosenbluth potentials are then easily
culated. The velocity domain is discretized as the unionUe*
of J11 rectangular subdomainsU low andUj , 1< j <J, with

U low5~0,vpe!3~21,11!, Uj5~v j ,v j 11!3~2m j ,1m j !,

wherev15vpe,¯,vJ115c, the velocity of light, andm j
5m lc(v j 11), 1< j ,J, mJ5m lc ~see Fig. 3!. The EDF is
assumed to be equal to zero outside the discretized velo
domainUe* . In addition, we use a numerical model that h
proved very useful@12#. The main assumptions of this mod
are the following.~1! In each subdomain the EDF is approx
mated by its lowest angular eigenfunction.~2! The Rosen-
bluth potentials for electrons are isotropic and of the form

we~v,t !52
1

v E0

v
f e~w,t !w2dw2E

v

1`

f e~w,t !w dw,

~4!

ce~v,t !52
v
2 E0

v
f e~w,t !w2S 11

1

3

w2

v2 Ddw

2
1

2 Ev

1`

f e~w,t !w3S 11
1

3

v2

w2Ddw, ~5!

where

FIG. 3. Discretized velocity domainUe* .
al-
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f e~v,t !5
1

2 E21

11

f e~v,m,t !dm.

On U low the EDF is assumed to be isotropic:f e(v,m,t)
5Fe(v,t); hence

C~ f e!52Le/e
1
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]
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]
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]
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me

mi

1

v2

]

]v S v2
dw i

dv
FeD . ~6!

On Uj we let f e(v,m,t)5Fe, j (v,t)M j (m), whereM j corre-
sponds to the lowest eigenvalueL j of the problem,

2
d

dm S ~12m2!
dM

dm D ~m!5LM ~m!,

M ~2m j !5M ~1m j !50. ~7!

Then

C~ f e!5F2Le/e
1

v2

]

]v S v2
]2ce

]v2
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]
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]
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1Le/ i
me
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1

v2

]

]v S v2
dw i

dv
Fe, j D GM j . ~8!

The term

2pE
Ue*

C~ f e!v
2dv dm

is the particle loss term due to collisional pitch-angle scat
ing.

As to the heating term, we simplify the full quasilinea
term@12#. Since this term is not separable in (v,m), only two
terms are retained, so that the diffusion tensor is reduced
diagonal tensor, and we consider a~mean! velocity diffusion
process~heating of the particles due to the HF electric fie
E! with a pitch-angle scattering process induced by the w
magnetic field. We take the following velocity diffusion co
efficient:

Dvv5
Dv2

2Dt
5D with D5pS eE

2me
D 2 d

Lv
, ~9!

where d is the characteristic length for the gradient of t
steady magnetic field along the axis,L is the length of the
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plasma, andv is the frequency of the wave. The HF ma
netic field contributes to a diffusion coefficient in pitch ang
arccosm:

Dmm5
Dm2

2Dt
5DS v

vf
D 2

, ~10!

where vf is the phase velocity of the wave. This term
usually neglected becausevf is considered to be much large
than the velocity of the particles~in many cases the phas
velocity is of the order of the velocity of light!. But in ECR-
heated plasmas the heating process occurs along the wh
mode which has a resonance atv5vc , the cyclotron fre-
quency. As the wave approaches the resonance zon
phase velocity becomes smaller and smaller. It is there
necessary to keep the pitch-angle diffusion term in the
scription of ECRH. The HF magnetic field does not lead
any heating, but it induces pitch-angle scattering which, i
mirror device, can push the electrons into the loss cone
discussed earlier by Kennel and Engelmann@15#. We there-
fore take the following quasilinear term:

Q~ f e!5
1

v2

]

]v S v2Dvv

] f e

]v D1
1

v2

]

]m S ~12m2!Dmm

] f e

]m D .

~11!

The term

2pE
Ue*

Q~ f e!v
2dv dm

is the loss term due to quasilinear pitch-angle scattering.
confinement time is the ratio

te~ t !5
ne~ t !

2p*U
e*
@C~ f e!1Q~ f e!#v

2dv dm

with ne(t) the electron density.
This modeling of ECRH is, of course, only approxima

since the full quasilinear term is more complicated@12#. In
particular, in this model all the electrons are considered
interact with the HF wave, which is true only for the ele
trons that cross the resonance zone during their boun
between the mirror throats. Moreover, the strength of
interaction is supposed to be the same for all electro
which is also a simplification. However, this quasilinear te
models the diffusive nature of the heating process in b
energy and pitch angle, and it allows us to describe satis
torily the most salient features of ECRH, as will be show
below. In addition, this term leads to a Fokker-Planck eq
tion that can be solved easily.

Turning to the source term, we consider three poss
mechanisms.

~1! The ionization in the volume of the plasma produc
electrons as follows:

Sion~v,m,t !52px~v !niEUe*
f e~v8,m8,t !s0→ i~v8!

3v83dv8dm8, ~12!
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wheres0→ i is the ionization cross section of the atoms andx
is a shape function satisfying

4pE
0

vpe
x~v !v2dv51 and x~v !50 if v.vpe .

~13!

In what follows only single ionization of neutrals will b
considered.

~2! As they leave the plasma and hit the walls, the io
and electrons may induce secondary electrons. In this
cess, the material of the wall is of fundamental importan
The corresponding source term may be written

Swall~v,m,t !5A
ne~ t !

te~ t !
x~v !, ~14!

where the coefficientA depends on the material.
~3! A third source term can be added to take into acco

the direct injection of electrons into the plasma through
cathode, or through an auxiliary discharge, which is usua
called afirst stage. We write

S1st~v,m,t !5I ex~v !. ~15!

The source term is then defined by

S~ f e!5Sion1Swall1S1st.

III. RESULTS AND DISCUSSION

We have developed a code applicable to ECR-hea
plasmas. We solve the Sturm-Liouville problem~7! by a
finite-element method. A finite-difference method is used
discretizing the variablev. The time is discretized by a sem
implicit scheme, i.e., the scheme is implicit but the Rose
bluth potentials are treated explicitly.

Some tests were performed to make sure that the code
a correct behavior. In particular, we verified that the co
converges toward a quasi-Maxwellian distribution functi
when the HF driving term is low. Typically, we used 50
points inm to solve the Sturm-Liouville problem with suffi
cient accuracy. For the radial~velocity! problem we used 20
subdomains with 500 points for the domain between 0 a
v1 , and 2000 points for the rest of the domain~betweenv1
and c!. The time step was adjusted between 1 and 100ms.
The code has some input parameters. We consider he
~mass number 4!, with the corresponding ionization cros
section given in the program, and the mean charge can
varied. In the following we always takeZi51. The ion tem-
perature is low~less than 1 eV! and therefore has no influ
ence on the ionic Rosenbluth potentials. The HF diffus
coefficient, the mirror ratio, the phase velocity of the wav
the plasma potential, and the neutral density are input par
eters of the code. We show the effect of these various in
parameters on the plasma performance~electron density and
mean energy, confinement time, and absorbed power!. Only
one parameter is varied at a time.

A. Influence of the mirror ratio

It is well known that the greater the mirror ratio, th
higher the confinement, and consequently the higher the d
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sity. Figure 4 shows the increase in density when the mi
ratio is increased, all other parameters being kept cons
This figure explains why a great improvement in perfo
mance was obtained when the mirror ratio was increa
from 1.3 to 2 in the Caprice source~cf. Fig. 2 of@16#!. In our
test case, the density is multiplied by a factor of 4 as
mirror ratio is increased from 1.3 to 2. On the same fig
one can see that the confinement time also increases a
mirror ratio increases, which is expected, since the mir
ratio is a characteristic of the confining properties of mir
devices. The order of magnitude of the confinement time
compatible with the measurements already presented@11#
~this time was sometimes higher, sometimes lower, depe
ing on the characteristics of the discharge!, and with the
production of high charges. In Fig. 5 the electron mean
ergy~as the EDF is far from thermodynamic equilibrium it
not possible to use the term ‘‘temperature’’! is shown to
increase with increasing mirror ratio, which is normal, as
loss term is reduced. Figure 5 also shows the power abso
~or evacuated! by the electrons, versus the mirror ratio: th
power is low at low mirror ratio because the density of t
plasma created is low, and it increases at higher mirror ra
as the density and energy increase. It is important to men
here that these results are obtained at the same HF diffu
coefficient~i.e., at the same driving electric field!: the same

FIG. 4. Electron density and confinement time as a function
the mirror ratio.

FIG. 5. Electron mean energy and absorbed power as a func
of the mirror ratio.
r
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electric field leads to different discharge parameters as
mirror ratio changes. It is of course necessary that the
sorbed power be less than the input HF power, which ra
the important question of coupling the HF to the plasma. B
this point is not addressed here.

B. Influence of the neutral density

Figure 6 shows the evolution of the electron density a
confinement time as the neutral density is varied. As usu
observed, the electron density is a monotonically increas
function of the neutral gas pressure. However, we see
there is first a rapid increase of the density and then the ef
becomes less and less pronounced. Such a behavior wa
served in the Quadrumafios source@11#. This effect can be
explained as follows: as the neutral density becomes v
large the confinement time of the electrons becomes sho
and shorter~see Fig. 6!; it would require a huge amount o
power to sustain a linear increase of the electron density w
the neutral pressure. In the calculation the diffusion coe
cient is not sufficient to inject such a high power into t
plasma. It is also interesting to see that the higher the neu
density, the lower the confinement time, which explains w
it is necessary to work at low neutral pressure to obt
MCIs. Moreover, the value of the confinement time obtain
~at low neutral density! is in very good agreement with th
experimental results obtained by Perretet al. @11#, and con-
sistent with the values of the experimental ionic confinem
times presented in a recent paper@17#. Figure 7 shows the
dependence of the mean energy and of the absorbed p
on the neutral pressure: the higher the neutral pressure
lower the mean energy~as expected!. This is a supplemen-
tary explanation of the role of neutral pressure in the crea
~or destruction! of high charge states: in order to produ
high charges it is necessary to have large electron energi
overcome the ionization potentials; highly energetic el
trons can be produced only at low pressures, so that h
charges are not compatible with high neutral pressures. A
summary, low pressure operation is required to fulfill tw
major criteria for the production of high charge states:~i! a
high confinement time;~ii ! high energy electrons.

C. Influence of the phase velocity of the wave

We saw that the magnetic field of the wave plays a role
the loss of electrons. This is clearly shown in Fig. 8: t

f

on

FIG. 6. Electron density and confinement time as a function
the neutral density.
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PRE 62 1187MODELING OF ELECTRON-CYCLOTRON-RESONANCE- . . .
higher the phase velocity, the lower the losses~as the calcu-
lations are not relativistic, we limit the phase velocity
2.5c!. Consequently, the electron density is enhanced as
phase velocity increases. The confinement time, also sh
in Fig. 8, increases with the phase velocity, since the hig
the phase velocity, the lower the HF-induced losses, and
sequently the larger the confinement time. Figure 9 sho
the electron mean energy versus the phase velocity: it h
quadratic dependence on the phase velocity, since the c
acteristic energy of the electrons ismvf

2 . In the same figure
we see that the absorbed power increases with the p
velocity since both electron density and energy increase

It is interesting to notice that the mean energy is mu
higher than the plasma potential~here 30 V!. This situation is
completely different from what was considered earlier
Pastukhov@18# for mirror-confined fusion plasmas. Thes
high density, lower electron temperature plasmas are usu
much closer to thermal equilibrium, and their confineme
properties can be described by Pastukhov’s model. For E
heated plasmas the density that is usually reached~typically
1012cm23! is not sufficient for the EDF to relax toward
Maxwellian. This explains why it is necessary to consid
the full integro-differential collision term to describe the e
fect of collisions on the EDF. At low HF power the EDF

FIG. 7. Electron mean energy and absorbed power as a func
of the neutral density.

FIG. 8. Electron density and confinement time as a function
the phase velocity.
he
n
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h
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close to a Maxwellian, and the collisions are important.
high HF power the HF terms become dominant and the c
lisions play a role mainly for low energy electrons. Th
phase velocity of the wave gives an estimate of the ma
mum mean energy that can be reached in the plasma~see
Fig. 9!, since electrons below this velocity are mainly heat
by the wave, while electrons above this velocity are mai
pitch-angle scattered by the wave magnetic field. We will s
below which parameters determine the phase velocity, wh
is not an input parameter for the experimentalist.

D. Influence of the HF diffusion coefficient

The HF diffusion coefficient is proportional to the squa
of the electric field, and is consequently related to the
input power. But the input power is not necessarily equa
the power absorbed by the plasma, which is calculated in
code. Figure 10 shows the evolution of the electron den
as D is varied. We see that the density first increases, t
saturates, and eventually the density drops. This effect ca
explained as follows. The particles are heated with incre
ing efficiency as the input power is increased, but they
also scattered into the loss cone by the HF input with
creasing efficiency. Electrons are heated and lost so rap
that they are no longer efficient for the ionization, thus lim
iting the performance of the source. Figure 11 shows
power absorbed~evacuated! by the plasma versus the H

on

f

FIG. 9. Electron mean energy and absorbed power as a func
of the phase velocity.

FIG. 10. Electron density and confinement time versus HF
fusion coefficient.
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diffusion coefficient. The maximum of the absorbed powe
obtained at a value higher than the maximum of the dens
which is quite normal as the power is a second order mom
of the EDF, while the density is a zeroth order moment of
EDF. This saturation of the performance is always obser
in an ECRIS. However, the decay of the density, as show
Fig. 10, is rarely observed, since the experimentalists usu
stop increasing the~incident! HF power as they see that th
performances are no longer improved by additional
power. But it is often observed that the HF reflected pow
starts increasing when the performances of the source s
rate, which is in agreement with the saturation of the pow
absorbed by the plasma as shown in Fig. 11. This figure
presents the influence of the HF power on the mean en
of the electron population. It rapidly increases with the H
power and saturates for the same reasons as given abov
the HF power increases, the electrons created by ioniza
are rapidly heated and lost at high energy. They do not c
tribute to any increase in density and energy. This rapid s
ration of the mean energy of the plasma was observed
perimentally first in the Minimafios source@19#, and later in
the Quadrumafios source@20#. The numerical results ar
again in very good agreement with the experiments. T
confinement time, also shown in Fig. 10, has only a limit
dependence on the HF diffusion coefficient, since the ra
of the mean energy~beyond 20 keV! is such that Coulomb
collisions become of limited effect, and the dominant H
losses are characterized by the same phase velocity.

E. Discussion

We have shown that the phase velocity of the wave
fects both electron density and mean energy. In order to h
both a high density and a high energy plasma, it is there
necessary to have a high phase velocity. But this is not
ways possible, and we show in the following how the va
of the phase velocity is dependent on plasma parameters
well known that the dispersion equation for whistler wa
propagation is given, in the cold plasma limit, by

k2c2

v2 512
vp

2

v~v2vc!
, ~16!

where k is the modulus of the wave vector andvp is the

FIG. 11. Electron mean energy and absorbed power versus
diffusion coefficient.
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plasma frequency. This formula is valid up to the absorpt
zone, whose width is given by the Doppler effect:

v5vc2kvT , ~17!

wherevT is the thermal velocity of the electrons. Equatio
~16! is no longer valid whenuv2vcu is equal tokvT , so that
an estimate ofk is then given by

k2c2

v2 '2
vp

2

vkvT
. ~18!

Taking the phase velocityvf5v/k, we obtain

vf
3 '

v2

vp
2 vTc25

nc

ne
vTc2, ~19!

where

nc5
v2mee0

e2

is the so-called cutoff density, which is proportional to t
square of the HF frequency. Equation~19! shows that the
larger the density~as compared to the cutoff density!, the
smaller the phase velocity. But we have shown that
smaller the phase velocity, the smaller the density that ca
reached. Therefore, in order to reach a high density, i
necessary to have a large cutoff density~i.e., a large fre-
quency!. Equation~19! can be added to the code, so that t
phase velocity, which was an input parameter of the co
becomes a function of other plasma quantities. It then
comes possible to plot—all other parameters being k
constant—the plasma density and confinement time ve
the frequency of the wave: this is shown in Fig. 12. T
electron mean energy and the absorbed power are show
Fig. 13. These figures show that only high frequencies
produce high plasma densities with high confinement tim
which is the condition for the production of high charg
states. This explains why the performances of ion sources
enhanced when the frequency is increased~cf. Fig. 3 of
@16#!. In order to produce MCIs it is necessary to keep t
neutral pressure low enough to minimize charge exchan
Therefore the neutral density cannot be arbitrarily increas
As the electron density increases the phase velocity

F FIG. 12. Electron density and confinement time versus HF
quency.
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creases as shown by Eq.~19!. Therefore there is a maximum
density compatible with the production of high charge sta
the higher the frequency of the wave, the higher this dens
This effect has no link, however, with a reflection of th
wave at the cutoff density since there is no such cutoff alo
the whistler branch. Equation~19! can also explain the satu
ration effect that is encountered in overdense ECR-he
plasmas: at 2.45 GHz the maximum density is typica
1012cm23, which is far above the cutoff density~which con-

FIG. 13. Electron mean energy and absorbed power versus
frequency.
CR

l-
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m
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on
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ed

firms that there is no cutoff of the HF wave!; in these uncon-
fined ECR-heated plasmas the electron temperature is
cally 20 eV, which is much lower than in minimum-B
structures as ECRISs for MCI production; as the elect
temperature is low, it is possible to increase the elect
density to a value higher than in ECRISs for the same
frequency.

IV. CONCLUSION

We have developed a model that can reproduce the
havior of ECR-heated plasmas: the influence of the mir
ratio and of the neutral density on the performances are c
sistent with experiments. The confinement time obtained
the code is in excellent agreement with experiments. T
behavior of the mean energy of the electron population
accurately described. As in the experiments, we have fo
that the electron density and the electron mean energy s
rate with the incident HF power. Moreover, we have prov
that the phase velocity strongly affects the electron den
and therefore the performances of ECRISs: the smaller
velocity, the smaller the density and the smaller the curre
In ECR-heated plasmas it is therefore necessary to incr
the frequency in order to enhance the performance. T
shows how the performance of the source can be improv
existing ECRISs work at frequencies below 18 GHz; a co
siderable enhancement will be obtained with 28 GHz g
rotrons and superconducting solenoids.
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