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Linear theory of plasma wakes
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A test particle immersed in a plasma produces a wake when at least one plasma species is drifting. The
present work presents a new approach to the study of plasma wakes. The solution to the problem is found in
terms of a spherical harmonics expansion. The solution is studied for conditions typical in dusty plasma
experiments: the ions stream relative to the test particle, while the electrons have zero average velocity. The
results confirm previous findings obtained with theories based on the Fourier transform method. The present
method is characterized by two new aspects. First, the wake field is studied as a function of the ion to electron
temperature ratio. Second, the present theory is developed fully in the real space, without introducing the
Fourier transform, and can be more naturally extended to include nonlinear effects and to include the collisions
between dust particles and plasma species.

PACS numbgs): 52.25.Zb, 52.75-d, 52.65.Kj, 52.25.Dg

I. INTRODUCTION better agreement with experimental resiit6,11].
In the present work, a new theoretical approach is pro-

The study of plasma wakes is a classic problem in plasmaosed. The method is based on the representation of the an-
physics with applications ranging from fusion experimentsgular dependence of the particle distribution functions using
and laser—plasma interactidd] to dusty plasmd2]. Re-  spherical harmonics. The approach is widely used in glow
cently the subject has received particular attention, for itslischarge studielsl2] and more recently it has been applied
relevance to studies in dusty plasma crystg8$ Dusty also to dusty plasmfL3].
plasma crystals form in glow discharge reactors at the edge The advantage of this approach is twofold. First, the lin-
of the sheaths that surround the electrodes. The ions are agar study of plasma wakes avoids the analytical intricacies of
celerated to sound speed in the presheath and travel evefe usual Landau approach and in particular the singularities
faster in the sheath itself. Therefore, depending on the presf the integrals. As a consequence, the results of the present
cise position of the dust particles, near sonic or even supetygdel are easy to obtain and unambiguous. Second, the rela-
sonic ion flow conditions are found around the dust particles;;,o simplicity of the final model equations allows the exten-

In such situations, wakes can develop, altering considerablyj,, of the present model to include more realistic processes.

theTuscliJ'?l Delkljyetﬁhietldgd pfotlemﬁaﬂ' kes has been treatel]! Particular, it allows the inclusion of the sheath electric
radiionatly, the study ot plasma wakes has been rea eﬁ.‘eld and of the charging currents to the dust particles.

using a linear approach where a point charge is assumed 10

perturb a plasma described by the linearized Boltzmann— Th|s_ paper 1s orgamzeq in four sections, besides the In-
Poisson system. The classic solutip] uses the Landau troduction. Section Il describes the method used to derive the

method (equivalent to the application of the Fourier and model equations, focusing on the spherical harmonics expan-

Laplace transforms More recently, the problem has been sipn and on the other.approximations introduped. Section Il

reconsidered, focusing on the specific conditions found in th&liScusses the properties of the model equations and the so-

reactors used for dusty plasma crystal experimg5its lution procedure. Section IV presents the results obtained for

However’ recent works have Suggested that Standar@ifferent plasma paramete(MaCh number of the ion ﬂOW,

methods valid in dust-free plasmas are not suitable for dustipn to electron temperature ratio, collision frequency be-

plasma conditiond6]. The defining property of a dusty tween ions and neutralsFinally, Sec. V summarizes the

plasma is the presence of currents of ions and electrons colesults.

lected by the dust particles. Such a process alters the distri-

bution function of the plasma species and could have an

important effect on plasma wakes. Indeed, even in the ab- II. MATHEMATICAL MODEL

sence of any relative drift, it has been shown that the orbit ) . ) )

motion limited (OML) theory that includes the effects of the ~ We consider the interaction of a plasma with a test par-

currents collected by the dust yields different results from thdicle immersed in it. The plasma is in general composed by

classic Debye shieldinf7]. But even the OML is not com- several speciefnly one of which is electronsThe deriva-

pletely accuraté8,9]. A complete self-consistent simulation tion assumes that the plasma species are not magnetized and

approach has shown that the actual plasma wake is indedhbat electromagnetic waves can be neglected.

different from previous theoretical predictions and in much Under these conditions, the kinetic description of the sys-
tem is formulated in terms of the distributions of the plasma
speciess in the phase spack e R®X[0,T[ and of the elec-

*Electronic address: lapenta@polito.it trostatic potentiatp € R*X[0,T[
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of g ofs gg de Ify A general method for the solution of the linear Boltzmann
— Ve — - ——=SH{f}, (1) equation is the spherical harmonics expan$ithi. Truncat-
ing at the first order, the expansion can be written as

evre=- 3 a, f v, @ 10, Q) = AdU) + Q-By(u), @)

where Ag(u) and B¢(u) are the new variables to be deter-

where S{f! is the collision operator. In the conditions typi- Mined in order to solve the system. An integration in the

cal for the formation of dusty plasmas, the collisions among/€!0City space reveals the physical meaning of the two new
plasma particles are negligible, and the collision OperatOyarlables in terms of the perturbation of the ion density and

should only include collision of plasma particles with neu-©f the ion current
trals and with the test particle. In the present work, the col-
lision operator can have a very general forid]. nlS:47-,f Au? du, (8)
The model equationgl) are solved in three steps. In the
first step, the equations are linearized around the unperturbed
plasma conditions chosen to represent the plasma without the J :4_7Tf B.ud du (9)
. . . i . 1s S .
test particle. The physical intuition suggests that the intro- 3
duction of a test particle perturbs the plasma. If the test par- ) ) _ )
ticle is sufficiently small(in terms of the Debye lengttthe Inserting the expansion E¢) into Eq. (6) and assuming,

perturbations are expected to be small and liable to be treatethout loss of generality, that the reference frame haszthe
linearly. This approximation is widely used by the theories@Xis directed along the drift velocityy, it follows that
presented in the literatufd,5]. However, if the test particle

represents the typical dust particles found in experiments, the Zvos) . i(As+ Q-By)— q5f2_°5 Q.Elzl St{fg.
charge of the test particle can be 3 orders of magnitude larger u/ ox MsVth os u

than the electron charge. For this reason, the results of any (10

linear theory require validation against experiments and non- . . , . . .
linear simulationg 10]. Equation(10) is solved with a projection method in the di-

Within these limitations, the plasma state is described as $ction spherd2. Integrating Eq(10) in the direction sphere

perturbation induced by the immersed object on an otherwis& Yields
unperturbed system. In the unperturbed state the plasma spe-

cies are assumed to be distributed according to a drifting &AS:_ . V.B+ LJ St{f.dQ. (11)
Maxwellian 97 3vos 47V o5
o Nos eX;{ B (V—Vpg)? . Integrating Eq.(10) multiplied by Q yields
o Utgh,05(277)3/2 2vt2h,05 ’ dBg u ds
7 T T o VAT 7 fsoen
where the species-dependent drift spegd thermal veloc- z 0s =7th,0s
ity vyn0s, @nd densityngg are chosen to represent the experi- 3
mental conditions. e f St{Fs}Q dQ. (12)
The perturbed state is characterized by a perturbed elec- S
trostatic potentiakp; (and electric fieldE,), and perturbed The integrals of the collision operator can be calculated
species distribution$,s. The linearized Boltzmann equation under a very general hypothe§ist, 15. In the following, the
1S effect of plasma currents to the immersed particle is ne-
glected, as customary in classic plasma wake theddgs
df1s df1s  Qsfos This approximation allows a direct comparison with the pre-

at "V ax msvtzhOSEl' (V=vos) =St{fs}, (4 \ioys literature. Future work will include collisions with the
’ test particle to include effects that might be significant for

where subscript (L) refers to unperturbetperturbed quan- ~ dusty plasma experiments,7,10. _ _
tities. With this approximation and assuming further that no ion-

In the second step of the derivation, the functional depenization or recombination collisions are present, the first inte-
dence upon the direction of the velocity variable is repre-9ral[in Eq. (11)] vanishes
sented using spherical harmonics. The velocity vector is rep-
resented using a modulusand a unitary vectof} f St{f}dQ=0. (13

V=udt vos © The second integrdin Eq. (12)] can be expressed in terms

of the velocity dependent momentum transfer collision fre-

and the Boltzmann equation becomes quencyw(u) [12];

Vo
Q+—
u

915 Qsfos OE 1 St/f ©
S IX mM@de - U {fsh fSt{fs}ﬂ dQ=—vB;,. (14)
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Equations (11),(12) with the collision integrals, Eqs. model for the system becomes
(13),(14) form a self-consistent closed system to describe a

plasma species. Note that Eq41),(12) are the linearized vgi a7y _vy? qi oo dny
version of the standard two-term Boltzmann model used to Utiha 0972 YNyt mivtzhOi No®1 ]~ vt?hOi 9z’
study gas dischargg42]. ' ' '
The two equationg11),(12) can be easily combined in e
just one equation for the single variab#e, by taking the Nie= 1 —7—No¢1, (19
divergence of the second equation andzlgerivative of the e”'th,0e
first and substitutin
J €0V 2p1= (N Nyj) + 0 (X—Xy),
2 2
J A;S = 1(i) V2| Ag+ q—gfso(pl _r '9_AS_ whereq;(x;) is the chargéposition of the test particle.
9z 3lvgs MgV h,0s Vos 02 The system Eq(19), can be written more conveniently
(159  introducing the normalized potential and ion density
Equation(15) summarizes the linearized Boltzmann equation cobi\ en3
for the ion population in the approximation of first order = OTITDe0 T HTDe (20)
spherical harmonics expansion. The study of plasma wakes Ot Gt

could be based on the model equati@f), but in the present
work a further simplification is introduced to arrive to a fluid
model.

Using the definitions above and eliminating the electron den-
sity from the second and third equation, it follows readily

In the third step of the derivation, the model equations aréhat
integrated in the amplitude of the velocity vectgrleading 2N P
to = __Vy2 —R—
P M2V§(6N+<I>) Rag’
2 2 -
Uos Jd nls s VU s &nls (21)
— =V?| gt ——>—Npsel | — —, 2 =(Pp— —
02 07 15" el . 0s® 02 2 . Vi@=(®—-N)+6(£- &),

where© =yT;/Ts, R=v\pd/vei, andM is the Mach num-
Wherevtzhvls=47rfAu4du/3n15 is the thermal velocity of the Per. The differential operators are written in terms of the

perturbed distribution and the average collision frequency normalized spatial variablg= (¢, 7,¢) =x/\pe.
The solution of systeni21) depends on three parameters

_ Amw 5 only: the Mach number related to the speed of the ion flow;
= n_lsf v(u)Au” du. (17 the temperature rati® modified by the exponeny of the
equation of state; and parametRrrelated to the collision
The closure of the model equations is obtained assuming thétequency between ions and neutrals. The advantage of the
the thermal velocity of the perturbed distributieny, s is ~ formulation (21) in terms of normalized quantities is to

governed by a linearized equation of state enucleate such dependence.
) ) Some general properties of the system @&4) are crucial
Uth,1s= YVth,0s: (18 in determining the properties of its solutions. First, the equa-

) ) ) tion for the potentia[second part of Eq(21)] is elliptic but
wherey=5/3 corresponds to an adiabatic transformation anghe equation for the ion densityfirst part of Eq.(21)] is
y=1to an isothermal transformation. , _ hyperbolic(i.e. a wave equationrwhen M2/6>1. Second,

Equation(16) is the final equation for the species density (he problem is well posed only if the boundary conditions are
used in the subsequent sections to study the plasma Sh'em”&%signed according to the nature of the equations. The ellip-

of a test particle. tic equation for® is supplemented with the usual Dirichlet
condition,®=0 on the boundaryV of the system. The hy-
Ill. GENERAL PROPERTIES AND SOLUTION perbolic equation folN, instead, requires initial conditions
PROCEDURE along( (that here is the time-like coordinate of a wave equa-

tion): N=0 anddN/d{=0 at the inflow boundary.

Equation(16) governs the perturbation of the plasma spe- System(21) can be solved numerically. Some properties
cies in response to the introduction of a test particle. Theof the solution could be obtained using analytical techniques
condition of the unperturbed ambient plasma enters the equéased on the characteristics methaé]. However, the sim-
tion via the species density, thermal speed and drift velocityplicity of the numerical solution suggests its preferred use.
The model equations can be solved for any kind of ambienStandard techniques are used.
plasma. In the present work, the attention is focused on the First, each equation is discretized. Cylindrical coordinates
typical conditions found in dusty plasma experiments: the(p,6,{) centered on the dust particle are used with the axis of
ions are drifting at a velocity exceeding the ion thermalsymmetry directed along the flow direction. The symmetry
speed, but the electrons have no drift velocity. Such condief the system allows one to drop amydependence. The
tions are an accurate description of the sheath regions whesdliptic equation is discretized ip and ¢ using the standard
the dust particles colle¢B]. Within that assumption, it fol- finite difference approximation to the Laplacian operator.
lows that Eq.(16) for the electrons can be simplified to the The hyperbolic equation is discretized in the spatial coordi-
usual linearized Boltzmann relationship. The completenatep using a finite difference approximation of the second
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FIG. 1. Perturbation of the normalized potentiainduced by a _ o -
negative unitary Charge immersed in a p|asma vtk 0.01 and FIG. 2. Perturbation of the normalized ion denﬂynduced by
with ions streaming amM=0.8. a negative unitary charge immersed in a plasma ¥ith0.01 and

with ions streaming aM=0.8.

derivative; the time-like coordinaté is discretized instead,
using the leap-frog method17] The leap-frog method is
explicit, requiring a dual grid method along the time-like
coordinate(i.e., more points irg are used when solving the
hyperbolic equation

Second, the discretized equations are solved using a blo
Gguss—SledeI |terat|o_n me_thod: the equationdbais §olved The last two effects are considered further in Secs. IV A
usingN from the previous iteration, next the equation for and IVB
is solved using the new guess #r The method is found to '
converge in just a few iterations. In the cases described be-
low, the norm of the variation of the unknown between two A. Oscillatory wake
iterations is found to decrease by 3 orders of magnitude in 20 The oscillatory wake shown in Figs. 1 and 2 is a well
iterations. known result of linear theories. Previous wofi$], valid in

The convergence of the spatial discretization has beefhe limit of zero ion temperature, have found that the wave-
verified also. In the numerical solutions shown in Sec. IV,length A of the wake field is

the spatial grid used is 150150 for a system size 25,
and 20.p, in the radial and vertical direction, respectively. AlNpe=2mM. (22)

decreasegeven in the absence of collisionas the wake
broadens downstream.

Third, in the direction normal to the ion flow, the potential
conserves its classic Debye shielding form, but with a decay
rate very close to the electron Debye length, as shown in
%ﬁevious simulation$10].

Figures 3 and 4 compare the plasma wake alond tivds
IV. WAKE STRUCTURE for different values of the Mach numb&t and of the tem-

erature ratio®. As the Mach numbeM is increased, the
The theory presented above has been used to stucR/

plasma wakes in different plasma conditions, varying the  ,
temperature ratio between the plasma species, varying the

Mach number of the ion flow, and varying the ion-neutral 0.2f
collision rate.
Figure 1(electrostatic potentialand Fig. 2(ion density or
show the complete three dimensior{8D) structure of the
plasma wake foM=0.8 and® =10 2. The azimuthal sym- o2
metry of the problem allows us to represent the electrostatic ¢, I :
potential and the ion density as a function of the vertical 4
distance and of the radiugp measured from the axis cen- -0.6F
tered on the dust particle and directed along the ion flow.

Three features are considered below: -0.8r - Mjg 1
First, the ion density show the presence of a Machcone | ¢ | M=1
with angle sin*(\/©6/M) with respect to the flow direction. I R P M=0.5 | |

However, the coupling with the elliptic equation fdr ren- " ! s .
ders the Mach cone diffuse and allows for information trans- = 0 n 10 18

mission outside the Mach cone.

Second, an oscillatory wake is present downstream. The FIG. 3. Perturbation of the normalized potentialalong thel
wake is only present inside the Mach cone and its amplitudexis for ©=0.01 and for different Mach numbers.
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FIG. 4. Perturbation of the normalized potentialalong the¢ FIG. 6. Amplitude ®*,, of the largest fourier mode of the

axis forM=1 and for different values of the temperature r&fio potential as a function of the Mach number for two values of the
temperature rati®.

wavelength increases but the amplitude of the wave de-

creases. An increase of the temperature f@tivas the effect  oscillation frequency of the wake field. Note that this defini-

to decrease both amplitude and wavelength. tion of the wake amplitude is more involved but more rigor-
Figure 5 shows the wavelength of the wake field obtainedus than just simply inspecting the maxima of Figs. 3—4, as

from the numerical solution of the present model, E2l),  the wake field amplitude decreases downstream and the

for various temperature ratios and Mach numbers. Clearlymaxima for different Mach numbers and temperature ratios

the present model yields the classic expression,(E2), in  are reached at different positions.

the limit of zero ion temperature. As the ion temperature is  Figure 6 shows the amplitud®¥ ., for various Mach

increased, the wavelength decreases. numbers and temperature ratios. At relatively high ion tem-
The amplitude of the wake oscillation is further analyzedperaturegcorresponding to a relatively high temperature ra-

introducing the amplitude of the largest Fourier mode alongio, © =10"2) the amplitude of the wake oscillation de-

the { direction, defined as creases monotonically with the Mach number. At lower ion
. temperatures an increase of the amplitude is presevit=t,
¢ i firming the results of other linear theories that predict a
v =maxf e kP (p=0,)d¢, 23 ~ confirming . P
MAX T (p=04)d¢ @3 singularity atM=1 for cold ion plasma§19].

The effect of the collisions between ions and neutral par-
where the integration interval is from one electron Debyeticles is studied in Fig. 7. As the collision rate is increased
length downstream of the particle position to the edge of thdittle effect is observed on the wavelength but the wake field
computational boxL, in the downstream direction. This is damped in the downstream direction. For sufficiently high
choice of the integration interval is suitable to isolate just thecollision frequencies only the first oscillation in the wake
oscillatory region.®*,, measures the amplitude of the remains visible(Fig. 7 for R=1).
wake field as the largest Fourier mode correspond to the

0.4 . .
65 . . ; :
................................................. - 0-2 -
6r ¥ ¥ % X
0 -
550
0.2

5 .

45f € -0.4
3

ak —0.6

350 0.8
— R=0
ol 1 R R R=0.5
--- R=t
25+ -1.2 .
) 0 5 10 15
. . . . 2
2
0.4 06 0.8 1 1.2 1.4 De

M
FIG. 7. Perturbation of the normalized potental along thel

FIG. 5. Wavelength of the wake field as a function of the Machaxis for ©=0.01, M=0.8, and for different normalized collision
number for different values of the temperature radio frequencieR.



1180 GIOVANNI LAPENTA PRE 62

0.96¢ - ' length, while at higher temperature ratios the effect is oppo-
. — e=10"° site. However, at all Mach numbers considered here the ef-
fect is rather small.

The main effect is that the shielding length is very close
to the electron Debye length and orders of magnitude larger
than the linearized Debye length. For exampléat 103,
the linearized Debye length is, /Ap.=0.03, almost two
orders of magnitude smaller than thg observed in experi-
ments and shown in Fig. 8.

0.94F

0.92

0.8l

0.86}
V. CONCLUSIONS
084}

>

A model for the interaction between a plasma and a test
particle immersed in it is derived. The model is based on the

0825 1 15 2 Boltzmann equation for the plasma species and includes the
M effect of the collisions with the background neutrals. The

FIG. 8. Radial shielding length, as a function of the Mach Model is solved using an expansion in spherical harmonics.

number for different values of the temperature radio To compare with preViOUS theories, the model is reduced to a
simplified coupled hyperbolic-elliptic system for the ion den-
B. Radial shielding sity and the electrostatic potential that neglects charge col-

lection by the dust. The final equations of the model are
solved numerically.

The model is applied to study the shielding of a test par-
ticle in conditions typical of experiments with dusty plasmas.
e /\D A wake field is observed to propagate downstream of the test
(24 particle. A Mach cone with the expected angle is observed.
Inside the cone, an oscillatory field is observed with a wave-

The simulations referenced to above have also shown th&@ngth predicted by previous theories. _ .
the correct Debye shielding lengkh, is close to the electron A comparison of the present model with previous theories
Debye length, and not to the classic linearized Debye lengt Successful and suggests that the model can be applied to
M =(\52+Np2) Y2 Recent experiments have proven thatStudy the shielding of dust particles, including important ef-
indeed the correct shielding length in the radial direction is€cts neglected here: the finite size of the dust particles, the
the electron Debye lengfl20]. This effect is observed when Presence of ion and electron currents to the dust, and the
the ion mean velocity exceeds the ion thermal velocity, as i€XiStence of an ambient electric field in the sheath region
is in all cases considered here and in most experiments; i¥here the dust particles are located.
such conditions, the ions cannot contribute to the shielding

Simulation workq 10] have shown that the screening po-
tential in the radial direction can still be described approxi-
mately in terms of the Debye shielding potential

$a(r,2=0)% —

process and the electrons act alone. ACKNOWLEDGMENTS
Figure 8 confirms this effect. At high Mach numbers the
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