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Linear theory of plasma wakes

Giovanni Lapenta*
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Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
~Received 11 January 2000!

A test particle immersed in a plasma produces a wake when at least one plasma species is drifting. The
present work presents a new approach to the study of plasma wakes. The solution to the problem is found in
terms of a spherical harmonics expansion. The solution is studied for conditions typical in dusty plasma
experiments: the ions stream relative to the test particle, while the electrons have zero average velocity. The
results confirm previous findings obtained with theories based on the Fourier transform method. The present
method is characterized by two new aspects. First, the wake field is studied as a function of the ion to electron
temperature ratio. Second, the present theory is developed fully in the real space, without introducing the
Fourier transform, and can be more naturally extended to include nonlinear effects and to include the collisions
between dust particles and plasma species.

PACS number~s!: 52.25.Zb, 52.75.2d, 52.65.Kj, 52.25.Dg
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I. INTRODUCTION

The study of plasma wakes is a classic problem in plas
physics with applications ranging from fusion experime
and laser–plasma interaction@1# to dusty plasma@2#. Re-
cently the subject has received particular attention, for
relevance to studies in dusty plasma crystals@3#. Dusty
plasma crystals form in glow discharge reactors at the e
of the sheaths that surround the electrodes. The ions are
celerated to sound speed in the presheath and travel
faster in the sheath itself. Therefore, depending on the
cise position of the dust particles, near sonic or even su
sonic ion flow conditions are found around the dust partic
In such situations, wakes can develop, altering consider
the usual Debye shielded potential@2#.

Traditionally, the study of plasma wakes has been trea
using a linear approach where a point charge is assume
perturb a plasma described by the linearized Boltzman
Poisson system. The classic solution@4# uses the Landau
method ~equivalent to the application of the Fourier an
Laplace transforms!. More recently, the problem has bee
reconsidered, focusing on the specific conditions found in
reactors used for dusty plasma crystal experiments@5#.

However, recent works have suggested that stand
methods valid in dust-free plasmas are not suitable for du
plasma conditions@6#. The defining property of a dust
plasma is the presence of currents of ions and electrons
lected by the dust particles. Such a process alters the d
bution function of the plasma species and could have
important effect on plasma wakes. Indeed, even in the
sence of any relative drift, it has been shown that the o
motion limited~OML! theory that includes the effects of th
currents collected by the dust yields different results from
classic Debye shielding@7#. But even the OML is not com-
pletely accurate@8,9#. A complete self-consistent simulatio
approach has shown that the actual plasma wake is ind
different from previous theoretical predictions and in mu
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better agreement with experimental results@10,11#.
In the present work, a new theoretical approach is p

posed. The method is based on the representation of the
gular dependence of the particle distribution functions us
spherical harmonics. The approach is widely used in gl
discharge studies@12# and more recently it has been applie
also to dusty plasma@13#.

The advantage of this approach is twofold. First, the l
ear study of plasma wakes avoids the analytical intricacie
the usual Landau approach and in particular the singular
of the integrals. As a consequence, the results of the pre
model are easy to obtain and unambiguous. Second, the
tive simplicity of the final model equations allows the exte
sion of the present model to include more realistic proces
In particular, it allows the inclusion of the sheath elect
field and of the charging currents to the dust particles.

This paper is organized in four sections, besides the
troduction. Section II describes the method used to derive
model equations, focusing on the spherical harmonics exp
sion and on the other approximations introduced. Section
discusses the properties of the model equations and the
lution procedure. Section IV presents the results obtained
different plasma parameters~Mach number of the ion flow,
ion to electron temperature ratio, collision frequency b
tween ions and neutrals!. Finally, Sec. V summarizes th
results.

II. MATHEMATICAL MODEL

We consider the interaction of a plasma with a test p
ticle immersed in it. The plasma is in general composed
several species~only one of which is electrons!. The deriva-
tion assumes that the plasma species are not magnetized
that electromagnetic waves can be neglected.

Under these conditions, the kinetic description of the s
tem is formulated in terms of the distributions of the plasm
speciess in the phase spacef sPR63@0,T@ and of the elec-
trostatic potentialwPR33@0,T@
1175 ©2000 The American Physical Society



i-
n
to
u-
o

e
rb
t t
ro
a

at
es

, t
rg
a
o

as
is
s

tin

ri

le

n

en
re
e

nn

r-
he
ew
nd

e

i-

ted

ne-

re-
e
for

n-
te-

s
re-

1176 PRE 62GIOVANNI LAPENTA
] f s

]t
1v•

] f s

]x
2

qs

ms

]w

]x
•

] f s

]v
5St$ f s%, ~1!

E0¹2w52(
s
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where St$ f s% is the collision operator. In the conditions typ
cal for the formation of dusty plasmas, the collisions amo
plasma particles are negligible, and the collision opera
should only include collision of plasma particles with ne
trals and with the test particle. In the present work, the c
lision operator can have a very general form@14#.

The model equations~1! are solved in three steps. In th
first step, the equations are linearized around the unpertu
plasma conditions chosen to represent the plasma withou
test particle. The physical intuition suggests that the int
duction of a test particle perturbs the plasma. If the test p
ticle is sufficiently small~in terms of the Debye length! the
perturbations are expected to be small and liable to be tre
linearly. This approximation is widely used by the theori
presented in the literature@4,5#. However, if the test particle
represents the typical dust particles found in experiments
charge of the test particle can be 3 orders of magnitude la
than the electron charge. For this reason, the results of
linear theory require validation against experiments and n
linear simulations@10#.

Within these limitations, the plasma state is described
perturbation induced by the immersed object on an otherw
unperturbed system. In the unperturbed state the plasma
cies are assumed to be distributed according to a drif
Maxwellian

f 0s5
n0s

v th,0s
3 ~2p!3/2 expS 2

~v2v0s!
2

2v th,0s
2 D , ~3!

where the species-dependent drift speedv0s , thermal veloc-
ity v th,0s, and densityn0s are chosen to represent the expe
mental conditions.

The perturbed state is characterized by a perturbed e
trostatic potentialw1 ~and electric fieldE1!, and perturbed
species distributionsf 1s . The linearized Boltzmann equatio
is

] f 1s

]t
1v•

] f 1s

]x
2

qsf 0s

msv th,0s
2 E1•~v2v0s!5St$ f s%, ~4!

where subscript 0~1! refers to unperturbed~perturbed! quan-
tities.

In the second step of the derivation, the functional dep
dence upon the direction of the velocity variable is rep
sented using spherical harmonics. The velocity vector is r
resented using a modulusu and a unitary vectorV

v5uV1v0s ~5!

and the Boltzmann equation becomes

S V1
v0s

u D • ] f 1s

]x
2

qsf 0s

msv th,0s
2 V"E15

1

u
St$ f s%. ~6!
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A general method for the solution of the linear Boltzma
equation is the spherical harmonics expansion@15#. Truncat-
ing at the first order, the expansion can be written as

f 1s~u,V!5As~u!1V"Bs~u!, ~7!

whereAs(u) and Bs(u) are the new variables to be dete
mined in order to solve the system. An integration in t
velocity space reveals the physical meaning of the two n
variables in terms of the perturbation of the ion density a
of the ion current

n1s54pE Asu
2 du, ~8!

J1s5
4p

3 E Bsu
3 du. ~9!

Inserting the expansion Eq.~7! into Eq.~6! and assuming,
without loss of generality, that the reference frame has thz
axis directed along the drift velocityv0s , it follows that

S V1
zv0s

u D • ]

]x
~As1V"Bs!2

qsf 0s

msv th,0s
2 V"E15

1

u
St$ f s%.

~10!

Equation~10! is solved with a projection method in the d
rection sphereV. Integrating Eq.~10! in the direction sphere
V yields

]As

]z
52

u

3v0s
¹•Bs1

1

4pv0s
E St$ f s%dV. ~11!

Integrating Eq.~10! multiplied by V yields

]Bs

]z
52

u

v0s
¹S As1

qs

msv th,0s
2 f s0w1D

1
3

4pv0s
E St$Fs%V dV. ~12!

The integrals of the collision operator can be calcula
under a very general hypothesis@14,15#. In the following, the
effect of plasma currents to the immersed particle is
glected, as customary in classic plasma wake theories@4#.
This approximation allows a direct comparison with the p
vious literature. Future work will include collisions with th
test particle to include effects that might be significant
dusty plasma experiments@6,7,10#.

With this approximation and assuming further that no io
ization or recombination collisions are present, the first in
gral @in Eq. ~11!# vanishes

E St$ f s%dV50. ~13!

The second integral@in Eq. ~12!# can be expressed in term
of the velocity dependent momentum transfer collision f
quencyn(u) @12#:

E St$ f s%V dV52nBs . ~14!
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PRE 62 1177LINEAR THEORY OF PLASMA WAKES
Equations ~11!,~12! with the collision integrals, Eqs
~13!,~14! form a self-consistent closed system to describ
plasma species. Note that Eqs.~11!,~12! are the linearized
version of the standard two-term Boltzmann model used
study gas discharges@12#.

The two equations~11!,~12! can be easily combined in
just one equation for the single variableAs , by taking the
divergence of the second equation and thez derivative of the
first and substituting

]2As

]z2 5
1

3 S u

v0s
D 2

¹2S As1
qs

msv th,0s
2 f s0w1D 2

n

v0s

]As

]z
.

~15!

Equation~15! summarizes the linearized Boltzmann equat
for the ion population in the approximation of first ord
spherical harmonics expansion. The study of plasma wa
could be based on the model equation~15!, but in the present
work a further simplification is introduced to arrive to a flu
model.

In the third step of the derivation, the model equations
integrated in the amplitude of the velocity vectoru, leading
to

v0s
2

v th,1s
2

]2n1s

]z2 5¹2S n1s1
qs

msv th,1s
2 n0sw1D 2

n̄v0s

v th,1s
2

]n1s

]z
,

~16!

wherev th,1s
2 54p*Au4du/3n1s is the thermal velocity of the

perturbed distribution andn̄ the average collision frequenc

n̄5
4p

n1s
E n~u!Au2 du. ~17!

The closure of the model equations is obtained assuming
the thermal velocity of the perturbed distributionv th,1s is
governed by a linearized equation of state

v th,1s
2 5gv th,0s

2 , ~18!

whereg55/3 corresponds to an adiabatic transformation a
g51 to an isothermal transformation.

Equation~16! is the final equation for the species dens
used in the subsequent sections to study the plasma shie
of a test particle.

III. GENERAL PROPERTIES AND SOLUTION
PROCEDURE

Equation~16! governs the perturbation of the plasma sp
cies in response to the introduction of a test particle. T
condition of the unperturbed ambient plasma enters the e
tion via the species density, thermal speed and drift veloc
The model equations can be solved for any kind of amb
plasma. In the present work, the attention is focused on
typical conditions found in dusty plasma experiments:
ions are drifting at a velocity exceeding the ion therm
speed, but the electrons have no drift velocity. Such con
tions are an accurate description of the sheath regions w
the dust particles collect@3#. Within that assumption, it fol-
lows that Eq.~16! for the electrons can be simplified to th
usual linearized Boltzmann relationship. The compl
a
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model for the system becomes

v0i
2

v th,0i
2

]2n1i

]z2 5¹2S gn1i1
qi

miv th,0i
2 n0w1D 2

n̄v0i

v th,0i
2

]n1i

]z
,

n1e5
e

mev th,0e
2 n0w1 , ~19!

e0¹2w15e~n1e2n1i !1qtd~x2xt!,

whereqt(xt) is the charge~position! of the test particle.
The system Eq.~19!, can be written more convenientl

introducing the normalized potential and ion density

F5
e0f1lDe0

qt
, N5

en1ilDe
3

qt
. ~20!

Using the definitions above and eliminating the electron d
sity from the second and third equation, it follows read
that

]2N

]z2 5
1

M2 ¹j
2~UN1F!2R

]N

]z
,

~21!
¹j

2F5~F2N!1d~j2jt!,

whereU5gTi /Te , R5 n̄lDe/v0i , andM is the Mach num-
ber. The differential operators are written in terms of t
normalized spatial variablej5(j,h,z)5x/lDe .

The solution of system~21! depends on three paramete
only: the Mach number related to the speed of the ion flo
the temperature ratioU modified by the exponentg of the
equation of state; and parameterR related to the collision
frequency between ions and neutrals. The advantage of
formulation ~21! in terms of normalized quantities is t
enucleate such dependence.

Some general properties of the system Eq.~21! are crucial
in determining the properties of its solutions. First, the eq
tion for the potential@second part of Eq.~21!# is elliptic but
the equation for the ion density@first part of Eq.~21!# is
hyperbolic ~i.e. a wave equation! when M2/U.1. Second,
the problem is well posed only if the boundary conditions a
assigned according to the nature of the equations. The e
tic equation forF is supplemented with the usual Dirichle
condition,F50 on the boundary]V of the system. The hy-
perbolic equation forN, instead, requires initial condition
alongz ~that here is the time-like coordinate of a wave equ
tion!: N50 and]N/]z50 at the inflow boundary.

System~21! can be solved numerically. Some properti
of the solution could be obtained using analytical techniq
based on the characteristics method@16#. However, the sim-
plicity of the numerical solution suggests its preferred u
Standard techniques are used.

First, each equation is discretized. Cylindrical coordina
~r,u,z! centered on the dust particle are used with the axis
symmetry directed along the flow direction. The symme
of the system allows one to drop anyu dependence. The
elliptic equation is discretized inr andz using the standard
finite difference approximation to the Laplacian operat
The hyperbolic equation is discretized in the spatial coor
nater using a finite difference approximation of the seco
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1178 PRE 62GIOVANNI LAPENTA
derivative; the time-like coordinatez is discretized instead
using the leap-frog method.@17# The leap-frog method is
explicit, requiring a dual grid method along the time-lik
coordinate~i.e., more points inz are used when solving th
hyperbolic equation!.

Second, the discretized equations are solved using a b
Gauss–Siedel iteration method: the equation forF is solved
usingN from the previous iteration, next the equation forN
is solved using the new guess forF. The method is found to
converge in just a few iterations. In the cases described
low, the norm of the variation of the unknown between tw
iterations is found to decrease by 3 orders of magnitude in
iterations.

The convergence of the spatial discretization has b
verified also. In the numerical solutions shown in Sec.
the spatial grid used is 1503150 for a system size 2.5lDe
and 20lDe in the radial and vertical direction, respectively

IV. WAKE STRUCTURE

The theory presented above has been used to s
plasma wakes in different plasma conditions, varying
temperature ratio between the plasma species, varying
Mach number of the ion flow, and varying the ion-neut
collision rate.

Figure 1~electrostatic potential! and Fig. 2~ion density!
show the complete three dimensional~3D! structure of the
plasma wake forM50.8 andU51022. The azimuthal sym-
metry of the problem allows us to represent the electrost
potential and the ion density as a function of the verti
distancez and of the radiusr measured from the axis cen
tered on the dust particle and directed along the ion flow

Three features are considered below:
First, the ion density show the presence of a Mach c

with angle sin21(AU/M ) with respect to the flow direction
However, the coupling with the elliptic equation forF ren-
ders the Mach cone diffuse and allows for information tra
mission outside the Mach cone.

Second, an oscillatory wake is present downstream.
wake is only present inside the Mach cone and its amplit

FIG. 1. Perturbation of the normalized potentialF induced by a
negative unitary charge immersed in a plasma withU50.01 and
with ions streaming atM50.8.
ck

e-

0

n
,

dy
e
he
l

ic
l

e

-

e
e

decreases~even in the absence of collisions! as the wake
broadens downstream.

Third, in the direction normal to the ion flow, the potenti
conserves its classic Debye shielding form, but with a de
rate very close to the electron Debye length, as shown
previous simulations@10#.

The last two effects are considered further in Secs. IV
and IV B.

A. Oscillatory wake

The oscillatory wake shown in Figs. 1 and 2 is a w
known result of linear theories. Previous works@18#, valid in
the limit of zero ion temperature, have found that the wa
lengthL of the wake field is

L/lDe52pM . ~22!

Figures 3 and 4 compare the plasma wake along thez axis
for different values of the Mach numberM and of the tem-
perature ratioU. As the Mach numberM is increased, the

FIG. 2. Perturbation of the normalized ion densityN induced by
a negative unitary charge immersed in a plasma withU50.01 and
with ions streaming atM50.8.

FIG. 3. Perturbation of the normalized potentialF along thez
axis for U50.01 and for different Mach numbers.
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PRE 62 1179LINEAR THEORY OF PLASMA WAKES
wavelength increases but the amplitude of the wave
creases. An increase of the temperature ratioU has the effect
to decrease both amplitude and wavelength.

Figure 5 shows the wavelength of the wake field obtain
from the numerical solution of the present model, Eq.~21!,
for various temperature ratios and Mach numbers. Clea
the present model yields the classic expression, Eq.~22!, in
the limit of zero ion temperature. As the ion temperature
increased, the wavelength decreases.

The amplitude of the wake oscillation is further analyz
introducing the amplitude of the largest Fourier mode alo
the z direction, defined as

FMAX
' 5max

k
E

1

Lz
e2 ikzF~r50,z!dz, ~23!

where the integration interval is from one electron Deb
length downstream of the particle position to the edge of
computational boxLz in the downstream direction. Thi
choice of the integration interval is suitable to isolate just
oscillatory region.FMAX

' measures the amplitude of th
wake field as the largest Fourier mode correspond to

FIG. 4. Perturbation of the normalized potentialF along thez
axis for M51 and for different values of the temperature ratioU.

FIG. 5. Wavelength of the wake field as a function of the Ma
number for different values of the temperature ratioU.
e-

d
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s

g

e
e

e

e

oscillation frequency of the wake field. Note that this defin
tion of the wake amplitude is more involved but more rigo
ous than just simply inspecting the maxima of Figs. 3–4,
the wake field amplitude decreases downstream and
maxima for different Mach numbers and temperature ra
are reached at different positions.

Figure 6 shows the amplitudeFMAX
' for various Mach

numbers and temperature ratios. At relatively high ion te
peratures~corresponding to a relatively high temperature
tio, U51022! the amplitude of the wake oscillation de
creases monotonically with the Mach number. At lower i
temperatures an increase of the amplitude is present atM51,
confirming the results of other linear theories that predic
singularity atM51 for cold ion plasmas@19#.

The effect of the collisions between ions and neutral p
ticles is studied in Fig. 7. As the collision rate is increas
little effect is observed on the wavelength but the wake fi
is damped in the downstream direction. For sufficiently hi
collision frequencies only the first oscillation in the wak
remains visible~Fig. 7 for R51!.

FIG. 6. Amplitude FMAX
' of the largest fourier mode of the

potential as a function of the Mach number for two values of
temperature ratioU.

FIG. 7. Perturbation of the normalized potentialF1 along thez
axis for U50.01, M50.8, and for different normalized collision
frequenciesR.
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1180 PRE 62GIOVANNI LAPENTA
B. Radial shielding

Simulation works@10# have shown that the screening p
tential in the radial direction can still be described appro
mately in terms of the Debye shielding potential

f1~r ,z50!}
e2r /lD

r
. ~24!

The simulations referenced to above have also shown
the correct Debye shielding lengthlD is close to the electron
Debye length, and not to the classic linearized Debye len
lL5(lDe

221lDi
22)21/2. Recent experiments have proven th

indeed the correct shielding length in the radial direction
the electron Debye length@20#. This effect is observed whe
the ion mean velocity exceeds the ion thermal velocity, a
is in all cases considered here and in most experiments
such conditions, the ions cannot contribute to the shield
process and the electrons act alone.

Figure 8 confirms this effect. At high Mach numbers t
radial shielding length tends to a value close tolDe , com-
mon to all temperature ratios. At lower Mach numbers
weak effect of the temperature ratioU is observed. Indeed
as the ion speed is reduced, the ion contribution to scree
becomes more relevant. Note also that at very low temp
ture ratios the effect of the ions is to decrease the shield

FIG. 8. Radial shielding lengthlD as a function of the Mach
number for different values of the temperature ratioU.
n

r-
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length, while at higher temperature ratios the effect is op
site. However, at all Mach numbers considered here the
fect is rather small.

The main effect is that the shielding length is very clo
to the electron Debye length and orders of magnitude lar
than the linearized Debye length. For example atU51023,
the linearized Debye length islL /lDe50.03, almost two
orders of magnitude smaller than thelD observed in experi-
ments and shown in Fig. 8.

V. CONCLUSIONS

A model for the interaction between a plasma and a
particle immersed in it is derived. The model is based on
Boltzmann equation for the plasma species and includes
effect of the collisions with the background neutrals. T
model is solved using an expansion in spherical harmon
To compare with previous theories, the model is reduced
simplified coupled hyperbolic-elliptic system for the ion de
sity and the electrostatic potential that neglects charge
lection by the dust. The final equations of the model a
solved numerically.

The model is applied to study the shielding of a test p
ticle in conditions typical of experiments with dusty plasma
A wake field is observed to propagate downstream of the
particle. A Mach cone with the expected angle is observ
Inside the cone, an oscillatory field is observed with a wa
length predicted by previous theories.

A comparison of the present model with previous theor
is successful and suggests that the model can be applie
study the shielding of dust particles, including important
fects neglected here: the finite size of the dust particles,
presence of ion and electron currents to the dust, and
existence of an ambient electric field in the sheath reg
where the dust particles are located.
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