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Bifurcations and transport barriers in the resistive-g paradigm
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The so-called resistive-g ~resistive pressure-gradient-driven turbulence! paradigm is a widely accepted and
frequently investigated model for nonlinear plasma dynamics. The parameter dependences of the generated
transport barriers as well as third order bifurcations will be discussed numerically and analytically in the
present paper. First, using a Galerkin representation, bifurcating states~from the conductive states in a rect-
angular cell! are investigated for the cases when only one unstable mode dominates. The dependence of the
bifurcation properties on the aspect ratio of the domain is discussed, leading to the conclusion that for van-
ishing ~or small! magnetic shear the so-called low, high, and edge localized mode transitions do not occur for
small aspect ratios of the domain. Including reasonable magnetic shear, the small-aspect-ratio cutoff disap-
pears, and transport barriers may exist in a broad parameter range. Second, for small aspect ratios, interesting
codimension-2 bifurcations occur. When unfolding the dynamics up to third order, e.g., a weakly nonlinear
interaction of convection cells is observed. The analytical results are confirmed by numerical simulations.

PACS number~s!: 52.35.Py, 47.20.Ky, 52.55.2s
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I. INTRODUCTION

In complex physical systems, e.g., magnetically confin
plasmas, various physical processes exist and interact si
taneously@1#. A complete and detailed theory of such mu
tifaceted systems will not be possible in the near future. T
so-called reduced models turned out to be extremely hel
in analyzing specific phenomena. The advantages of redu
models, which follow from quite complicated transport equ
tions, were already recognized a long time ago in flu
theory. For example, the Boussinesq equations@2# are as-
sumed to be good model equations for the Rayleigh-Be´nard
~RB! problem. In plasma physics, the so-called reduced m
netohydrodynamic~MHD! equations@3,4# proved their enor-
mous potential for applications during the last decade. W
the original reduced MHD models were developed
single-fluid MHD with fast motion~on the scale of the ther
mal velocities!, for slower motion a reduction of the two
fluid plasma equations was necessary. The latter reduc
has also been successfully performed@5#, leading, e.g., to the
so-called resistive-g paradigm~RGP!. Here g stands for an
effective field~e.g., caused by field line curvature!, in anal-
ogy to the gravitational field in classical hydrodynamical a
plications.

The two-dimensional~2D! Boussinesq equations~2DB!
and the RGP equations@6# ~for a plasma in the limit of van-
ishing parallel electric conductivity and a shear-free m
netic field! are very prominent reduced models of simil
forms. The RGP is being used to describe the generatio
transport barriers. The latter are believed to be respons
for the transition between different confinement modes
magnetically confined plasmas: low~L!, high ~H!, as well as
edge localized modes~ELMs! @7#, respectively. On the othe
hand, the 2DB equations describe similar transport modifi
tion processes for the RB convection~see, e.g.,@8#!.

In their simplest versions, RB convection, on the o
hand, and velocity shear flow generation in plasma confi
ment, on the other hand, are governed by the same typ
equations@6#
PRE 621063-651X/2000/62~1!/1162~13!/$15.00
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] t¹'
2 w1$w,¹'

2 w%1g]yp5m¹'
4 w, ~1!

] tp1$w,p%1R]yw5k¹'
2 p. ~2!

Here,¹'
2 5]x

21]y
2 is the 2D nabla operator in the plan

perpendicular to the external magnetic field. For both, 2
as well as RGP,w(x,y,t) is the stream function,v5 ẑ
3¹w, which coincides with the scalar electric potential
the case of RGP. Furthermore,p(x,y,t) is the temperature
perturbation in the case of RB convection, or the press
perturbation within the scope of RGP, respectively. The
efficientsm.0 andk.0 represent in both cases the visco
ity and thermometric conductivity, respectively. The co
stants R,g.0 are identified as the background dens
gradient and the magnetic field curvature in the case of R
or as the~instability driving! background temperature grad
ent and the gravity for the RB problem, respectively. Final
$ , % denotes the Poisson bracket$F,G%5(]xF)(]yG)
2(]yF)(]xG). For RGP~RB convection! the radial~verti-
cal! direction is identified asx and the poloidal~horizontal!
direction asy.

The applicability of the 2D equations~1! and ~2! to all
features of actual RB-type experiments@8# or RGP may be
questioned. For example, the flow in a Hele-Shaw c
though effectively two dimensional, requires addition
terms involving the drag of the confining plates to be tak
into account. Other three-dimensional~3D! experimental set-
ups, where instabilities of 2D initial conditions~convection
rolls! are examined, clearly require a 3D discussion@9#.
There is extensive literature available for 3D RB phenome
@10#. The situation is slightly different for RGP. In RGP
plasma motion along the magnetic field is considered as f
Therefore, with good reasons, the situation can be appr
mated as 2D. Any inhomogeneity in the longitudinal dire
tion is usually taken into account via an effective paral
wave number.

One should emphasize that magnetic shear and toroid
effects are ignored in most~semianalytical! treatments men-
tioned so far. In the following we shall consider one of t
1162 ©2000 The American Physical Society
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open questions within RGP, i.e., the existence of trans
barriers in the presence of magnetic shear. Then, we s
generalize Eqs.~1!, ~2! to

] t¹'
2 w1a$w,¹'

2 w%52s2¹ i
2w2a]yp1m¹'

4 w, ~3!

] tp1a$w,p%52a]yw1k¹'
2 p. ~4!

Here, a52Lx /Ly is the ~fluid! aspect ratio of the slab do
main, ands2 is the shear parameter. More details of t
model ~3!, ~4! are presented in Appendix A.

The boundary conditions~usually Dirichlet boundary con
ditions in x and periodic boundary conditions iny! require
some clarification when comparing the results with expe
ments. In they direction, the periodicity lengthLy differs
from 2pa ~for a torus with minor radiusa and major radius
R0!, since on a poloidal cycle around the torus one pas
both unfavorable and favorable curvature regions. Hen
strictly speaking, only on a fraction of 2pa the plasma con-
figuration is Rayleigh-Taylor unstable at all. Having this
mind, the determination of the correct value of the period
ity length Ly is still an open problem, for both RB- an
RGP-like applications.

Numerical simulations@7# of the shearless system~1! and
~2!, and semianalytical approaches using Galerkin appr
mations @6,8,11#, have been used to unveil the bifurcatio
characteristics of the model. Note that, except for differ
normalization units,~1! and~2! are identical to~3! and~4! in
the cases[0. It should be further mentioned that the wor
motivated by applications in plasma physics concentrated
codimension-1 bifurcations@for large~fluid! aspect ratiosa#.
There exist, however, interesting investigations@12# in fluid
theory where codimension-2 bifurcations for smalla are in
the center of interest. We shall come back to this aspect la

The celebrated Lorenz system@13# is probably the bes
known example for a physically motivated Galerkin appro
mation. In the present paper, using a Galerkin basis, our
aim is to clarify the codimension-1 bifurcation characterist
with respect to the~fluid! aspect ratioa. Note that the aspec
ratio defined here contains a factor 2 compared toaF
ªLx /Ly as defined in some other related work@7,14,15#.
The present definition is adopted from@6,8# and allows for a
simpler mathematical notation. Using a more compl
Galerkin description, even in the cases[0 an effect will be
reported, which has not yet been discussed in the literatur
far.

The second aim of the present paper is to investigate
influence of magnetic shear on the bifurcation scenario.
cause of the then appearing explicitx dependence, simple
Fourier modes inx cannot be adopted anymore. Howev
because of the ubiquitous presence of magnetic shea
magnetically confined plasmas, incorporation of shear
mandatory. We should note that besidesa and s two other
parameters, namely,m andk, are present in the system. The
can be related to well-known parameters in fluid theo
namely, the Rayleigh number

Ra5
p4

mk
~5!

and the Prandtl number
rt
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k
. ~6!

Instead of the Rayleigh number we shall use

n5Amk. ~7!

The third aim of the present investigation is to point o
the interesting dynamics that may appear near codimensi
bifurcation points. In Fig. 1 we have summarized the regio
of interest @for Pr51 and s50#. We are interested in the
so-called ‘‘nontrivial’’ states that appear below a critic
curve in the~a, n! plane. As indicated by the broken line
@g l ,m50 for (l ,m)5(1,1),(1,2),(1,3), respectively# of the
figure, the critical curve is obtained as the envelope of
marginal stability curves for the linear modes. Besides
sults on the shear dependence of the so-called L-H-E
transition region, we shall investigate the regions close to
codimension-2 bifurcation points where two linear mod
become simultaneously unstable.

The present paper is organized as follows. Section II st
with a short description of the Galerkin approximation. Sta
ing from a constant ‘‘trivial’’ ~conductive! state, a
codimension-1 bifurcation diagram with respect to the~fluid!
aspect ratioa will be obtained and discussed for the she
less situation. We shall elaborate on the existence of a cu
in a. It will be shown, however, that the cutoff disappears f
reasonable magnetic shear. Section III presents an over
over the dynamical properties near the codimension-2 bi
cation points. It will be restricted, however, to effects up
third order in amplitudes. Section IV summarizes the resu
and concludes with a short outlook.

II. CODIMENSION-1 BIFURCATIONS, ASPECT RATIO,
AND SHEAR DEPENDENCE

In this section we concentrate on the dynamics be
dominated by one unstable mode. In other words, here

FIG. 1. Linear stability regions of Eqs.~3! and ~4! for m5n
5k and s50. In the ~a,n! plane, above the depicted curven
5n(a) the stable conductive statesw5p50 exist. The broken
lines show the critical viscosityncr for marginal stability in the
shearless case (s50) for different linear modes@g l ,m50 for
( l ,m)5(1,1),(1,2),(1,3), respectively#, as a function of the~fluid!
aspect ratioa. For n.ncr the modes are linearly stable.
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investigate the lower right corner of Fig. 1. The shearl
case is of special interest for fluid applications. Surprisin
enough, even in that simplified case some qualitatively n
results follow from a detailed analysis.

Let us abbreviate~3! and ~4! by

] tHf5Lf1N~f,f!, ~8!

wheref5(w,p) t,

H5S 2¹'
2 0

0 1
D , ~9!

L5S s2¹ i
2 2m¹'

4 a]y

2a]y k¹'
2 D , ~10!

andN represents the nonlinear term,

N~f,f8!5aS $w,¹'
2 w8%

$w,p8% D . ~11!

As long as we concentrate on the shearless case we
sets50. We next introduce a truncated basis representa
@16# in the form

f~x,y,t ![ (
~ l ,m!PB

alm~ t !f lm~x,y!. ~12!

While a complete expansion obviously describes the sys
exactly, the Galerkin approximation consists in selectin
finite subsetB of ‘‘relevant’’ modes ~l,m! from the infinite
basis functions. The indexl is the radial label, whereasm is
the toroidal wave number. Shear flow modes are natur
included as (l ,0) modes. Real fieldsp andw as well as the
boundary conditions require that for each mode (l ,m)PB
with mÞ0 its conjugated mode (l ,2m) belongs to the
Galerkin base, too. Within a Galerkin approximation we
sert the truncated basis representation into the original pa
differential equations. Projecting onto the~orthogonal! basis
functions, we obtain closed~nonlinear! ordinary differential
equations for the coefficientsalm . The applicability of a
Galerkin approximation for the present problem and its lim
tations can be deduced similar to previous investigati
~e.g.,@17#!.

It is important to choose the appropriate modes. First,
can writef lm in the form ~pl0 5 w l0 5 0!

f lm~x,y!5S 2 iw lm~x!

plm~x! Deimy, ~13!

and relate the determination ofw lm andplm to the linearized
eigenvalue problem. The latter appears in the form

g lmHmf̃ lm5Lmf̃ lm , ~14!

with the definitions

Hm5S 2~]x
22a2m2! 0

0 1
D , ~15!
s
y
w

all
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e

Lm5S 2m~]x
22a2m2!22~samx!2 2am

2am k~]x
22a2m2!

D .

~16!

Obviously,

f̃ lm5S w lm~x!

plm~x! D ~17!

holds.
In the past, beginning with Lorenz@13#, the understanding

of the system~1! and ~2! always leapt a step forward whe
the relevance of new modes~not included in prior work! was
noticed~see@6,8,11#!. In the present work we show that onc
again the system is richer than previously thought.

The first step in the analysis is the linearized case, i.e.,
consider perturbations around the~‘‘trivial’’ ! conductive
state. In the shearless situation, the analysis is quite stra
forward, and a summary is presented in Appendix B. W
magnetic shear, we obtain, of course, localized eigenfu
tions. But there is no fundamental~qualitative difference! in
determining the eigenvalue spectrum@18#; see also Appendix
C.

A. Relevant modes

It is well known that the linear instability may saturate
m and k do not vanish. The saturation is achieved by t
transport of energy~via nonlinearity! from the linearly grow-
ing modes to the small wavelengths~damping region!. For
simplicity, we will restrict ourselves here to the case Pr51,
i.e., n5k5m.

The following behavior of the system~1! and ~2! was
reported in literature@6–8#: Starting from a purely conduct
ing state, the system first undergoes a pitchfork bifurcat
@19#, when the viscosity is decreased belown,ncr(a). Near
the critical point, the first mode becomes linearly~Rayleigh-
Taylor! unstable@that is the~1,1! mode fora.0.493; a shift
to higher~1, m! modes occurs below this aspect ratio; see
figure in Appendix B#, and the system stays in the ‘‘Loren
manifold’’ @8#. The instability saturates in a low~L! confine-
ment state, which is characterized by an upright ste
plumelike density perturbation and one~or more! vortex
pair~s!, see Figs. 2~a! and 2~b!.

These vortex pairs are the typical trace of the Raylei
Taylor instability. Ifn is further decreased, theL-state vortex
becomes unstable via another supercritical stationary bi
cation, leaving the ‘‘Lorenz manifold.’’ Drakeet al. @14#
called that second instability a ‘‘peeling instability.’’ Shea
flow is generated, which causes the vortex pair to tilt a
saturate in a new steady state; see Figs. 2~c! and 2~d!. Ac-
cording to the scenario presented in the literature, this
called high confinement~H! mode appears whenn drops
below ñH(a). The transition is accompanied by a reducti
of the heat~particle! flux in the x direction and a transpor
barrier arises. For even lowern values,n, ñELM(a), the
‘‘peeling instability’’ eventually does not saturate in a pu
H mode anymore. The ELM state@a ~quasi-! periodic oscil-
lating convection pattern# appears~see Fig. 3! via a super-
critical Hopf bifurcation from the steady tilted cell. Th
~tilted! vortex pair is destroyed by shear flow generation. T
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latter, in general, is too massive to let the system saturat
an H mode. Then the shear flow deteriorates, since all s
modes ~l,0! are linearly damped. Finally, the Rayleigh
Taylor instability once again forces the growth of a ne
vortex pair, and the cycle repeats. The graphs ofñH(a) and
ñELM(a), corresponding to the above scenario, are show
Fig. 4.

Finn as well as Drakeet al. @7,14,15# studied the influ-
ences of viscosity and~fluid! aspect ratioa on vortex stabil-
ity first for a simplified vorticity equation model. Then, the
extended their research to the full system~1! and ~2!. Using
a low-dimensional Galerkin approximation, they conside
the stability of a given vortex pair with respect to a sm
shear flow perturbation. Although this model might be
crude approximation to the real system dynamics~as it, in a
way, considers shear flow generation but not vortex dyna
ics!, the authors mention that there is a cutoff aspect ratio
the case of the ‘‘ideal’’ (n→0) peeling instability. In terms
of the system~1! and ~2!, the inviscid instability is a rathe
degenerate situation since the~intermediate! saturation of a
vortex can only take place when viscosity is present. T
necessity arises to include both vortex and shear flow g
eration and their mutual coupling to understand the wh
system. Earlier work by Howard and Krishnamurti@8# does
not indicate the existence of a cutoff aspect ratio for
‘‘tilted cell convection’’ ~H mode!. In the present paper w
show that on the contrary, such a cutoff aspect ratio exis

Our studies are also motivated by the question of whe
the results of a Galerkin approximation are stable with
spect to a supplementation of the Galerkin bases. Previo
@8#, the basesB5$(1,1),(1,0),(2,0̄),(2,1)%ø$conjugated
modes% and an aspect ratio ofa51.2 have been used. W
found that there is one particular mode, the~1,2! mode,
which qualitatively changes the system dynamics. For sm
a, there are no more H or ELM states. Including the~1,2!

FIG. 2. Density profile~a! and potential~b! distribution of an
L-mode saturated state forn50.16 anda52 (aF51). The same,
~c!, ~d!, for an H mode withn50.14 anda52. Initial conditions
are 0.1% random density perturbations. Here and in all the foll
ing graphs, thex axis points in the vertical direction and they axis
in the horizontal direction.
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mode, the only visible result of the decrease inn is a slight
and steady change in the L-state shape of the density pe
bation to more mushroomlike plumes~known from the
Rayleigh-Taylor instability of fluids!. Obviously, the~1,2!
mode prevents the energy to pile up in the~1,0! w shear
mode and funnels it to linearly damped modes. It hence
pedes the system in entering an H or ELM regime. There
no other mode like~1,2!, say, in the rectangular domai
~1,0!, . . . ,~5,5!, that has this property. The ‘‘destructive n
ture’’ of the ~1,2! mode persists even if an arbitrary amou

-

FIG. 3. Snapshots of the density profile~left column! and the
potential~right column! of an ELM state forn50.12 anda52 at
times t5107.0, 114.9, 120.2, 128.1, 133.4, and 141.3, respectiv
~from top to bottom!. At t5144.0 the cycle closes.
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1166 PRE 62M. BERNING AND K. H. SPATSCHEK
of other modes~e.g., 100, which in resolution comes close
a direct numerical simulation! is included.

Evidently, the~1,2! mode plays a crucial role for the dy
namics of the system, e.g., at an aspect ratio of 1.2. It he
should be taken into account when selecting a Galerkin b
The linear analysis presented in Appendix B gives an in
cation why the~1,2! mode may be as important as the oth
modes considered in the Galerkin base. At an aspect rat
1.2 the~1,2! mode becomes marginally unstable at a hig
viscosity than the~2,1! mode, which is included in the se
With respect to linear instability the~1,2! mode is also more
important than the shear modes, since the latter are alw
~linearly! damped. Hence, for a simulation one could emp
a simple strategy to determine relevant modes from the lin
growth rates. One should use the basesGg* (a,n,Pr)
5$( l ,m)PN3Z̄:g lm(a,n,Pr)>g* %. The maximum value
of g* should be fixed in a way that a decrease ofg* ~hence
supplementation of the base! does not significantly chang
the results.

B. Aspect ratio and magnetic shear dependences

We now present the detailed aspect ratio dependenc
the L-H transition in the Rayleigh-Be´nard problem~1! and
~2!. We used a finite Galerkin basis~and confirmed the re
sults by including more modes!. In Fig. 4, in dependence o
a and n the phase diagram for the various confinem
modes is shown. In the calculations leading to the solid li
in Fig. 4 we focused on viscositiesn.0.1. As a rule, lower
viscosities always require a higher resolution, because
number of linearly unstable modes increases quadratic
with 1/n. With decreasing values ofn, the dissipative region
is shifted to smaller scales, thus claiming for larger base
model the system. Typically, viscositiesn'0.1 and below
require bases with 100 or more modes.

We clearly see that for large values ofa ~.1.6! the pre-
vious results~dashed lines! are confirmed. However, fo
small a ~,1.5! a significant deviation from previous predic
tions actually occurs: H and ELM states cease to exist
a,1.45. In addition, there is an ELM-L transition for 1.4
,a,1.53 whenn is decreased sufficiently. The diagra
displayed in Fig. 4 was obtained using large Galerkin ba
The qualitative features of the phase diagram remain
smaller bases, as long as the~1,2! mode is taken into ac

FIG. 4. Phase diagram for the existences of L, H, and E
states~solid lines! with respect to aspect ratioa and viscosityn for
s[0 and fixed Prandtl number Pr51. The dashed lines depict th
border lines, which result from the truncation used in previo
works.
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count. It should be noted, however, that Fig. 4 only sho
the L-H-ELM route; as will be discussed later, for smallera
values new characteristic states may appear.

In the case of magnetic shear the basic equations~3! and
~4! become explicitlyx dependent, and the eigenfunction
are not anymore harmonic inx. For the Galerkin approxima
tion we recalculated the explicit forms of the eigenfunction
Knowing the latter, we now proceed in a similar way as
the preceding section. Projecting on a finite Galerkin ba
we solve the ordinary differential equations to determine
bifurcation diagram in~n,a! space. In Fig. 5 we show a typi
cal example for Pr51 ands532/p. Note that the cutoff ina
has disappeared, and the L-H transition occurs at m
smallern values, compared to the shearless result~Fig. 4!.
The borderline for the H-ELM transitions appears at ve
small n values~and therefore is not resolved in Fig. 5!. This
is understandable because of the effective shear damp
Moreover, at the bifurcation line many modes are linea
unstable in the strongly sheared situation. This is also
nificantly different from the shearless case. Going back to
definition of s, the values532/p used for demonstration is
easy to realize in experiments. In other words, with magn
shear the L-H-ELM transition can be expected even for sm
~fluid! aspect ratios.

C. Codimension-1 and coupled mode approximations

The supercritical bifurcation to the L state can be an
lyzed in a rigorous mathematical manner by making use
center manifold theory~CMT! for codimension-1 bifurca-
tions.

In its strict form, for codimension-1 problems, CM
@19,20# provides us with one amplitude equation for th
~one! marginal mode at (ac ,nc). The theory has been
worked out in, e.g.,@21#, and the amplitude equation for th
L state is

] tx15g1x11A1
111̄ux1u2x1. ~18!

with explicitly known coefficientsg1 andA1
111̄ . The present

numerical treatment fully confirms the analytical prediction
The agreement is better the closer we are to the marg
~critical! curve shown in Fig. 1.

A generalization of the pure codimension-1 analysis w
proposed in@22#. Besides the dominating unstable~1,1!
mode, the driven~1,0! mode has been included in order

s

FIG. 5. Same as Fig. 4, but fors532/p. Note that the H-ELM
transition is not shown since it occurs very close to then50 axis.
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incorporate a sheared poloidal flow. Shear flow genera
via Reynolds stress can be investigated via

] tx05g0x01A0
011̄x0ux1u2, ~19!

] tx15g1x12A0
001x0

2x11A1
111̄ux1u2x1. ~20!

This is a physically motivated, but mathematically not rigo
ously justified treatment. It has been shown that besides
~1,2! mode ~amplitudex2!, e.g., the~1,3! mode ~amplitude
x3! and the~2,1! mode~amplitudex4! alter the results. Then
we get a system of five coupled ordinary differential equ
tions @21#. This is a quite satisfactory analytical approxim
tion to the numerical simulations. We can think of a nonl

early modified damping@g0→g01A0
011̄ux1u2 in case of the

~1, 0! mode# and growth@g1→g12A1
001x0

2 in case of the~1,
1! mode# rates such that there may be a nonlinearly gen
ated codimension-2 bifurcation point. The mathematica
fully justified theory of such an extended~or renormalized
codimension-2 bifurcation! analysis is however still missing
The main problem in formulating a rigorous codimension
theory for the L-H-ELM transition is due to the fact that w
only approximately know the L and H states themselves
should be mentioned that similar problems arise for the
called nonlinear instabilities, which are of growing interest
many fields@23#.

In Sec. III we shall present results from an exa
codimension-2 analysis, in a parameter region where all
coefficients can be evaluated without approximations.
the present situation, in a first step, we verified the effec
the ~1,2! mode by analytical studies of the L-state stabil
~with a 234 mode Galerkin approximation linearize
around the L state!, similar to the studies in@6,8#. Evaluating
the linear stability using the Hurwitz criterion, the numeric
results were confirmed.

III. THIRD ORDER THEORY
FOR TWO UNSTABLE MODES

Now, we investigate regions where two modes beco
simultaneously unstable~upper left corner in Fig. 1!. This
analysis will show that the resistive-g paradigm is much
richer than thought previously. Assumings50, two linearly
independent marginal Fourier modes@wave vector k
5(m,n), with m>1 and n>0 by convention# can be ob-
tained. We are interested in those modes which become
unstable when dissipation~n! is decreased, i.e., the~1,n!
modes, fornPN. Along their lines of marginality, the kerne
of the linear operator is two dimensional~since there are two
modes for each wave vector! everywhere except in points
where two curves intersect. The~a,n! coordinates of these
points with a four-dimensional kernel ofL and two simulta-
neously marginal wave vectors~1,n! and (1,n11) are

a5
1

n S n

n11D 1/3F S n11

n D 2/3

11G21/2

, ~21!
n

-
he

-

-

r-
y

It
-

t
e
r
f

l

e

rst

n5

S n11

n D 1/3

1S n

n11D 1/3

F S n11

n D 2/3

111S n

n11D 2/3G3/2. ~22!

We specialize for the pair~a,n! with the highest possiblea
value, viz.,n51 and (ac ,nc)'(0.4934,0.3558). At this so
called critical~marginal! point, the linear, nonlinear, and en
ergy operators are denoted byLc , Nc , andHc , respectively.
The kernel ofLc is spanned by the eigenfunctions for th
zero eigenvalue,F1 , . . . ,F4 , given by

F2n215NS 1

qn
sinx sinny

2APr sinx cosny
D , ~23!

F2n5NS 1

qn
sinx cosny

APr sinx sinny
D , ~24!

for n51,2, whereN52/(11Pr)1/2 is used as a normalizatio
constant, andqn5(11ac

2n2)1/2.

A. Amplitude equations

Within CMT, the bifurcation parametersDn5n2nc and
Da5a2ac are provided with trivial ‘‘equations of mo-
tion,’’ ] tDn50 and ] tDa50, and treated as ‘‘margina
modes’’ with ‘‘synthetic eigenfunctions’’F5 andF6 . CMT
implies that near the marginal point the dynamics is dom
nated by the marginal modes; all other linear modes are
to be ‘‘slaved.’’ According to this, the temporal dependen
of the complete fieldF(x,y,t) is expressed in terms of th
amplitudes of the marginal modesxi(t) alone,

F5 (
1< i<6

xiF i1 (
1< i< j <6

xixjF i j 1 (
1< i< j <k<6

xixjxkF i jk

1¯ . ~25!

Here, the spatial expansion coefficients are given by the m
ginal modesF i(x,y) in first order and unknown higher orde
contributionsF i j (x,y),F i jk(x,y), and so on. The latter sum
marize the influence of slaved modes. Apart from the am
tudes of the kernel modes,x1 , . . . ,x4 , the bifurcation pa-
rameters appear in a natural way among the amplitudes
definingx55Dn andx65Da.

For the temporal evolution of the marginal mode amp
tudes the ansatz

] txi5 (
1< j <6

ai
jxj1 (

1< j <k<6
ai

jkxjxk1 (
1< j <k< l<6

ai
jklxjxkxl

1¯ ~26!

is applied, where the coefficientsai
j , etc., are to be deter

mined. Because of the trivial equations of motion for t
bifurcation parameters, we already know that all coefficie
a5

r ,...,s anda6
r ,...,s vanish.
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Finally the operatorsL, H, andN remain to be expande
in terms ofxi ,

L5Lc1~x5]n1x6]a!Lc1 1
2 ~x5]C1x6]a!2Lc1¯ ,

~27!

H5Hc1x6]aHc1¯ , ~28!

N5Nc1x6]aNc1¯ . ~29!

Inserting the expansions~25!–~29! into Eq.~8!, we obtain
a system of partial differential equations for the spatial
pansion coefficientsF i j , F i jk and so on, which is correct u
to, e.g., the third order inxi . In order to calculate the tem
poral evolution coefficientsai

r ,...,s , the system is treated in
two step process in ascending orders ofxi : By projecting the
system on the marginal modes of the adjoined problem,
temporal evolution coefficientsai

r ,...,s of the actual order are
calculated. Then the equations are solved for the spatial
pansion functionsF i ,...,m of that order, which are require
for the next step.

There are as many as 308 higher order~>2! temporal
evolution coefficients to be calculated for obtaining Eq.~26!
in third order. It appears to be prudent to consider the im
cations of the symmetries of Eq.~8! on the evolution coeffi-
cients. They already reduce the number of coefficients to
calculated appreciably. In the present case we can make
of theO(2)3Z(2) symmetry group@24,25#. Specifically, all
coefficients for quadratic terms ofx1 , . . . ,x4 vanish. In
complex notationz15x11 ix2 and z25x31 ix4 , Eqs. ~26!
are condensed to

] tz15g1z11d11uz1u2z11d12uz2u2z1 , ~30!

] tz25g2z21d21uz1u2z21d22uz2u2z2 , ~31!

where

g15ai
i5x51ai

i6x61ai
i55x5

21ai
i56x5x61ai

i66x6
2, ~32!

g25aj
j 5x51aj

j 6x61aj
j 55x5

21aj
j 56x5x61aj

j 66x6
2, ~33!

with i 51 or 2, j 53 of 4, and

d115a1
1115a1

1225a2
2115a2

222, ~34!

d125a1
1335a1

1445a2
2335a2

244, ~35!

d215a3
3115a34

3225a4
4115a4

422, ~36!

d225a3
3335a3

3445a4
4335a4

444. ~37!

All other coefficients~up to cubic order! vanish. Hence there
are only 14 to be really calculated. In addition, the num
of spatial expansion functions required in the expli
calculation is reduced to seven. Details are presented
Appendix D.

After having projected the dynamics of a rather comp
system near the marginal point on a rather simple se
nonlinear ordinary differential equations~30! and ~31!, the
discussion of these equations will reveal the nonlinear lo
time dynamics of the original system near the critical poi
-

e

x-

i-

e
se

r
t
in

x
of

g
.

The first step towards this goal is to transform the amplitu
equations to normal forms. Equations~30! and ~31! are eas-
ily transformed into a normal form by the polar ansatzzj
5r j exp$iuj%, for j 51,2, which gives two coupled nonlinea
differential equations for the radii. After a normalizationr 18
5r 1ua1

111u1/2, r 285r 2ua3
333u1/2, we get

] tr 152r 1~m11r 1
21br2

2!, ~38!

] tr 252r 2~m21cr1
21r 2

2!, ~39!

and two trivial evolution equations for the angles,] tu j50. In
Eqs. ~38! and ~39! the primes were omitted andm j52g j ,
b52a1

133/ua3
333u, c52a3

113/ua1
111u were defined. The equa

tions constitute a normal form that was first discussed
Takens@26#. As has been mentioned already, besides
O(2) symmetry, theZ(2) symmetry applies here too. Th
latter causes the vanishing of the quadratic terms, which
erwise should be expected@12,27#. For a further discussion
see also@28#.

At this stage it is important to emphasize the difference
Eqs.~19! and~20!. Although we again get two coupled equ
tions, now other modes are coupled. The reason is that
are in a different parameter regime. Also the structure of
coupled equations~38! and ~39! is not identical to that of
Eqs. ~19! and ~20!. Therefore, in the following we have to
unveil the nonlinear dynamics associated with the mo
~38! and~39!. At the first glance, that analysis will look ver
technical. However, at the end we shall detect a whole v
ety of fascinating possibilities, which may explain why~ex-
perimentally! very often physical systems do not react a
cording to the simple L-H-ELM transition scenario.

B. Unfoldings

For all codimension-1 and some codimension-2 norm
forms the so-called unfoldings, i.e., the classification of
nonlinear dynamics in terms of phase space portraits,
already known and discussed in literature, see, e.g.,@19#.

Extracting the phase portraits of Eqs.~38! and ~39! re-
quires the calculation of fixed points (r 1* ,r 2* ) and their linear
stability: ~spiral! source, sink, or saddle point. Then the flo
topology can be reconstructed for the entire (r 1 ,r 2) phase
space. The possible fixed points are presented in Tab
together with their domains of existence. Fixed point 1 is
analog of the ubiquitous trivial solution. Fixed points 2 and
correspond to pure~1,1! or ~1,2! mode states, respectively
Fixed point 4 denotes a mixed~1,1!-~1,2! state.

The domains of existence in Table I are given by relatio
betweenm1 andm2 , which are functions of the bifurcation
parameters and the Prandtl number, and the coefficienb
andc that are functions of the Prandtl number alone. For a
value of Pr there are regions in the~a,n! plane where all
fixed points exist. Their linear stability however varies. D
pending on the signs ofb, c, and 12bc, with c.0 always,
one can identify three different ‘‘cases.’’

Each case contains a set of six different regimes of
foldings, which are delimited by the curvesm150, m250,
m15bm2 , and m25cm1 in the ~a,n! plane. The last two
curves, called pitchfork curves, indicate the boundaries
the domain of existence for the fixed point 4. They are
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TABLE I. Four possible fixed points of systems~38! and ~39!.

Coordinates (r 1* ,r 2* ) Domain of existence

fixed point 1 ~0,0! all m1 ,m2 ,b,c
fixed point 2 (A2m1,0) all m1<0,m2 ,b,c

fixed point 3 (0,A2m2) all m1 ,m2<0,b,c

fixed point 4 (A(bm22m1)/(12bc),A(cm12m2)/(12bc) all m1 ,m2 ,b,c with
(bm22m1)/(12bc).0,(cm12m2)/(12bc).0
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stricted to the region$(a,n):m1<0 or m2<0%, i.e., where
the fixed points 2 or 3 exist. The crossover of these cur
signals changes in the flow topology, i.e., the fixed po
existence and stability. The ‘‘crossing events’’ are related
the changes in sign ofb and 12bc ~c is always positive!.

For 0,Pr,0.280691, we haveb,0 and therefore 1
2bc.0. This is the so-called case III~the numbering is due
to Takens’ original work@26#!. Figure 6 exemplifies the six
sectors of the~Da, Dn! plane where different unfoldings ar
realized for case III using Pr50.24. The numbers 1, . . . ,8
refer to the different types of unfoldings, which are summ
rized in Fig. 7. The asterisks~‘‘4 * ’’ and ‘‘8 * ’’ ! indicate that
the fixed point 4 in this unfolding is realized as a spi
source, whereas all other sources or sinks are ordinary
otherwise. Topologically we do not have to distinguish b
tween spiral and ordinary sources or sinks, anyway. I
however important to note that spirally attracting or repelli
fixed points sometimes give rise to Hopf bifurcations, whi
are prone to considerably complicate the discussion. We
rule out Hopf bifurcations in our problem since there is
point in the~a,n! plane where the stability related eigenva
ues for the fixed point 4 are imaginary conjugates@19#, i.e.,
where the fixed point changes its behavior from a sp
source to spiral sink or vice versa. The same holds for
other fixed points. As a result there are pitchfork bifurcatio
only. Later however, we will have to come back to this pro
lem. It is then interesting that the type-8 unfolding, whi
shows a finite~1, 1! mode contribution, exists in a region o
phase space where this mode is linearly stable.

For PrP@0.280691,0.296461#, we haveb.0 and still 1
2bc.0, giving the so-called case I~a!. Coming from lower
Prandtl numbers, them15bm2 curve has crossed them1
50 line eliminating type 8 in favor of type-3 unfoldings
Figure 8 shows the bifurcation diagram for Pr50.288.

FIG. 6. The unfolding sectors for Pr50.24 are depicted in the
(Dn,Da) plane. The numbers 1 to 8 correspond to the types
unfoldings given in Fig. 7. TheDa axis range is20.05 to 0.05, the
Dn axis ranges from20.03 to 0.03.
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With Pr.0.296461,b remains positive but 12bc,0
changes sign, giving rise to case I~b!. On route from case I~a!
to I~b! the pitchfork curvesm15bm2 and m25cm1 have
crossed, switching the stability characteristics of the fix
point 4 from source to saddle point. Simultaneously,
fixed points 2 and 3 have become sources~cf. unfolding type
7! creating the only unfolding where two sources comple
Figure 9 exemplifies the case for Pr51.5. Further increase o
the Prandtl number does not result in any more change
sign, i.e., line crossovers.

All eight types of unfoldings in Fig. 7 eventually lead t
saturated final states. The saturated states coincide with
sources in the phase space diagrams, i.e., the fixed poin
through 4, depending on the Prandtl number and the unf
ing parameters. They are unique except for the type-7
folding, where the system may either realize fixed point 2
3 as a final state~but not both together!.

C. Comparison with numerical simulations

We checked our CMT results and their ranges of valid
in the ~a,n! plane~which might be limited to a rather sma
neighborhood of the critical point! by comparing with direct
numerical simulations.

In the previous section we discussed and finally den
the possibility of Hopf bifurcations for the fixed point 4
which is stable for the cases III and I~a!, i.e., Pr
<0.296461. The numerics, in contrast, reveal that the fi
point actually becomes unstable to a so-called tertiary~pitch-
fork! bifurcation. This instability, however, occurs at a fini
distance from the marginal point, indicating that it is a high
than third order phenomenon. In Fig. 10, an example for t
instability is shown for Pr50.24. The bifurcation parameter
Da, Dn are decreased along the lineDn50.2Da, which is
located in the type-8 unfolding sector. Theory predicts t
there are three fixed points, 1, 3, and 4, with the first two
them unstable. Up toDa'20.01 we have excellent agree

f
FIG. 7. The phase flows for the eight types of unfoldings. T

horizontal axis depicts ther 1 coordinate, the vertical axisr 2 .



in

t
d

Fo

re
o

d
dd
fo

ch

a-
nt
ow
ge
ra
fo
-

b
e
th

g
o

n

es
ig

as
di-

its
int
lly
lly

ates.
on

la-

eri-
ld-
n.

se

lt of
es,
all
ng
u-
ves

u-

es,

nt

2

1170 PRE 62M. BERNING AND K. H. SPATSCHEK
ment between theory and numerical simulation. With
creasing distance from the origin, the~1,1! mode amplitudes
fall short of the theoretically predicted values and begin
decrease. In parallel, the~1,2! mode amplitudes are enhance
to strengths well above the analytically calculated levels.
Da'20.016 they eventually saturate at values that are
good agreement with a fixed point 3 saturated state, whe
the ~1,1! mode amplitudes vanish. Clearly, an exchange
instability has taken place between the fixed points 4 an
The fixed point characteristics change from source to sa
point, and vice versa. Similar results were obtained
type-4 unfoldings in both cases I~a! and III ~here, only for
larger uDau, uDnu!. On the other hand, we observed no su
exchange process between the fixed points 4 and 2~for
type-4 unfoldings!.

Tertiary bifurcations were found to be limited to situ
tions with a stable fixed point 4. For other stable fixed poi
similar procedures like that outlined above did not sh
qualitative discrepancies like a tertiary bifurcation. Lar
distances from the origin only led to quantitative deterio
tion in the agreement of CMT and numerical results, e.g.,
Dn520.1 @20.2#, the potential levels differ by approxi
mately 2% @10%#, but the pressure levels lie 30%@50%#
lower than predicted. The increasing deviation can mainly
attributed to the unability of third order CMT to model th
effective damping through energy cascades. However, in
numerical simulations third order CMT modes~F i andF i j !
contain typically more than 98% of the systems total ener

In order to demonstrate that the CMT results are in go
agreement with numerical simulation data in a~small! neigh-
borhood of the bifurcation point, we varied the bifurcatio
parameters along circles (Dn,Da)52r(sinu,cosu). On its
way through the parameter space the system thus pass
different types of unfoldings that exist for a given case. F

FIG. 8. Same as Fig. 6, but for Pr50.288.

FIG. 9. Same as Fig. 6, but for Pr51.5.
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ure 11 shows the results for Pr51.5 @case I~b!# with r
50.01. The trivial, i.e., stable, part of the angular range w
omitted. The numbers between the dotted vertical lines in
cate the type of unfolding. Note that in Fig. 9 the lines~CMT
predictions! indicate the existence of fixed points, but not
stability properties. Also the lines for the unstable fixed po
4 are not shown. To check the stability of both theoretica
stable fixed points of the type-7 unfolding, we successfu
tried to prepare the system in both possible saturated st
Which state is to be realized in a given situation depends
the initial conditions imposed. In these numerical simu
tions we started with a CMT approximated~unstable! fixed
point 4 state. Figure 12 covers case I~a! (Pr50.288) using
r50.002. Again, the agreement between theory and num
cal experiment is good, although the enlarged type-4 unfo
ing domain indicates the onset of the tertiary bifurcatio
Figure 13 proves the validity of the CMT prediction for ca
III with Pr50.24 andr50.01.

Stable fixed point 4 saturated states are clearly a resu
nonlinear dynamics: When considering linear growth rat
the ~1,2! mode is by far the dominant mode throughout
type-4 and -8 unfolding sectors of case III. When starti
from random initial conditions, indeed a fixed point 3 sat
rated state emerges first. The system then slowly mo

FIG. 10. Comparison of CMT predictions~lines! and a numeri-
cal experiment~symbols!. Dashed lines represent fixed point 3 sat
rated (w,p) states, dotted lines indicate~1,2!, and dashed-dotted
lines (1,1)(w,p) components of the fixed point 4 saturated stat
respectively. Thew curves always exceed thep curves. Solid sym-
bols denote numerical~1,2! values, open symbols represent~1,1!
components.w values are denoted by circles, squares represep
values.

FIG. 11. Comparison of CMT prediction~lines! with numerical
simulation~symbols! for (Dn,Da)52r(sinu,cosu), Pr51.5, and
r50.01. In addition to Fig. 10, solid lines denote fixed point
saturated (w,p) states.
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along the unstable direction of fixed point 3 towards fix
point 4. Its amplitudes decrease to fixed point 4 levels, as
turn, the~1,1! fields grow in magnitude. Except for the typ
7 unfoldings of case Ib, we found that the final state of o
numerical simulations did not depend on the initial con
tions applied.

The present unfolding analysis is valid only up to thi
order in amplitude and in a small neighborhood of the ori
(uDau,uDnu<0.01). Because of the vanishing of all eve
orders in x1 ,x2 , . . . , the relative phase remains undete

FIG. 12. Same as Fig. 11, but for Pr50.288 andr50.002.

FIG. 13. Same as Fig. 11, but for Pr50.24.
in

r
-

mined. The individual phases couple to the relative phase
a fifth order equation@28#. Also for the present case, a
extension, by advancing the CMT to fifth order, is possib
and will be published elsewhere.

IV. CONCLUSIONS

In the present paper the bifurcation behavior of the sys
~3! and ~4! with respect to the~fluid! aspect ratio, viscosity
and magnetic shear has been analyzed. Three main re
have been obtained. First, in the shearless case and for s
~fluid! aspect ratios, the commonly accepted L-H-ELM tra
sition scenario has been shown to need some refinem
Second, with increasing magnetic shear the cutoff ina dis-
appears, and the L-H-ELM transition becomes the gen
picture. Third, regions exist where the bifurcation scenario
much more complicated than reported previously.
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APPENDIX A: THE MODEL EQUATIONS

In the single helicity approximation, including magnet
shear and finite electric conductivity, the RGP equations~1!
and~2! can be generalized. In dimensional form they app
as @21#

] t¹'
2 w1c$w,¹'

2 w%52
4pvA

2

hc2 ¹ i
2w2

2g0

r0
]yp1m̃¹'

4 w,

~A1!

] tp1c$w,p%52cp08]yw1k̃¹'
2 p. ~A2!

First, we note that forh ~resistivity!→`, we recover the
simplified model~1! and ~2!. The following notations have
been used:vA5B0 /A4pr0 is the Alfvén velocity, depend-
ing on the toroidal magnetic field strengthB0 and the aver-
age mass densityr0 ; c is the velocity of light; p08
52]p0 /]x.0 is the zeroth-order pressure gradient in s
geometry;g0.0 characterizes the magnetic curvature a
follows via b0•(g3¹p)'2g0]yp from the curvature vector
gW 5(bW •¹W )bW .

The operator

¹ iªb0¹W ']z1
1

R0q~r !
]u']z2

x

Ls
]y ~A3!

has been defined. In its last form@as it appears on the right
hand side of~A3!# we have approximated¹ i in the vicinity
of a magnetic surface situated atr 5r 0 . This is a quite stan-
dard procedure leading to the shear lengthLs in the so-called
slab geometry.

The single helicity approximation means that we on
consider resonant modes~m,n! with q(r 0)5m/n. Here m
andn are the azimuthal~poloidal u! and longitudinal~toroi-
dal z! wave numbers in the simplified~e.g., cylindrical! co-
ordinate system. Note that because of magnetic shear
so-calledq factor
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q~r ![
BW 0•¹W z

BW 0•¹W u
~A4!

depends on radiusr. In ~local! slab geometry, the radial co
ordinate is denoted byx. Furthermore, within the slab geom
etry we choose thez direction in the direction of the actua
magnetic field atx5r 0 ~i.e., the z axis does not coincide
anymore with the cylinder orz axis!. Since the equilibrium is
only x dependent, Fourier decompositions inu andz ~respec-
tively, y andz! are possible, with the remarkable result

ei ~mu1nz!→ei $my/r 01@n2m/q~r 0!#z/R0% ~A5!

to lowest order inr 0 /R0 . That means that within the singl
helicity approximation thez dependence becomes negligib
and on the resonant surfaceq(r 0)5m/n we can approximate

¹ i
2'S x

Ls
D 2

]y
2. ~A6!

Choosing the origin of thex axis at the point correspondin
to r 5r 0 , we considerx to vary within @2d,d#. That means
that Lx52d is the extension in thex direction. Dirichlet
boundary conditions are assumed inx, i.e.,

w~6d,y,z,t !5¹'
2 w~6d,y,z,t !5p~6d,y,z,t !50.

~A7!

On the other hand, periodic boundary conditions are
manded for 0<y<Ly'2pr 0 , e.g.,

w~x,0,z,t !5w~x,Ly ,z,t !, ~A8!

and so on.
As a natural length scale we introduce

j5
2d

p
. ~A9!

The Rayleigh-Taylor growth rate induces the natural ti
scale

t5A r0

2g0p08
. ~A10!

Normalizing

wct

j2 →w, p08jp→p, m5
m̃t

j2 , k5
k̃t

j2 , ~A11!

x/j→x, ay/j→y, z/Ls→z, ~A12!

and introducing the shear parameter

s25
4pvA

2j2t

hc2Ls
2 , ~A13!

we finally end up with the following nondimensional syste
,

-

e

] t¹'
2 w1a$w,¹'

2 w%52s2¹ i
2w2a]yp1m¹'

4 w,
~A14!

] tp1a$w,p%52a]yw1k¹'
2 p, ~A15!

where

¹ i5]z2ax]y'2ax]y , ¹'
2 5]x

21a2]y
2. ~A16!

The independent variables vary within

~x,y,z!PF2
p

2
,
p

2 G3@0,2p#3F0,
2pR0

Ls
G . ~A17!

As in standard fluid theory we call

a5
4d

2pr 0
5̂

2Lx

Ly
~A18!

the ~fluid! aspect ratio of the slab domain. This definitio
should not be confused with the standard definition of
aspect ratio of a tokamak.

APPENDIX B: LINEAR STABILITY ANALYSIS
IN THE SHEARLESS CASE

Starting from a~conductive! statew5p50, linear analy-
sis of the system~3,4! yields for s[0 to the growth rate

g lm
6 52

n

2

11Pr

APr
klm

2 1Fn2

4

~12Pr!2

Pr
klm

4 1
a2m2

klm
2 G1/2

~B1!

for a mode withklm
2 5 l 21a2m2. If either m or k vanishes,

all modes become linearly unstable, whereas for positivem,
k there is a finite number of unstable modes, and short wa
lengths are damped. The linearly most unstable m
( l * ,m* ) always hasl * 51, sinceg lm decreases monotoni
cally with increasingl. Its wave numberm* >1 varies like
am* 5 f (n), wheref (n) is a lengthy expression, which doe
not merit being given explicitly here. We havef (n);O(1)
for nP@0.1,0.3#. The critical (g50) viscosities
ncr(a; l ,m)5am( l 21a2m2)23/2 are plotted by the broken
lines @g l ,m50 for (l ,m)5(1,1), ~1,2!, ~1,3!, respectively# of
Fig. 1 for various modes.

The corresponding eigenfunctions are

f̃ lm
6 ~x!5

1

Nlm
6 S 2@nklm

2 Pr21/21g lm
6 #/am

1 D f l~x!, ~B2!

where

f l~x!5H sin~ lx ! for l even,

cos~ lx ! for l odd.
~B3!

Nlm
6 is the normalization constant.
For m50, w andp decouple~in the linear limit!, and we

introduce the notationm50,0̄ with

f̃ l0~x!5
&

l S 1
0D f l~x!, ~B4!
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f̃ l 0̄~x!5&S 0
1D f l~x!. ~B5!

The corresponding damping rates areg l052nAPrl 2 and
g l 0̄52n l 2/APr, respectively.

APPENDIX C: LINEAR STABILITY ANALYSIS
IN THE SHEARED CASE

In general, in the presence of magnetic shear, the eig
value spectrum has to be determined numerically. For
understanding of the dependencies, it is quite instructive
go to a limit where the growth rates and eigenfunctions
be determined analytically. We first note that we can co
pletely eliminate the parameters in the basic equations b
the following changes of variables:

xs→x, ys→y, s2w→w, sp→p, ~C1!

leaving t and z unchanged, and replacings2m→m and s2k
→k. Then, in the basic equations~3! and~4!, the parameter
s disappears, but of course the size of the system (Lx ,Ly) as
well as the dissipation parameters becomes dependent. For a
physical discussion it is more instructive to keep the effec
resistivity vias, and to introduce only the new variableX via

X25
saumu
g1/2 x2. ~C2!

For m5n50 the linear eigenvalue problem can then
transformed into a standard form. Some simple manipu
tions lead to

]X
2w1Faumu

s

12g2

g3/2 2X2Gw50, ~C3!

i.e., the standard equation for Hermite polynomialsHn(X).
Note that for larges we have practically the infinite domai
@2`, 1 `#, and the eigenfunction solutions can be written
the forms

w~X!'e2X2/2Hl 21~X!, l PN. ~C4!

The corresponding eigenvalues follow from

s21aumu~12g2!g23/252l 21. ~C5!

The asymptotically valid expressions approximate very w
the numerical ones.

For the eigenvaluesg we can investigate two limits. First
when

D lmª
~2l 21!s

aumu
@1, ~C6!

i.e., for smallm, we findg→0 and therefore

g'
1

~D lm!2/3;s22/3;h1/3, ~C7!

i.e., the well-known scaling for resistive interchange mod
On the other hand, for
n-
e

to
n
-

f

-

ll

.

D lm→0, ~C8!

i.e., very highm modes leading tog→1, the growth rate no
longer depends on the resistivity.

APPENDIX D: CALCULATION OF SOME COEFFICIENTS

Let us introduce a scalar product that can be used
project on the marginal modes. The projection can
thought of as solvability conditions which the partial diffe
ential equations forF i ,F i j , etc, are required to fulfill. These
conditions impose that the inhomogeneity, i.e., everyth
but LcF i , LcF i j , and so on, is orthogonal to the kernel
the adjoined operator ofLc . Denoting the scalar product b
^ , & we define

^F,F8&5
1

~2p!2 E
2p/2

p/2 E
0

2p

~ww81pp8!dxdy. ~D1!

It is readily verified that the operatorLc is self-adjoined with
respect tô , &. Hence the marginal modes of the adjoin
problem coincide with those of the original problem. Th
energy operatorHc ~^F,HF& is twice the total energy of the
system! is self-adjoined, too, and positive definite, which e
ables us to introduce a second scalar product^•,Hc•&. The
normalization constantN in ~23! and ~24! was chosen in a
way that the marginal modesF1 , . . . ,F4 are orthonormal
with respect to the second scalar product:^F i ,HcF j&
5d i j , for i , j 51, . . . ,4.

Implementing the strategy outlined in the main text, o
calculation yieldsai

j50 for all i,j , and F55F65(0,0)t in
first order. Second order coefficients are calculated from

am
i j 5^Fm ,~]xi

Lc!F j&1
1

11d i j
^Fm ,Nc~F i ,F j !

1Nc~F j ,F i !&, ~D2!

giving

a1
15522q1

2
APr

11Pr
, a1

1652
122ac

2

q1
3

APr

11Pr
, ~D3!

a3
35522q2

2
APr

11Pr
, a3

3654
128ac

2

q3
2

APr

11Pr
. ~D4!

Next, we proceed with the second order spatial expans
functionsF i j and calculate the third order temporal evol
tion coefficients. Evaluating

am
i jk5

1

11d ik
^Fm ,Nc~F i ,F jk!1Nc~F jk ,F i !

1Nc~F j ,F ik!1Nc~F ik ,F j !& ~D5!

for j, k<4, and

am
i jk5

1

11d jk
^Fm ,]xj

]xk
LcF i1]xj

LcF ik1]xk
LcF i j

2ai
ikHcF i j 2ai

i j HcF ik2ai
i j ]xk

HcF i2ai
ik]xj

HcF i&

~D6!
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for j ,k.4, yields, e.g.,

a1
11152

acq1

2

Pr3/2

~11Pr!2 , ~D7!

a3
33352acq2

Pr3/2

~11Pr!2 , ~D8!

a1
1335

0.06527110.021308 Pr20.904356 Pr2

APr~11Pr!2
, ~D9!

a3
11352

0.08537910.064846 Pr10.932975 Pr2

APr~11Pr!2
,

~D10!

a1
1555

q1
5~12Pr!2APr

ac~11Pr!3 , ~D11!

a1
156522APr

~12Pr!218ac
2 Pr

ac~11Pr!3 , ~D12!
s

.
R

a1
1665APr@~12Pr!22ac

2~912 Pr19 Pr2!

12ac
4~126 Pr1Pr2!#@acq1

5~11Pr!3#21,

~D13!

a3
3555

q2
5~12Pr!2APr

2ac~11Pr!3 , ~D14!

a3
356522APr

~12Pr!2132ac
2 Pr

ac~11Pr!3 , ~D15!

a3
36652APr@~12Pr!224ac

2~912 Pr19 Pr2!

132ac
4~126 Pr1Pr2!#@acq2

5~11Pr!3#21.

~D16!

Due to lack of space we refrain from presenting exact
pressions fora1

133 anda3
113, which are complicated function

of ac . Three nonlinear coefficients of the kernel mod
(a1

111, a3
333, anda3

113! are always negative, buta1
133 is only

negative for Prandtl numbers greater than 0.280691.
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