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The so-called resistivg-(resistive pressure-gradient-driven turbulengaradigm is a widely accepted and
frequently investigated model for nonlinear plasma dynamics. The parameter dependences of the generated
transport barriers as well as third order bifurcations will be discussed numerically and analytically in the
present paper. First, using a Galerkin representation, bifurcating $taiesthe conductive states in a rect-
angular cell are investigated for the cases when only one unstable mode dominates. The dependence of the
bifurcation properties on the aspect ratio of the domain is discussed, leading to the conclusion that for van-
ishing (or smal) magnetic shear the so-called low, high, and edge localized mode transitions do not occur for
small aspect ratios of the domain. Including reasonable magnetic shear, the small-aspect-ratio cutoff disap-
pears, and transport barriers may exist in a broad parameter range. Second, for small aspect ratios, interesting
codimension-2 bifurcations occur. When unfolding the dynamics up to third order, e.g., a weakly nonlinear
interaction of convection cells is observed. The analytical results are confirmed by numerical simulations.

PACS numbds): 52.35.Py, 47.20.Ky, 52.555s

| INTRODUCTION aV2e+{e,Viel+gap=uVie, )

In complex physical systems, e.g., magnetically confined ap+{e.p}+ Rdyo= vap, 2
plasmas, various physical processes exist and interact simul-
taneously{1]. A complete and detailed theory of such mul- Here, V2 = g5+ &5 is the 2D nabla operator in the plane
tifaceted systems will not be possible in the near future. Th@erpendicular to the external magnetic field. For both, 2DB
so-called reduced models turned out to be extremely helpfuds well as RGP,¢(X,y,t) is the stream functiony=2
in analyzing specific phenomena. The advantages of reducedV ¢, which coincides with the scalar electric potential in
models, which follow from quite complicated transport equa-the case of RGP. Furthermorg(x,y,t) is the temperature
tions, were already recognized a long time ago in fluidperturbation in the case of RB convection, or the pressure
theory. For example, the Boussinesq equatifjsare as- perturbation within the scope of RGP, respectively. The co-
sumed to be good model equations for the RayleigheBe  efficientsu>0 and«x>0 represent in both cases the viscos-
(RB) problem. In plasma physics, the so-called reduced magty and thermometric conductivity, respectively. The con-
netohydrodynami¢éMHD) equationg 3,4] proved their enor-  stants R,g>0 are identified as the background density
mous potential for applications during the last decade. Whil@radient and the magnetic field curvature in the case of RGP,
the original reduced MHD models were developed foror as the(instability driving background temperature gradi-
single-fluid MHD with fast motion(on the scale of the ther- ent and the gravity for the RB problem, respectively. Finally,
mal velocitie3, for slower motion a reduction of the two- {,} denotes the Poisson bracketF,G}=(d.F)(d,G)
fluid plasma equations was necessary. The latter reductior (dyF)(9,G). For RGP(RB convection the radial(verti-
has also been successfully performibf leading, e.g., to the cal) direction is identified ax and the poloidalhorizonta)
so-called resistiver paradigm(RGP. Hereg stands for an direction asy.

effective field(e.g., caused by field line curvatyyén anal- The applicability of the 2D equationd) and (2) to all
ogy to the gravitational field in classical hydrodynamical ap-features of actual RB-type experimef& or RGP may be
plications. guestioned. For example, the flow in a Hele-Shaw cell,

The two-dimensional2D) Boussinesq equation@DB) though effectively two dimensional, requires additional
and the RGP equatioi§] (for a plasma in the limit of van- terms involving the drag of the confining plates to be taken
ishing parallel electric conductivity and a shear-free magdinto account. Other three-dimensiortaD) experimental set-
netic field are very prominent reduced models of similar ups, where instabilities of 2D initial conditior{sonvection
forms. The RGP is being used to describe the generation ablls) are examined, clearly require a 3D discuss{@.
transport barriers. The latter are believed to be responsibl€here is extensive literature available for 3D RB phenomena
for the transition between different confinement modes irf10]. The situation is slightly different for RGP. In RGP,
magnetically confined plasmas: lailv), high (H), as well as  plasma motion along the magnetic field is considered as fast.
edge localized mode&LMs) [7], respectively. On the other Therefore, with good reasons, the situation can be approxi-
hand, the 2DB equations describe similar transport modificamated as 2D. Any inhomogeneity in the longitudinal direc-
tion processes for the RB convectiee, e.g9.[8]). tion is usually taken into account via an effective parallel

In their simplest versions, RB convection, on the onewave number.
hand, and velocity shear flow generation in plasma confine- One should emphasize that magnetic shear and toroidicity
ment, on the other hand, are governed by the same type effects are ignored in mogsemianalytical treatments men-
equationg 6] tioned so far. In the following we shall consider one of the
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open questions within RGP, i.e., the existence of transport 5| [ogimension-2
barriers in the presence of magnetic shear. Then, we sha bifurcations
generalize Eqsl), (2) to ] /
0.4
2 2 \__2v2, _ 4 AV o
Vieta{e, Viet=—sVip—adp+uVie, (3) 1i% N\ stable "trivial" state
2 0.3 !'". /(-\ ' N\ \
dp+afe,pl=—adyp+kVip. (4) . " 1 5% \\
N (1,2) N\

Here, a=2L,/L, is the (fluid) aspect ratio of the slab do- i T AN N\ codimension-1
main, ands? is the shear parameter. More details of the J1 \\ g bifurcation
model (3), (4) are presented in Appendix A. 041 _,'(1,1) N .. |_.|.|.E|_T\,|?~\~ s

The boundary conditiongisually Dirichlet boundary con- ! R ,3;\\_ el transitions e ——
ditions in x and periodic boundary conditions in require "\\--.-_‘_‘_‘_‘;_-;;: ______________
some clarification when comparing the results with experi- 090 - ] ; : ¥ é_._._: """ ‘-1
ments. In they direction, the periodicity length., differs o

from 27ra (for a torus with minor radiug and major radius FIG. 1 Li bil ) ¢ Ea€3) and (@) § B
Ro), since on a poloidal cycle around the torus one passes ™ = '_(')nelar tshta (' 'ty) re?'ons Ob qit;] and (_)to(; m=v

both unfavorable and favorable curvature regions. Hence, :(j)n thse_sfabTe c?)ncciyl’;;ti\?ear;tea’ue?s:o;e: 0 ixiseipl?rlfe tfrl:)rlll:n
zghii);igﬁﬁgké?);l;Slg__?gy?o];ri?s(igb?é% tQI? ?—::\S/mg ff?irs]-in lines show the critical viscosity., for marginal stability in the

g 2 .~ . shearless cases€0) for different linear modeqy, ,=0 for
mind, the determination of the correct value of the per'Od'C'(l,m)=(1,1),(1,2),(1,3), respectivelyas a function of thefluid)

ity length L, is still an open problem, for both RB- and agpect ratiar. For > v, the modes are linearly stable.
RGP-like applications.

Numerical simulation$7] of the shearless syste¢h) and
(2), and semianalytical approaches using Galerkin approxi- Pr= ﬁ_ (6)
mations[6,8,11, have been used to unveil the bifurcation K
characteristics of the model. Note that, except for differen

normalization units(1) and(2) are identical ta3) and(4) in ﬁnstead of the Rayleigh number we shall use

the cases=0. It should be further mentioned that the works v=\ux 7
motivated by applications in plasma physics concentrated on K
codimension-1 bifurcationdor large (fluid) aspect ratiosy]. The third aim of the present investigation is to point out

There exist, however, interesting investigati¢ag] in fluid 6 jnteresting dynamics that may appear near codimension-2

theory where codimension-2 bifurcations for smalare in i rcation points. In Fig. 1 we have summarized the regions
the center of interest. We shall come back to this aspect late; interest[for Pr=1 ands=0]. We are interested in the

The celebrated Lorenz systefi3] is probably the best g cajled “nontrivial” states that appear below a critical
known example for a physically motivated Galerkin approxi- o ;e in the(a, v) plane. As indicated by the broken lines
mation. In the present paper, using a Galerkin basis, our firs‘[ty =0 for (I,m)=(1,1),(1,2),(1,3), respectivelyof the
aim is to clarify the codimension-1 bifurcation characteristicsﬁgh?e the critical curve is obtained as the envelope of the
with respect to thefluid) aspect ratiav. Note that the aspect o qinal stability curves for the linear modes. Besides re-

ratio defined here contains a factor 2 compareda  gits on the shear dependence of the so-called L-H-ELM
=L, /L, as defined in some other related wdk14,13.  {ansition region, we shall investigate the regions close to the
The present definition is adopted frd@8] and allows for @  .,gimension-2 bifurcation points where two linear modes
simpler mathematical notation. Using a more complet,qcome simultaneously unstable.

Galerkin description, even in the case 0 an effect will be The present paper is organized as follows. Section Il starts
reported, which has not yet been discussed in the literature Sgith a short description of the Galerkin approximation. Start-
far. . i . ) ing from a constant “trivial” (conductive state, a
The second aim of the present paper is to investigate thg,gimension-1 bifurcation diagram with respect to theid)
influence of magnetic shear on the bifurcation scenario. Bezgpect ration will be obtained and discussed for the shear-
cause of the then appearing expligitdependence, simple |ogg sjtuation. We shall elaborate on the existence of a cutoff
Fourier modes inx cannot be adopted anymore. However, i, , |t will be shown, however, that the cutoff disappears for
because of the ubiquitous presence of magnetic shear jasonable magnetic shear. Section Il presents an overview
magnetically confined plasmas, incorporation of shear ig,er the dynamical properties near the codimension-2 bifur-
mandatory. We should note that besidesnds two other  ¢ation points. It will be restricted, however, to effects up to
parameters, namely, andx, are present in the system. They thirq order in amplitudes. Section IV summarizes the results
can be related to well-known parameters in fluid theory,;nq concludes with a short outlook.

namely, the Rayleigh number

4 II. CODIMENSION-1 BIFURCATIONS, ASPECT RATIO,

Ra= T (5) AND SHEAR DEPENDENCE
MK
In this section we concentrate on the dynamics being
and the Prandtl number dominated by one unstable mode. In other words, here we
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investigate the lower right corner of Fig. 1. The shearless
case is of special interest for fluid applications. Surprisingly L=
enough, even in that simplified case some qualitatively new

results follow from a detailed analysis.
Let us abbreviat¢3) and(4) by

dHPp=L$+N(o, ), )
where¢=(¢,p)",
-v? 0

H:( 0 1)’ ®
SZVH2 A ady

L:( —ady KVE)l (10
andN represents the nonlinear term,
,VZ '

N(¢.¢')=a {‘?%;?’}}). (1D
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— (92— a’m?)?— (samx)?

—am
k(92— a’m?) )|’
(16)

—am
Obviously,
17

~ @im(X)
(;blm—(plm(x))

holds.

In the past, beginning with Loreri423], the understanding
of the system(1) and (2) always leapt a step forward when
the relevance of new modésot included in prior workwas
noticed(se€[6,8,11)). In the present work we show that once
again the system is richer than previously thought.

The first step in the analysis is the linearized case, i.e., we
consider perturbations around thgtrivial” ) conductive
state. In the shearless situation, the analysis is quite straight-
forward, and a summary is presented in Appendix B. With
magnetic shear, we obtain, of course, localized eigenfunc-
tions. But there is no fundamentaualitative differencgin
determining the eigenvalue spectr{ib8]; see also Appendix

As long as we concentrate on the shearless case we shall
sets=0. We next introduce a truncated basis representation

[16] in the form

d(xy,t)= > _ Am(D im(x.Y)- (12)

(I,mye

A. Relevant modes

It is well known that the linear instability may saturate if
p and « do not vanish. The saturation is achieved by the
transport of energwia nonlinearity from the linearly grow-

While a complete expansion obviously describes the systerilg modes to the small wavelengtfamping region For
exactly, the Galerkin approximation consists in selecting eimplicity, we will restrict ourselves here to the case=Ry

finite subsetB of “relevant” modes(l,m) from the infinite
basis functions. The inddxis the radial label, whereas is

i.e., v=k=pu.
The following behavior of the systerfl) and (2) was

the toroidal wave number. Shear flow modes are naturallyeported in literatur¢6—8J: Starting from a purely conduct-

included as I,0) modes. Real fieldp and ¢ as well as the

boundary conditions require that for each modan) € B

with m#0 its conjugated model (—m) belongs to the

ing state, the system first undergoes a pitchfork bifurcation
[19], when the viscosity is decreased below v («). Near
the critical point, the first mode becomes lineailRayleigh-

Galerkin base, too. Within a Galerkin approximation we in- Taylor) unstablethat is the(1,1) mode fora>0.493; a shift
sert the truncated basis representation into the original parti& higher(1, m) modes occurs below this aspect ratio; see the

differential equations. Projecting onto tkerthogonal basis
functions, we obtain closethonlineaj ordinary differential
equations for the coefficienta),,. The applicability of a

figure in Appendix B, and the system stays in the “Lorenz
manifold” [8]. The instability saturates in a lo(l.) confine-
ment state, which is characterized by an upright steady

Galerkin approximation for the present problem and its limi-plumelike density perturbation and orer morg vortex
tations can be deduced similar to previous investigation$air(s), see Figs. @) and 2b).

(e.g.,[17)).

These vortex pairs are the typical trace of the Rayleigh-

It is important to choose the appropriate modes. First, wa aylor instability. If v is further decreased, thestate vortex

can write ¢, in the form(p;; = ¢ = 0)

—iQm(X)

Pm(x) & (13

¢Im(xvy) = (

and relate the determination o@f,, andp,, to the linearized
eigenvalue problem. The latter appears in the form

’)’ImHm’:ﬁlm:Lm’;ﬁlmv (14

with the definitions

Hn=

_ 2—a2 2 0
((&x m?) ) (15

0 1

becomes unstable via another supercritical stationary bifur-
cation, leaving the “Lorenz manifold.” Draket al. [14]
called that second instability a “peeling instability.” Shear
flow is generated, which causes the vortex pair to tilt and
saturate in a new steady state; see Figs) and 2d). Ac-
cording to the scenario presented in the literature, this so-
called high confinementH) mode appears when drops
belowvy(«). The transition is accompanied by a reduction
of the heat(particle flux in the x direction and a transport
barrier arises. For even lower values, v<7g y(a), the
“peeling instability” eventually does not saturate in a pure
H mode anymore. The ELM stafa (quasij periodic oscil-
lating convection pattejnappears(see Fig. 3 via a super-
critical Hopf bifurcation from the steady tilted cell. The
(tilted) vortex pair is destroyed by shear flow generation. The
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(c) (d)

FIG. 2. Density profile(a) and potential(b) distribution of an
L-mode saturated state for=0.16 anda=2 (ag=1). The same,
(c), (d), for an H mode withr=0.14 anda=2. Initial conditions
are 0.1% random density perturbations. Here and in all the follow-
ing graphs, the axis points in the vertical direction and tlyeaxis
in the horizontal direction.

latter, in general, is too massive to let the system saturate in
an H mode. Then the shear flow deteriorates, since all shear
modes (1,00 are linearly damped. Finally, the Rayleigh-
Taylor instability once again forces the growth of a new
vortex pair, and the cycle repeats. The graph%gfa) and
Tewv(a), corresponding to the above scenario, are shown in
Fig. 4.

Finn as well as Draket al. [7,14,19 studied the influ-
ences of viscosity an(fluid) aspect ratiax on vortex stabil-
ity first for a simplified vorticity equation model. Then, they
extended their research to the full systéthand(2). Using
a low-dimensional Galerkin approximation, they considered
the stability of a given vortex pair with respect to a small
shear flow perturbation. Although this model might be a
crude approximation to the real system dynantasit, in a
way, considers shear flow generation but not vortex dynam-
ics), the authors mention that there is a cutoff aspect ratio in
the case of the “ideal” ¢—0) peeling instability. In terms
of the system(1) and (2), the inviscid instability is a rather
degenerate situation since thiatermediate saturation of a
vortex can only take place when viscosity is present. The g5 3 Snapshots of the density profileft column and the
necessity arises to include both vortex and shear flow gensgtential(right column of an ELM state forr=0.12 anda=2 at

eration and their mutual coupling to understand the wholgimest=107.0, 114.9, 120.2, 128.1, 133.4, and 141.3, respectively
system. Earlier work by Howard and Krishnamu@i does  (from top to bottor). At t=144.0 the cycle closes.

not indicate the existence of a cutoff aspect ratio for the
“tilted cell convection” (H mode. In the present paper we mode, the only visible result of the decreaseviis a slight
show that on the contrary, such a cutoff aspect ratio existsand steady change in the L-state shape of the density pertur-
Our studies are also motivated by the question of whethepation to more mushroomlike plumegnown from the
the results of a Galerkin approximation are stable with reRayleigh-Taylor instability of fluids Obviously, the(1,2)
spect to a supplementation of the Galerkin bases. Previousiyjode prevents the energy to pile up in tte0) ¢ shear
[8], the basesB={(1,1),(1,0),(2,9,(2,1)}U{conjugated mode and funnels it to linearly damped modes. It hence im-
mode$ and an aspect ratio af=1.2 have been used. We pedes the system in entering an H or ELM regime. There is
found that there is one particular mode, tftlg2) mode, no other mode like(1,2), say, in the rectangular domain
which qualitatively changes the system dynamics. For smal(1,0), . .. (5,9, that has this property. The “destructive na-
a, there are no more H or ELM states. Including #1g2)  ture” of the (1,2) mode persists even if an arbitrary amount
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FIG. 4. Phase diagram for the existences of L, H, and ELM FIG. 5. Same as Fig. 4, but fer=32/m. Note that the H-ELM
states(solid line9 with respect to aspect ratie and viscosityv for ~ transition is not shown since it occurs very close to #0 axis.
s=0 and fixed Prandtl number Prl. The dashed lines depict the
border lines, which result from the truncation used in previouscount. It should be noted, however, that Fig. 4 only shows
works. the L-H-ELM route; as will be discussed later, for smalder

values new characteristic states may appear.
of other modesge.g., 100, which in resolution comes close to  |n the case of magnetic shear the basic equatiBhand
a direct numerical simulatioris included. (4) become explicitlyx dependent, and the eigenfunctions

Evidently, the(1,2) mode plays a crucial role for the dy- are not anymore harmonic in For the Galerkin approxima-
namics of the system, e.g., at an aspect ratio of 1.2. It henagon we recalculated the explicit forms of the eigenfunctions.
should be taken into account when selecting a Galerkin basg.nowing the latter, we now proceed in a similar way as in
The linear analysis presented in Appendix B gives an indithe preceding section. Projecting on a finite Galerkin basis,
cation why the(1,2) mode may be as important as the otherwe solve the ordinary differential equations to determine the
modes considered in the Galerkin base. At an aspect ratio @fifurcation diagram ir(v,a) space. In Fig. 5 we show a typi-
1.2 the(1,2) mode becomes marginally unstable at a highercg| example for Pe 1 ands=32/x. Note that the cutoff inx
viscosity than thg2,1) mode, which is included in the set. has disappeared, and the L-H transition occurs at much
With respect to linear instability thel,2) mode is also more  gmaller » values, compared to the shearless reéfil. 4).
important than the shear modes, since the latter are alwayghe borderline for the H-ELM transitions appears at very
(linearly) damped. Hence, for a simulation one could employsmall » values(and therefore is not resolved in Fig). This
a simple strategy to determine relevant modes from the linegg ynderstandable because of the effective shear damping.
growth rates. One should use the basBs«(«,»,Pr)  Moreover, at the bifurcation line many modes are linearly
={(I,m) e NXZ:y(a,v,Pr)=y*}. The maximum value unstable in the strongly sheared situation. This is also sig-
of y* should be fixed in a way that a decreaseydf(hence nificantly different from the shearless case. Going back to the
supplementation of the basdoes not significantly change definition of s, the values= 32/ used for demonstration is

the results. easy to realize in experiments. In other words, with magnetic
shear the L-H-ELM transition can be expected even for small
B. Aspect ratio and magnetic shear dependences (fluid) aspect ratios.
We now present the detailed aspect ratio dependence of _ _ o
the L-H transition in the Rayleigh-'Blard problem(1) and C. Codimension-1 and coupled mode approximations
(2). We used a finite Galerkin basfand confirmed the re- The supercritical bifurcation to the L state can be ana-

sults by including more modegsin Fig. 4, in dependence of lyzed in a rigorous mathematical manner by making use of
a and v the phase diagram for the various confinemenicenter manifold theory(CMT) for codimension-1 bifurca-
modes is shown. In the calculations leading to the solid linesions.
in Fig. 4 we focused on viscosities>0.1. As a rule, lower In its strict form, for codimension-1 problems, CMT
viscosities always require a higher resolution, because thgl9,2Q provides us with one amplitude equation for the
number of linearly unstable modes increases quadraticallfone marginal mode at 4.,v.). The theory has been
with 1/v. With decreasing values of the dissipative region worked out in, e.g.[21], and the amplitude equation for the
is shifted to smaller scales, thus claiming for larger bases tb state is
model the system. Typically, viscosities~0.1 and below _
require bases with 100 or more modes. A= y1Xq + AT xq)%x;. (18)

We clearly see that for large values @f(>1.6) the pre-
vious results(dashed lines are confirmed. However, for —
small a (<1.5) a significant deviation from previous predic- with explicitly known coefficientsy; andAj**. The present
tions actually occurs: H and ELM states cease to exist fonumerical treatment fully confirms the analytical predictions.
a<1.45. In addition, there is an ELM-L transition for 1.45 The agreement is better the closer we are to the marginal
<a<1.53 whenv is decreased sufficiently. The diagram (critical) curve shown in Fig. 1.
displayed in Fig. 4 was obtained using large Galerkin bases. A generalization of the pure codimension-1 analysis was
The qualitative features of the phase diagram remain foproposed in[22]. Besides the dominating unstabié,1)
smaller bases, as long as tfilg2 mode is taken into ac- mode, the driver(1,00 mode has been included in order to
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incorporate a sheared poloidal flow. Shear flow generation n+1\13 n \1%
via Reynolds stress can be investigated via ) Tlart
VETTh1 1) 23 2332 (22)
— —| 1+
IXo=yoXo+Ag XolXa|%, (19 n+1 }

B We specialize for the paite,v) with the highest possible
OiXa = X — AOL 2y 4 ALIL 12 20 value, viz.,n=1 and (¢, v;)~(0.4934,0.3558). At this so-
U= yxa— Ag XoXa ATl 20 called critical(margina) point, the linear, nonlinear, and en-
ergy operators are denoted by, N., andH., respectively.

This is a physically motivated, but mathematically not rigor- The kernel ofL is spanned by the eigenfunctions for the

ously justified treatment. It has been shown that besides théero eigenvaluep, ... P4, given by
(1,2 mode (amplitudex,), e.g., the(1,3) mode (amplitude
X3) and the(2,1) mode(amplitudex,) alter the results. Then 1 .
i . . ! —sinxsinny
we get a system of five coupled ordinary differential equa- @y, 1=N| Gn , (23
tions[21]. This is a quite satisfactory analytical approxima- _ JPrsinx cosn
tion to the numerical simulations. We can think of a nonlin- y
early modified dampindyo— o+ A5 x,|? in case of the 1
(1, 0) modd and growth[ y; — y; — A3 in case of the1, — sinx cosny
1) modg rates such that there may be a nonlinearly gener- ®2q=N| 0n ' (24)
ated codimension-2 bifurcation point. The mathematically JPr sinx sinny

fully justified theory of such an extendddr renormalized

codimension-2 bifurcationanalysis is however still missing. for n=1,2, whereN=2/(1+ Pr)"2is used as a normalization
The main problem in formulating a rigorous codimension-2constant, and,= (1+ a2n?)*2,

theory for the L-H-ELM transition is due to the fact that we
only approximately know the L and H states themselves. It
should be mentioned that similar problems arise for the so- ) _
called nonlinear instabilities, which are of growing interestin ~ Within CMT, the bifurcation parametetsv=v— v, and
many fields[23]. Aa=a—«a, are provided with trivial “equations of mo-

In Sec. Il we shall present results from an exacttion,” dAv=0 and &A«=0, and treated as “marginal
codimension-2 analysis, in a parameter region where all thEnodes” with “synthetic eigenfunctions®s and®gs. CMT
coefficients can be evaluated without approximations. Fofmplies that near the marginal point the dynamics is domi-
the present situation, in a first step, we verified the effect opated by the marginal modes; all other linear modes are said
the (1,2 mode by analytical studies of the L-state stability to be “slaved.” According to this, the temporal dependence
(with a 2x4 mode Galerkin approximation linearized of the complete fieldP(x,y,t) is expressed in terms of the
around the L stadesimilar to the studies if6,8]. Evaluating ~amplitudes of the marginal modegt) alone,
the linear stability using the Hurwitz criterion, the numerical

A. Amplitude equations

results were confirmed. d= E XD, + 2 xx @+ 2 XX Xk D
1<i<6 1<i<j<6 lsisj<k=6
lll. THIRD ORDER THEORY e (25)

FOR TWO UNSTABLE MODES . . - .
Here, the spatial expansion coefficients are given by the mar-

Now, we investigate regions where two modes becomejinal modesb;(x,y) in first order and unknown higher order
simultaneously unstabl@ipper left corner in Fig. 1 This  contributions®;;(x,y),®jj(x,y), and so on. The latter sum-
analysis will show that the resistivgparadigm is much marize the influence of slaved modes. Apart from the ampli-
richer than thought previously. Assumisg O, two linearly  tudes of the kernel modeg,, ... X4, the bifurcation pa-
independent marginal Fourier modgsvave vector k rameters appear in a natural way among the amplitudes by
=(m,n), with m=1 andn=0 by conventiot can be ob- definingxs=Av andxg=Aa.
tained. We are interested in those modes which become first For the temporal evolution of the marginal mode ampli-
unstable when dissipatiofw) is decreased, i.e., thél,n) tudes the ansatz
modes, fom e N. Along their lines of marginality, the kernel

of the linear operator is two dimensionaince there are two _ S E ik il
modes for each wave vecloeverywhere except in points, %X TS aix;+ & o & XJXk—’_léjékéIéG & XXX
where two curves intersect. THe,v) coordinates of these
points with a four-dimensional kernel &fand two simulta- +eee (26)
neously marginal wave vectot4,n) and (1n+1) are _
is applied, where the coefficientd, etc., are to be deter-
s s -1 mined. Because of the trivial equations of motion for the
_ 1/ n n+l 1 21) bifurcation parameters, we already know that all coefficients
n+1 n ’ ag " andag ° vanish.
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Finally the operator&, H, andN remain to be expanded The first step towards this goal is to transform the amplitude

in terms ofx; , equations to normal forms. Equatio(®)) and(31) are eas-
ily transformed into a normal form by the polar ansajz
L=L¢+ (X5, +Xgde) Lot 5 (Xsdo+ Xgda)2Let: "+, =r;expig}, for j=1,2, which gives two coupled nonlinear
(27) differential equations for the radii. After a normalizatioh
— 11y12 .1 _ 3331/2
=rq,a , [r=Tr5la , we get
H=Hg+ Xgd Hot -, 29) larty 5=T2la3 3
Ary=—r +r2+br?), (38)
N=N.+Xgd Ne+- . (29) 1= ralpatritbry
: - : : O 3= —T (ot Cri+ri) (39)
Inserting the expansion(25)—(29) into Eq.(8), we obtain t2 2( M2 120

a system of partial differential equations for the spatial ex- . . )
pansion coefficientd;; , ®;;, and so on, which is correct up and two trivial evolution equations for the anglégg; =0. In

to, e.g., the third order in; . In order to calculate the tem- Eqs.(3§g3angs(39) the primes were omitted and;=—y;,
poral evolution coefficiental*, the system is treated in a P=—a1"7/as’1, c=—az7|a;"| were defined. The equa-
two step process in ascending orderafBy projecting the tions constitute a normal form t.hat was first dlscu_ssed by
system on the marginal modes of the adjoined problem, th&@kens[26]. As has been mentioned already, besides the
temporal evolution coefficients* of the actual order are O(2) symmetry, theZ(2) symmetry applies here too. The

calculated. Then the equations are solved for the spatial e)@tte_r caLrllsesl,Jht;a vanishingdlgfzthe guadr?tic;emc;;, whic_h oth-
pansion functionsb; ., of that order, which are required erwise should be expect¢d2,27). For a further discussion

for the next step. see alsg[28]. o . .

There are as many as 308 higher order) temporal At this stage it is important to empha3|ze the difference to
evolution coefficients to be calculated for obtaining E2f) Eqs.(19) and(ﬁO). Altzough we aga}mdge_lfr;(wo couple_d eﬁua-
in third order. It appears to be prudent to consider the impIi—t'OnS’ now other modes are coupled. The reason Is that we
cations of the symmetries of E€8) on the evolution coeffi- arein a d|ffere_nt parameter regime. Al_so th.e structure of the
cients. They already reduce the number of coefficients to b OUplig equdatlzoon{;?r? an;j (39). IS hnotf |ﬁent_|cal to Lhat of
calculated appreciably. In the present case we can make u s.(19) and (20). Therefore, in the following we have to

of the O(2)X Z(2) symmetry groufi24.25. Specifically, all unveil the nonIinear_ dynamics associated_ Wit_h the model

coefficie(nt)s foE éugdratic ¥e?ms Iﬁof : Xp vanisg In (38) and(39). At the first glance, that analysis will look very

complex notationz, =x;+ix, and zziyx.3'+' i’x4 Eqs (.26) technical. However, at the end we shall detect a whole vari-
1— A1 - 4 .

are condensed to ety.of fascinating pOSSIbIlItIeS., which may explain w{gx-
perimentally very often physical systems do not react ac-
0zy= 121+ d14 24| %2+ d 15 25]%21 (30)  cording to the simple L-H-ELM transition scenario.

0iZo= ¥2Zo+ U1 24|°2,+ dy)| 2] °2,, (3D B. Unfoldings

For all codimension-1 and some codimension-2 normal

forms the so-called unfoldings, i.e., the classification of the

y1=2alxs+al®xg+al%%2+al%%sxs+al%%2, (320  nonlinear dynamics i.n terms Qf phase space portraits, are
already known and discussed in literature, see, El§],

where

72=a}5x5+ a}6x6+ a}55x§+ a}56x5x6+ a}%xz, (33) .Extracting the phase .portraitfs of Ec£§8) and (39). re-
quires the calculation of fixed points}{,r3) and their linear
with i=1 or 2,j=3 of 4, and stability: (spira) source, sink, or saddle point. Then the flow

topology can be reconstructed for the entirg,,) phase
space. The possible fixed points are presented in Table |
together with their domains of existence. Fixed point 1 is the

111 122 211 222
d11: a;y=ay T =a; =a; o, (34)

d,=ar®=ai*=as*=as", (35 analog of the ubiquitous trivial solution. Fixed points 2 and 3
correspond to purél,l) or (1,2 mode states, respectively.
dy=ad=al%=aj=aj??, (36)  Fixed point 4 denotes a mixed,1)-(1,2) state.
The domains of existence in Table | are given by relations
dyy= 3333: 3344: 3333: aj““. (37) betweenu; and u,, which are functions of the bifurcation

parameters and the Prandtl number, and the coefficients
All other coefficientsup to cubic ordervanish. Hence there andc that are functions of the Prandtl number alone. For any
are only 14 to be really calculated. In addition, the numbewalue of Pr there are regions in thie,v) plane where all
of spatial expansion functions required in the explicitfixed points exist. Their linear stability however varies. De-
calculation is reduced to seven. Details are presented ipending on the signs df, ¢, and 1-bc, with ¢c>0 always,
Appendix D. one can identify three different “cases.”

After having projected the dynamics of a rather complex Each case contains a set of six different regimes of un-
system near the marginal point on a rather simple set ofoldings, which are delimited by the curves, =0, u,=0,
nonlinear ordinary differential equatiorf80) and (31), the = u;=bu,, and u,=cu4 in the (a,v) plane. The last two
discussion of these equations will reveal the nonlinear longurves, called pitchfork curves, indicate the boundaries of
time dynamics of the original system near the critical point.the domain of existence for the fixed point 4. They are re-
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TABLE |. Four possible fixed points of systeni38) and (39).

Coordinates I} ,r3) Domain of existence
fixed point 1 (0,0 all pq,u0,b,c
fixed point 2 (V— u1,0) all u1=<0,u,,b,c
fixed point 3 (Oy— u2) all q,u,<0Db,c

fixed point 4 (/(bu,— wm1)/(1—bc),V(cum,— my)/(1—bc) all wy,u,,b,c with
(bpa=p1)/(1=-bc)>0,(Cuq— p2)/(1-bc)>0

stricted to the regiod(a,v): u;<0 or u,<0}, i.e., where With Pr>0.296461,b remains positive but +bc<0
the fixed points 2 or 3 exist. The crossover of these curveshanges sign, giving rise to cage)l On route from casg4)
signals changes in the flow topology, i.e., the fixed pointto I(b) the pitchfork curvesu,;=bu, and u,=cu; have
existence and stability. The “crossing events” are related tacrossed, switching the stability characteristics of the fixed
the changes in sign df and 1-bc (c is always positive point 4 from source to saddle point. Simultaneously, the
For 0<Pr<0.280691, we haveb<0 and therefore 1 fixed points 2 and 3 have become sour@sunfolding type
—bc>0. This is the so-called case (tthe numbering is due 7) creating the only unfolding where two sources complete.
to Takens’ original wor26]). Figure 6 exemplifies the six Figure 9 exemplifies the case for=Pt.5. Further increase of
sectors of théAa, Av) plane where different unfoldings are the Prandtl number does not result in any more changes in
realized for case Ill using Pr0.24. The numbers,1..,8  sign, i.e., line crossovers.
refer to the different types of unfoldings, which are summa- All eight types of unfoldings in Fig. 7 eventually lead to
rized in Fig. 7. The asterisk§4*” and “8*") indicate that saturated final states. The saturated states coincide with the
the fixed point 4 in this unfolding is realized as a spiral sources in the phase space diagrams, i.e., the fixed points 1
source, whereas all other sources or sinks are ordinary onélsrough 4, depending on the Prandtl number and the unfold-
otherwise. Topologically we do not have to distinguish be-ing parameters. They are unique except for the type-7 un-
tween spiral and ordinary sources or sinks, anyway. It idolding, where the system may either realize fixed point 2 or
however important to note that spirally attracting or repelling3 as a final statébut not both together
fixed points sometimes give rise to Hopf bifurcations, which
are prone to considerably complicate the discussion. We can C. Comparison with numerical simulations
rule out Hopf bifurcations in our problem since there is no . -
point in the(a,v) plane where the stability related eigenval- . We checked our CMT results and their ranges of validity

. . : . . ' he (a,v) plane(which might be limited to a rather small
ues for the fixed point 4 are imaginary conjugd&s], i.e., n t . X . . .
where the fixed I?)oint changes gits b)(/ahavijogf‘{r[onl a Spirapaghb_orhoc_)d of t_he critical poinby comparing with direct
source to spiral sink or vice versa. The same holds for alpurl‘r;‘etr;]cal ?'T/;Jlat'ons'ti n di d and finallv denied
other fixed points. As a result there are pitchfork bifurcations, € previous section we discussed and finally denie
only. Later however, we will have to come back to this prob—the possibility of Hopf bifurcations for the fixed point 4,

. . . . : hich is stable for the cases Il and(al, i.e., Pr
lem. It is then interesting that the type-8 unfolding, which WY L ' ' ,
shows a finite(1, 1) mode contribution, exists in a region of =<0.296461. The numerics, in contrast, reveal that the fixed

phase space where this mode is linearly stable. point a_ctually beCO”_‘e.S unsta_ble to a so-called terﬂpit;zh_- .
For Pre[0.280691,0.296461 we haveb>0 and still 1 ork) bifurcation. This instability, however, occurs at a finite
—be>0, giving the S(,)—called caséa). Coming from lower d|stanc.e from the marginal point, |nd|cat|ng thatitis a hlghe.r
Prandtl ’numbers thew.=bu. curve has crossed th than third order phenomenon. In Fig. 10, an example for this
P MDETS, e, =D 21 instability is shown for Px0.24. The bifurcation parameters
—'O line eliminating type 8'|n fayor of type-3 unfoldings. Aa, A are decreased along the lidey=0.2A, which is
Figure 8 shows the bifurcation diagram for=0.288. located in the type-8 unfolding sector. Theory predicts that
there are three fixed points, 1, 3, and 4, with the first two of
Case III Av them unstable. Up td a~—0.01 we have excellent agree-

- 1 2 3 4
k i I : \
/\ TN~
;L1=T/,L2_—- Aa / ﬁ

3 6 7 8
4* /‘7 \ ‘
,,_’,,o/
L]
, o \ / / ) ¢ Ne
FIG. 6. The unfolding sectors for P10.24 are depicted in the J

(Av,Aa) plane. The numbers 1 to 8 correspond to the types of
unfoldings given in Fig. 7. Tha« axis range is—0.05 to 0.05, the FIG. 7. The phase flows for the eight types of unfoldings. The
Av axis ranges from-0.03 to 0.03. horizontal axis depicts the, coordinate, the vertical axis, .

\

/
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Case la 08
Av « *o-
. -
/’//
NZ = 0 0.6 /////.
m = 0 e P . [
< T e T
§0.4 //// :’,__/__”: if
S. e /’.-’f-'—' [ ] .——'.’--:ﬁ_'::‘:—_
s P ke — Tl
6 Aa 0.2 //,4.4"5-_./.!—‘--’5""’ ®o R
% e JERE
- g TO O og®°
5 / g’/ﬁ.— e o,
0.0 8-8—6—=a8
Tz = 1 0.0 -0.005 -0.%@ -0.015 -0.02
FIG. 8. Same as Fig. 6, but for £0.288. FIG. 10. Comparison of CMT predictiorines) and a numeri-

cal experimentsymbolsg. Dashed lines represent fixed point 3 satu-

ment between theory and numerical simulation. With in-rated (p,p) states, dotted lines indicaid,2), and dashed-dotted
creasing distance from the origin, tkie 1) mode amplitudes lines (1,1)(,p) components of the fixed point 4 saturated states,
fall short of the theoretically predicted values and begin torespectively. Thep curves always exceed thecurves. Solid sym-
decrease. In parallel, tH&,2) mode amplitudes are enhanced bols denote numericall,2) values, open symbols represet1)
to strengths well above the analytically calculated levels. Fofomponentsg values are denoted by circles, squares repregent
Aa~—0.016 they eventually saturate at values that are iryalues.
good agreement with a fixed point 3 saturated state, whereas
the (1,1) mode amplitudes vanish. Clearly, an exchange olure 11 shows the results for P1.5 [case (b)] with p
instability has taken place between the fixed points 4 and 3=0.01. The trivial, i.e., stable, part of the angular range was
The fixed point characteristics change from source to saddlemitted. The numbers between the dotted vertical lines indi-
point, and vice versa. Similar results were obtained forcate the type of unfolding. Note that in Fig. 9 the lif€MT
type-4 unfoldings in both case¢a) and Ill (here, only for  predictions indicate the existence of fixed points, but not its
larger|Aal, |A7|). On the other hand, we observed no suchstability properties. Also the lines for the unstable fixed point
exchange process between the fixed points 4 ando2 4 are not shown. To check the stability of both theoretically
type-4 unfoldings stable fixed points of the type-7 unfolding, we successfully

Tertiary bifurcations were found to be limited to situa- tried to prepare the system in both possible saturated states.
tions with a stable fixed point 4. For other stable fixed pointsWhich state is to be realized in a given situation depends on
similar procedures like that outlined above did not showthe initial conditions imposed. In these numerical simula-
qualitative discrepancies like a tertiary bifurcation. Largetions we started with a CMT approximatédnstable¢ fixed
distances from the origin only led to quantitative deteriora-point 4 state. Figure 12 covers case) |(Pr=0.288) using
tion in the agreement of CMT and numerical results, e.g., fop=0.002. Again, the agreement between theory and numeri-
Av=-0.1[—-0.2], the potential levels differ by approxi- cal experiment is good, although the enlarged type-4 unfold-
mately 2%[10%)], but the pressure levels lie 30960%] ing domain indicates the onset of the tertiary bifurcation.
lower than predicted. The increasing deviation can mainly bé-igure 13 proves the validity of the CMT prediction for case
attributed to the unability of third order CMT to model the Il with Pr=0.24 andp=0.01.
effective damping through energy cascades. However, in the Stable fixed point 4 saturated states are clearly a result of
numerical simulations third order CMT modéd; and ®;;) nonlinear dynamics: When considering linear growth rates,
contain typically more than 98% of the systems total energythe (1,2) mode is by far the dominant mode throughout all

In order to demonstrate that the CMT results are in goodype-4 and -8 unfolding sectors of case Ill. When starting
agreement with numerical simulation data itsenal) neigh-  from random initial conditions, indeed a fixed point 3 satu-
borhood of the bifurcation point, we varied the bifurcation rated state emerges first. The system then slowly moves
parameters along circled\¢,A a) = — p(sin6,cosb). On its

way through the parameter space the system thus passes all 0.7
different types of unfoldings that exist for a given case. Fig- 0.6
Case Ib o 05
Av S04
_ 503

p2 =0 =0 S

0.2
0.1
¥

Ao 0.0

0 50 0100 150 201

FIG. 11. Comparison of CMT predictiofines) with numerical
simulation(symbolg for (Av,Aa)= —p(sin 6,cosé), Pr=1.5, and
p=0.01. In addition to Fig. 10, solid lines denote fixed point 2
FIG. 9. Same as Fig. 6, but for Pd..5. saturated §,p) states.

H2 = Cli1
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mined. The individual phases couple to the relative phase by
a fifth order equatior{28]. Also for the present case, an
extension, by advancing the CMT to fifth order, is possible
and will be published elsewhere.

IV. CONCLUSIONS

In the present paper the bifurcation behavior of the system
(3) and (4) with respect to thefluid) aspect ratio, viscosity,
and magnetic shear has been analyzed. Three main results

0 | 50 100 150 200 have been obtained. First, in the shearless case and for small
4 (fluid) aspect ratios, the commonly accepted L-H-ELM tran-
0.4 7 . : 5 sition scenario has been shown to need some refinement.

Second, with increasing magnetic shear the cutofd idis-
appears, and the L-H-ELM transition becomes the generic
picture. Third, regions exist where the bifurcation scenario is
much more complicated than reported previously.
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0
FIG. 12. Same as Fig. 11, but for+6.288 ando=0.002. APPENDIX A: THE MODEL EQUATIONS

along the unstable direction of fixed point 3 towards fixed In the single helicity approximation, including magnetic

point 4. Its amplitudes decrease to fixed point 4 levels, as, ﬁhear and finite electrlp conducyvny, 'ghe RGP equatidns
trn, the(1,1) fields grow in magnitude. Except for the type and(2) can be generalized. In dimensional form they appear

7 unfoldings of case Ib, we found that the final state of 0uras[21]
numerical simulations did not depend on the initial condi- 412 2
; ; 2 2 Ag2 9 ~ 4
tions applied. dVietcle Viel=——%Vie——dp+uVie,
The present unfolding analysis is valid only up to third e Po
order in amplitude and in a small neighborhood of the origin (A1)
(|Aal,|Av|<0.01). Because of the vanishing of all even A ~2
o|rder|s| in>|<1,x2, ..., therelative phase remains undeter- dp+Cle.pt=—Cpodye+ kVip. (A2)
First, we note that fom (resistivity)—, we recover the
1.2 simplified model(1) and (2). The following notations have
1.0 been usedv =B, /\4mp, is the Alfven velocity, depend-
ing on the toroidal magnetic field strengy and the aver-
.08 LT : N
& age mass der_lsn)po, c is the velocity of I|ght, Po
50.6 = —dpg/dx>0 is the zeroth-order pressure gradient in slab
S 04 geometry;go>0 characterizes the magnetic curvature and
follows viabg- (gX Vp)~ —godyp from the curvature vector
0.2 g=(b-V)b.
0.0 The operator
- 1 X
0.7 VH==b0V%az+ W&g’*’ 0"2_ L_S(?y (AB)
06 has been defined. In its last fofms it appears on the right-
:0'5 hand side of A3)] we have approximatell; in the vicinity
04 of a magnetic surface situatedratr,. This is a quite stan-
s.§0'3 dard procedure leading to the shear lerigihin the so-called

slab geometry.

The single helicity approximation means that we only
consider resonant modém,n with q(ro)=m/n. Herem
andn are the azimuthalpoloidal ) and longitudinal(toroi-
dal ¢) wave numbers in the simplifie@.g., cylindrical co-
ordinate system. Note that because of magnetic shear the
FIG. 13. Same as Fig. 11, but for+0.24. so-calledq factor

0.2

0.1

0.0
-5
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By V¢ Vio+a{e,V:el=—sVie—adp+uVie,
a(r)= (A4 (AL

Ip+ai{e,pl=—adyp+ KVip, (A15)
depends on radius In (local) slab geometry, the radial co-
ordinate is denoted by. Furthermore, within the slab geom- Where
etry we choose the direction in the direction of the actual
magnetic field atx=rq (i.e., thez axis does not coincide
anymore with the cylinder aof axis). Since the equilibrium is
only x dependent, Fourier decompositionsfiand{ (respec-
tively, y andz) are possible, with the remarkable result

V=0~ axdy~—axdy, Vi=di+a%%. (A16)
The independent variables vary within

T

5| X[0,2m]x

(X,y'Z) €

27TRO:|
0, . (A17)

o
2’ Ls

ei(m0+n§)*>ei{my/ro+[n—m/q(ro)]z/RO} (A5)
to lowest order irry/Ry. That means that within the single As in standard fluid theory we call
helicity approximation the dependence becomes negligible, 4d 2L,

and on the resonant surfagér ) =m/n we can approximate a= 5= (A18)
0 y
2
V2~ i) 92, (AB) the (fluid) aspect ratio of the slab domain. This definition
L) Y should not be confused with the standard definition of the

aspect ratio of a tokamak.
Choosing the origin of th& axis at the point corresponding
tor=ry, we considex to vary within[ —d,d]. That means APPENDIX B: LINEAR STABILITY ANALYSIS
that L,=2d is the extension in the direction. Dirichlet IN THE SHEARLESS CASE
boundary conditions are assumedxin.e.,
Starting from a(conductive stateo=p=0, linear analy-
o(+dy,z,t)=V2e(+dy,zt)=p(*d,y,zt)=0. sis of the systen(3,4) yields fors=0 to the growth rate
(A7)

. v1+Pr, [v2(1-Pn? . aPm?|'?
On the other hand, periodic boundary conditions are de- Vlm:_zﬁklﬂ 4 Pr im K2,
manded for Bsy<L,~2r,, e.g., (B1)
e(x,0z,t)=o(x,Ly,z1), (A8)  for a mode withkZ,=I%+ «’m?. If either u or  vanishes,
all modes become linearly unstable, whereas for posjtive
and so on. k there is a finite number of unstable modes, and short wave-
As a natural length scale we introduce lengths are damped. The linearly most unstable mode
(I*,m*) always had* =1, sincevy,, decreases monotoni-
_ 2d cally with increasing. Its wave numbem* =1 varies like
&= T (A9) am* =f(v), wheref(v) is a lengthy expression, which does

not merit being given explicitly here. We havér)~0(1)
The Rayleigh-Taylor growth rate induces the natural timefor »e[0.1,0.3. The critical (y=0) viscosities

scale ver(a;l,m)=am(1?+ a?m?) ~32 are plotted by the broken
lines[y, »n=0 for (I,m)=(1,1), (1,2, (1,3), respectively of
Po Fig. 1 for various modes.
T= 7 (A10) The corresponding eigenfunctions are
29oPo
. 1 [ —[vk? Pr Y24y~ 1/am
Normalizing Dim(X)= —i( [vkim Viml/ @ fi(x), (B2)
NIm 1
@CT , T KT
e PREPoP p=Tz. k=g, (ALY where
sin(Ix) for | even,
and introducing the shear parameter N, is the normalization constant.
) Form=0, ¢ andp decm&le(in the linear limip, and we
2_47-rvA§ T introduce the notatiom=0,0 with
S = 2 (A13)
n
S ¢ —ﬁ(l f B4
we finally end up with the following nondimensional system Pro(X) = 110 10, (B4)
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0 Apn—0, (C8
1

?zuax):fz( f1(x). (B5)

i.e., very highm modes leading toy— 1, the growth rate no

The corresponding damping rates apg=— P2 and longer depends on the resistivity.
yi0=— v1%//Pr, respectively.
APPENDIX D: CALCULATION OF SOME COEFFICIENTS
APPENDIX C: LINEAR STABILITY ANALYSIS Let us introduce a scalar product that can be used to
IN THE SHEARED CASE project on the marginal modes. The projection can be

In general, in the presence of magnetic shear, the eigeﬁbought of as solvability conditions which the partial differ-

value spectrum has to be determined numerically. For th&ntial equations fo;,®;;, etc, are required to fulfill. These
understanding of the dependencies, it is quite instructive tgondmons impose that the inhomogeneity, i.e., everything
go to a limit where the growth rates and eigenfunctions carPUt Lc®i» Lc®ij, and so on, is orthogonal to the kernel of
be determined analytically. We first note that we can comN€ adjoined operator df.. Denoting the scalar product by
pletely eliminate the parameterin the basic equations by (, ) we define

the following changes of variables: a2 (2

1
(P,® >=Wf_7ﬁ2 . (¢@'+pp’)dxdy. (DI)

XS—X, ys—Y, SPo—¢@, Sp—p, (C1
leavingt and z unchanged, and replacirgfu— u ands?«  Itis readily verified that the operatdy; is self-adjoined with
— k. Then, in the basic equatiorid) and(4), the parameter respect to(, ). Hence the marginal modes of the adjoined
s disappears, but of course the size of the systeml(,) as  Problem coincide with those of the original problem. The
well as the dissipation parameters becawependent. For a energy operatoH . ((®,H®) is twice the total energy of the
physical discussion it is more instructive to keep the effect oSystem is self-adjoined, too, and positive definite, which en-

resistivity vias, and to introduce only the new variabfevia ~ ables us to introduce a second scalar produgdt.-). The
normalization constanil in (23) and (24) was chosen in a

, salm| way that the marginal mode®,, ..., ®, are orthonormal
T2 X €2 with respect to the second scalar produ¢t;,H.®;)

:é‘ij! fori,j:]., o4
For u=v=0 the linear eigenvalue problem can then be Implementing the strategy outlined in the main text, our
transformed into a standard form. Some simple manipulaealculation yieldsa!=0 for all i,j, and ®5=®d¢=(0,0)' in

tions lead to first order. Second order coefficients are calculated from
5 alm 1-9* i 1
et |~ —3z— X°|¢=0, (C3 am=<q)ma((9xi|-c)q)j>+m(q)maNc(q)iyq)j)
S Y ij
i.e., the standard equation for Hermite polynomielig(X). +N(P),Py)), (D2)
Note that for larges we have practically the infinite domain ivin
[—, + o], and the eigenfunction solutions can be written in9'ving
the forms 5.2
15_ 02 JPr 16:21 202 \Pr oa
2 =Ty A 5 Tepr (D3
¢(X)~e " "H,_4(X), leN. (C4) G
The corresponding eigenvalues follow from a®— _ 202 \Pr a¥—2a 1—8a§ \Pr (D4)
37 " Uypp & @ 1+Pr

s talm|(1— %)y ¥2=21-1. (C5)
. _ _ _ Next, we proceed with the second order spatial expansion
The asymptotically valid expressions approximate very welkynctions®;; and calculate the third order temporal evolu-

the numerical ones. _ _ ~_ tion coefficients. Evaluating
For the eigenvalueg we can investigate two limits. First,
when ijk 1
an :m@)mch(@i @)+ Ne(Pjie, D)
(21-1)s Ik
A= > 1 €8 +No(@;, i)+ N( Dy, D)) (D5)
i.e., for smallm, we find y—0 and therefore for j, k=4, and
1 ijk — : . -
=g ms P I e
m

—a*H @ —al/H d; —al o, H.D,—alkg, H D,
i.e., the well-known scaling for resistive interchange modes. HoP A Heicm 2o Ho® = ad Hoby)
On the other hand, for (D6)
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for j ,k>4, yields, e.g.,

/2
111 acql Pr3
LT (mee? b7
333_ PTSIZ
83"= @l pp2e (D8)
0.065271 0.021308 P 0.904356 Pt
ari= ., (D9)
JPr(1+ P2
s 0.085379-0.064846 P+ 0.932975 Pt
a = )
: JPr(1+Pn)?2
(D10)
5 2
155: ql(l_ Pr) \/Er (Dll)
L ag(1+Pn3
(1-Pn?+8af Pr
al%=—2./Pr - (D12

ag(1+Pn°
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ai%=\/P{(1-Pn2-a2(9+2 Pr+9 PP)
+2a(1-6 Pr+PP)J[aq5(1+Pn3 L,

(D13)
Ssszqg(l——Pr)z\/Er (D14)
3 T 2al(1+Pnd
(1—Pn?+32a Pr
356__ r
a3*=—2\Pr ag(1+Pn® (b9
a$*=2P((1-Pn’~4af(9+2 Pr+9 PP)
+32a4(1-6 Pr+-PP) ][ acq3(1+Pn3] L.
(D16)

Due to lack of space we refrain from presenting exact ex-
pressions foa}*3anda3'?, which are complicated functions

of a.. Three nonlinear coefficients of the kernel modes
(ar't, a3*, andai'¥ are always negative, bat;>* is only

negative for Prandtl numbers greater than 0.280691.
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