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Pulling a polymer out of a potential well and the mechanical unzipping of DNA

K. L. Sebastian
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

~Received 25 February 2000!

Motivated by experiments on DNA under torsion, we consider the problem of pulling a polymer out of a
potential well by a force applied to one of its ends. If the force is less than a critical value, then the process is
activated, and has an activation energy proportional to the length of the chain. Above this critical value, the
process is barrierless and will occur spontaneously. We use the Rouse model for a description of the dynamics
of the peeling out, and study the average behavior of the chain by replacing the random noise by its mean. The
resultant mean-field equation is a nonlinear diffusion equation, and hence rather difficult to analyze. We use
physical arguments to convert this to a moving boundary value problem, which can then be solved exactly. The
result is that the timetpo required to pull out a polymer ofN segments scales likeN2. For models other than
the Rouse model, we argue thattpo;N11n.

PACS number~s!: 87.15.2v, 36.20.Ey
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I. INTRODUCTION

Considerable attention has been paid to the replicatio
the DNA molecule@1#. The first step in the replication is th
unzipping of the two strands. Usually, this is caused by
zymes, and mechanical force at the molecular level is
volved in the action of these enzymes. Recently, microm
ipulation techniques have been developed to study sin
molecules of DNA under stress@2#. Most such single mol-
ecule experiments have concerned the stretching prope
of DNA, but very recently, the response of the DNA to e
ternal torques was also studied@3,4#. Mechanical unzipping
of the two strands of the DNA, in the absence of enzym
has been carried out@6#. There have been interesting inve
tigations of the theory of stretching DNA@5#, and its dena-
turation under a torque~see Fig. 1! @7,8#. In an interesting
recent e-print, Bhattacharjee@7# suggested a minimal mode
to study the unzipping. He treated the DNA as consisting
two flexible interacting elastic strings which are bound
gether by an attractive interaction. The two are tied toget
at one end, and at the other end there are forces acting o
two strands, trying to separate them. Winding was ignore
his analysis. He assumed that in relative coordinates,
Hamiltonian for the unzipping problem is equivalent to th
for a single chain, subject to an attractive short range po
tial well with a force acting at one of its ends. It is show
that the polymer can be pulled out only if the force excee
a critical value. The model is of interest in other contexts
well. For example, one can imagine constructing microfab
cated channels having different depths in different region
trap the polymer by entropic barriers~see the recent exper
ments by Hanet al. @9#!, and then pulling it out from the
traps by the application of a force at one end. Another p
sible application is the desorption of a long chain molec
adsorbed on a surface by pulling at one end. Our aim in
paper is to investigate the dynamics of the escape of a c
from a potential well as a result of applying a force at one
its ends. We consider only the one-dimensional problem,
our approach is much less sophisticated than that of Ref.@7#,
as we do not take into account the excluded volume inte
tion. We bring out the physical reason for the existence
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the critical force. For describing the dynamics, we use
simple Rouse model. We find thattpo , the time required to
pull out a chain molecule ofN segments, scales asN2.

In Sec. II we give an outline of the statistical mechan
of a polymer, trapped by an attractive potential, with a for
acting at one end. Section III outlines the Rouse model t
is applicable for a polymer subject to a force, and analy
why the force has to exceed a critical force for pulling it ou
In Sec. IV, we argue that the problem can be approxima
by a moving boundary value problem and then solve
problem. Finally, Sec. V summarizes our conclusions.

II. STATISTICAL MECHANICS OF A TRAPPED
POLYMER WITH A FORCE AT ONE OF ITS ENDS

In this section we consider the statistical mechanics o
polymer in one dimension, trapped in an attractive poten
V(R), that is located nearR50 ~see Fig. 2 for the nature

FIG. 1. The forced unzipping of DNA.
1128 ©2000 The American Physical Society
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PRE 62 1129PULLING A POLYMER OUT OF A POTENTIAL WELL . . .
of the potential! and subject to a forceF at one of its ends.
We take the number of segments in the polymer to beN. The
partition function for a free polymer, that is not subject
any force but has one end atR50, may be calculated asZ
5*dRG(R,0,N), whereG(R,0,N) is the propagator for the
unforced molecule, which obeys the differential equation

S ]

]N
2

l 2

6

]2

]N2
1

1

kBT
V~R!D G~R,R0 ,N!5d~N!d~R2R0!

~see Ref.@10#!. l is the Kuhn length for the chain, andR and
R0 denote the positions of the two ends of the chain.

In the presence of a forceF acting at the end atR, the
partition function becomes

Z5E
2`

`

dRG~R,0,N!eRF/kBT. ~1!

Using the ground state dominance approximation for
propagator, valid for long polymers@10#, we can write the
above as

Z5E
2`

`

dRc0* ~R!c0~0!e(RF2E0N)/kBT, ~2!

where c0(R) is the lowest eigenfunction of th
operator H52( l 2/6)(]2/]R2)1(1/kBT)V(R), having
the eigenvalueE0 /(kBT). Now, for large values ofR,
the eigenfunction c0(R);exp„2A(26E0 / l 2kBT)R…
;exp„2A(6V0 / l 2kBT)R…, where in the last step we hav
neglected the ‘‘zero point energy’’ contribution to the lowe
eigenvalue and approximated it by2V0, where V0 is the
depth of the potential well. On using this in Eq.~2!, we
realize that forF.Fc5A6kBTV0 / l 2, the contribution from
large values ofR make the integral diverge, indicating th
for F.Fc , the polymer is pulled out of the hole. ForF
,Fc , the partition function is finite, indicating that the mo
ecule remains trapped. In this analysis, we have negle
the zero-point energy, which, in the polymer problem,
equivalent to neglecting the effect of thermal fluctuatio
Thermal fluctuations makeFc slightly lower @7#.

III. ROUSE MODEL AND THE FREE ENERGY PROFILE
FOR THE PULLED POLYMER

The process that we study is shown in Fig. 2. For
description, we use the continuum limit of the Rouse mod
discussed in detail by Doi and Edwards@10#, which was

FIG. 2. The polymer trapped in a potential well, subject to
force F.
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recently used to study the related problem of escape o
polymer over a barrier@11#. The chain is approximated as
string, with segments~beads! labeled by their positionn
along the chain.n is taken to be a continuous variable, ha
ing values ranging from2N to 0 ~this is convenient for the
present problem!. The position of thenth segment in space
~one dimension! is denoted byR(n,t), wheret is time. In the
Rouse model, this position undergoes overdamped Brown
motion, and its time development is described by the eq
tion

z
]R~n,t !

]t
5m

]2R~n,t !

]n2
2V8„R~n,t !…1 f ~n,t !. ~3!

In the above,z is a friction coefficient for thenth segment.
The termm@]2R(n,t)/]n2# comes from the fact that stretch
ing the chain can lower its entropy and hence increase
free energy. Consequently, the parameterm53kBT/ l 2 @see
Doi and Edwards@10#, Eq. ~4.5!. They used the symbolk for
the quantity that we callm#. V(R) is the free energy of a
segment of chain, located at the positionR and V8(R)
5]V(R)/]R. f (n,t) are random forces acting on thenth
segment, and have the correlation functi
^ f (n,t) f (n1 ,t1)&52zkBTd(n2n1)d(t2t1) @see Ref.@10#,
Eq. ~4.12!#. The deterministic part of Eq.~3!, which will play
a key role in our analysis, is obtained by replacing the r
dom noise term in Eq.~3!, by its mean. As we are applyin
a force at one end of the polymer~at n50), and as the othe
end is free, the boundary conditions to be satisfied are

H ]R~n,t !

]n J
n50

5
F

m
, ~4!

H ]R~n,t !

]n J
n52N

50. ~5!

The above equations may equivalently be written as

z
]R

]t
52

d

dR~n!
E@R!] 1 f ~n,t !, ~6!

where we have defined the free energy functional

E@R#5E
2N

0

dnH m

2 S ]R

]n D 2

1V~R!2FR~n!d~n1«!J .

~7!

«(→0) is a small positive number. The process of pulli
out may be made physically clearer by analyzing this f
energy functional. For this, we consider the free energy
persurface that results from Eqs.~4!, ~5!, and~7!. We find the
extrema on this surface by putting (d/dR)E@R#50, which
leads to

m
]2R

]n2
5V8~R! for n,0. ~8!

This has to be solved, subject to the conditions of Eqs.~4!
and ~5!. Imagining and speaking ofn as time for the rest of
this section, we realize that this is just Newton’s equation
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1130 PRE 62K. L. SEBASTIAN
a particle of massm, moving in the upside down potentia
2V(R). In Fig. 3, we show this potential. The bounda
condition of Eq.~5! means that the particle has to start at t
time n52N, with zero velocity and end at the timen50,
with the velocityF/m. This means that at the end of its pat
its kinetic energy isF2/2m. At n52N, the particle can at
the most start at the top of the potential, where its total
ergy is V0. If it obeyed Eq.~8!, then, atn50, its kinetic
energy has to be less than this amount. Thus we obtain
condition thatV0.F2/2m ~or equivalently,Fc.F) for the
free energy surface to have a local minimum!. If this condi-
tion is satisfied, then for any finite value ofN, we can find
two solutions to Eq.~8! satisfying the boundary condition
~this is true for potentials of the shape shown in the figur!.
These two solutions are shown in Fig. 3. In the first solut
~shown as lineAB in the figure!, the particle starts near th
maximum of2V(R), at the timen52N, and takes a very
long time to move away from the maximum; it eventua
arrives at pointB at the final timen50, with exactly the
right kinetic energy ofF2/2m. As this corresponds to a con
figuration for the polymer where almost all itsN ~assumed to
be large! segments are near the minimum of the poten
well V(R), we can estimate the free energy for this config
ration to be;2NV0. The second solution,CD, also shown
in Fig. 3, corresponds to the particle starting from rest fr
an appropriate value ofR ~point C in Fig. 3! at the timen
52N and arriving atn50 with the kinetic energyF2/2m.
The particle spends only relatively small amount of time
the region where the potential energy2V(R) is nonzero.
One easily estimates the free energy of the polymer to
;2N(F2/2m). Thus, for a polymer ofN segments, there is
a barrier of heightN„V02(F2/2m)…5N(Fc

22F2)/2m, to be
overcome for the pulling the polymer out. AsF→Fc this
barrier is reduced, and ifF.Fc then the free energy surfac
has no local minimum—its minimum is at infinity—whic
means that the pulling out is barrierless and would oc
spontaneously. A pictorial representation of this scenari
given in Fig. 4.

IV. DYNAMICS

We now consider the case withF.Fc , so that the pulling
out of the chain has no activation barrier. We are interes

FIG. 3. The upside down potential2V(R). The linesAB and
CD represent the solutions of Eq.~8!, corresponding to initial and
transition states, respectively. The corresponding configuration
the polymer are represented by the coiled curves above them
stand for the transition state. The kinetic energy at then50 end is
F2/2m, and this must be less than the height of the potentialV0, if
the extrema are to exist.
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in only the average behavior of the segments, in the proc
of pulling out. This may be obtained by analyzing the det
ministic equation

z
]R~n,t !

]t
5m

]2R~n,t !

]n2
2V8„R~n,t !…, ~9!

where we have replaced the random termf (n,t) by its aver-
age value, viz. 0. We now wish to analyze this equat
subject to the two boundary conditions of Eqs.~4! and ~5!.
This equation is just a nonlinear diffusion equation.

Equation ~9! is very difficult to solve for any realistic
V(R). However, we can use the following physical pictur
We takeV(R) to be a short ranged well, having a depth
V0, and to have a rather sharp boundary like the one in F
2. The change over from2V0 to the flat region where
V(R)50 occurs over a region of widthw, which is assumed
to be small. This means thatV8„R(n,t)… resembles a Diracd
function, which implies that]R(n,t)/]n has to change very
rapidly across this region, and would resemble a step fu
tion. If we consider the process of escape from the well, th
at any time, the units of the polymer withn,ni(t) would
haveR(n,t)50, and the segments fromni(t) to no(t) would
be spread across the region of widthw. We shall refer to
no(t) as the peeling point. On multiplying Eq.~9! by
]R(n,t)/]n, and integrating fromni(t) to no(t), we obtain

m

2 S ]R~n,t !

]n D
no(t)

2

2V05zE
ni (t)

no(t)]R~n,t !

]t

]R~n,t !

]n
dn.

~10!

In arriving at Eq. ~10! we have used the fact tha
„]R(n,t)/]n…ni (t)

50 andV@R„ni(t)…#52V0. If the width w

is small, then we are justified in neglecting the right ha
side of the Eq. ~10!, and then we find that
„]R(n,t)/]n…no(t)

2 52V0 /m, which on taking the square roo

may be written as

of
TS

FIG. 4. The free energy hypersurface. ForF,Fc it has both a
local maximum and a minimum, while forF.Fc no local extrema
exist.Eact is the activation energy and is equal toN(Fc

22F2)/2m.
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S ]R~n,t !

]n D
no(t)

5
Fc

m
, ~11!

whereFc5A2mV0. ~If we picture the process as in Fig. 5
then we need not worry about the case whereFc5
2A2mV0). Now all that we have to do is to solve the di
fusion equation~9!, outside the well region, subject to th
above boundary condition. Outside the well, Eq.~9! becomes
the simpler diffusion equation

z
]R~n,t !

]t
5m

]2R~n,t !

]n2
, ~12!

which is a linear equation. As the range of the potential w
is small in comparison with the total length of the polyme
we can take

R~n,t !50 for n,no~ t !. ~13!

Thus we now have a moving boundary value problem:
have to solve Eq.~12! for R(n,t), and determineno(t), such
that conditions~ 4!, ~11!, and~13! are satisfied~see Fig. 5 for
a pictorial representation of the process!. In thus simplifying
the equation, our assumption of neglecting the right ha
side of the Eq.~10! is crucial. Physically, what is being don
is that near the point of breaking away from the potential,
segments are assumed to be at equilibrium. This means
the time scale for peeling the polymer away from the wel
slow in comparison with the time scale for the establishm
of local equilibrium near the peeling point.

Usually, moving boundary value problems are difficult
solve. However, in this case, it is possible to find similar
solutions to these equations. For this, we putR(n,t)
5Atr(z), wherez5n/(aAt), with a5A2m/z:

d2r~z!

dz2
1z

dr~z!

dz
2r~z!50. ~14!

Note thatz e (2`,0). The boundary conditions become

S dr~z!

dz D
z50

5
aF

m
, ~15!

S dr~z!

dz D
z5zo

5
aFc

m
, ~16!

and

r~zo!50, ~17!

FIG. 5. The moving boundary value problem. The forceF is
applied atn50. n varies from2N to 0. At a given timet, the
portion with 0.n.no(t) has been pulled out from the well.
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wherezo is related tono(t) by

no~ t !5zoaAt.

These equations can be solved to findr(z) and zo . The
result is

r~z!5
a

m erfS z0

A2
D F ~Fc2F !A2

p
e2z2/2

1zX~Fc2F !erfS z

A2
D 1F erfS z0

A2
D CG , ~18!

wherezo(,0) is the solution of the equation

Ap

2
erfS z0

A2
D ez0

2/2z05
~F2Fc!

Fc
. ~19!

Note thatz0 is a function of (F2Fc)/Fc only. Using all the
above results, we obtain

R~n,t !

F
Azm

2t
5nA z

2mt
2

~F2Fc!

F erfS z0

A2
D XA

2

p
e2n2z/4mt

1nA z

2mt
erfS 1

A2
nA z

2mtD C. ~20!

To demonstrate the nature of this solution, we note that
right hand side is a function ofnAz/2mt alone, and make a
plot of the left hand side against this variable in Fig. 6. T
important conclusion that we can draw from the above is t
the point of detachment of the polymer from the well
given by the equationno(t)5z0A2mt/z, wherez0 is the so-
lution of Eq. ~19! and ist independent. As the left hand sid
of Eq. ~19! is positive, one has a solution forz0 only if (F
2Fc)/Fc.0, and again this just means the existence of
critical force~a similar conclusion was arrived at by Bhatt
charjee@7#!. His answer was slightly different, as his analys
took the noise term too into account!. The pulling out of the
polymer is complete whenno(t)52N. Hence the time re-
quired to pull out the chain is given by

FIG. 6. Plots ofAmz/2tR(n,t)/F againstnAz/2mt.
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1132 PRE 62K. L. SEBASTIAN
tpo5S N

z0a D 2

.

For forces slightly exceeding the critical force, one can so
Eq. ~19! and obtain

z052S ~F2Fc!

Fc
A2

p D 1/2

.

Hence we conclude thattpo;N2. Further, for small
(F2Fc),

tpo;~F2Fc!
21. ~21!

V. CONCLUSIONS

We now summarize our results and point out the dra
backs of our analysis. Using the Rouse model, we find
for a polymer trapped in a potential well, subject to a force
one of its ends, there exists a critical forceFc . Below this
critical force the pulling out is an activated process, with
activation energy proportional to the number of segment
the chain. So the pulling out would not occur. For forc
higher thanFc , there is no barrier, and the process wou
occur spontaneously. The dynamics of the pulling out is
scribed by a nonlinear Rouse equation, which is rather d
cult to solve. We find an approximate solution by~a! confin-
ing ourselves to the average behavior of the positions of
segments, and~b! introducing a local equilibrium assump
tion, which enables us to convert the nonlinear equation
moving boundary value problem. This moving bounda
k-

V.

D

a

e

-
at
t

n
in

-
-

e

a

value problem has a similarity solution, and this leads to
conclusion that the time required to pull the chain out sca
like N2.

Obviously, there is scope for improvement of our ana
sis. One would like to perform a more detailed analysis,
cluding the effects of noise. Also, the effects of hydrod
namic interactions and the excluded volume interactio
have to be included. Inclusion of these may be done
modifying Eq.~3! to

z
]R~n,t !

]t
5mE dn1h~n2n1!

]2R~n1 ,t !

]n1
2

2V8„R~n,t !…

1 f ~n,t !

@see Eq.~4.50! of Ref. @10##. In general,h(n);n2y, with
v,1 ~different values can be used forn to account for Zimm
dynamics or excluded volume interactions—see Eqs.~4.49!
and~4.69! of Ref. @10#!. With the boundary conditions sam
as in our Eqs.~5!, ~11!, and~13!, one finds thattpo;N11y.

Our results above, however, are only the first few step
the analysis of this very interesting problem. The most i
portant next step, obviously, is to go beyond our mean-fi
description by including the fluctuations. It seems likely th
fluctuations can modify the long time behavior qualitative
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