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Pulling a polymer out of a potential well and the mechanical unzipping of DNA
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Motivated by experiments on DNA under torsion, we consider the problem of pulling a polymer out of a
potential well by a force applied to one of its ends. If the force is less than a critical value, then the process is
activated, and has an activation energy proportional to the length of the chain. Above this critical value, the
process is barrierless and will occur spontaneously. We use the Rouse model for a description of the dynamics
of the peeling out, and study the average behavior of the chain by replacing the random noise by its mean. The
resultant mean-field equation is a nonlinear diffusion equation, and hence rather difficult to analyze. We use
physical arguments to convert this to a moving boundary value problem, which can then be solved exactly. The
result is that the time,, required to pull out a polymer dfl segments scales liké?. For models other than
the Rouse model, we argue th@pN“”.

PACS numbeps): 87.15-v, 36.20.Ey

[. INTRODUCTION the critical force. For describing the dynamics, we use the
simple Rouse model. We find thgj,, the time required to
Considerable attention has been paid to the replication gbull out a chain molecule dfl segments, scales &¥.

the DNA moleculd 1]. The first step in the replication is the In Sec. Il we give an outline of the statistical mechanics
unzipping of the two strands. Usually, this is caused by enef a polymer, trapped by an attractive potential, with a force
zymes, and mechanical force at the molecular level is inacting at one end. Section Il outlines the Rouse model that
volved in the action of these enzymes. Recently, micromanis applicable for a polymer subject to a force, and analyzes
ipulation techniques have been developed to study singlerhy the force has to exceed a critical force for pulling it out.
molecules of DNA under stre§&]. Most such single mol- In Sec. IV, we argue that the problem can be approximated
ecule experiments have concerned the stretching propertiédy a moving boundary value problem and then solve the
of DNA, but very recently, the response of the DNA to ex- problem. Finally, Sec. V summarizes our conclusions.
ternal torques was also studigsl4]. Mechanical unzipping
of the two strands of the DNA, in the absence of enzymes,

has been carried oli6]. There have been interesting inves- Il. STATISTICAL MECHANICS OF A TRAPPED

tigations of the theory of stretching DNB], and its dena- POLYMER WITH A EORCE AT ONE OF ITS ENDS

turation under a torquésee Fig. 1[7,8]. In an interesting ) _ ) o )
recent e-print, Bhattacharj¢&] suggested a minimal model In this section we consider the statistical mechanics of a

to study the unzipping. He treated the DNA as consisting of0lymer in one dimension, trapped in an attractive potential
two flexible interacting elastic strings which are bound to-V(R), that is located neaR=0 (see Fig. 2 for the nature
gether by an attractive interaction. The two are tied together
at one end, and at the other end there are forces acting on the
two strands, trying to separate them. Winding was ignored in
his analysis. He assumed that in relative coordinates, the
Hamiltonian for the unzipping problem is equivalent to that
for a single chain, subject to an attractive short range poten-
tial well with a force acting at one of its ends. It is shown
that the polymer can be pulled out only if the force exceeds
a critical value. The model is of interest in other contexts as
well. For example, one can imagine constructing microfabri-
cated channels having different depths in different regions to
trap the polymer by entropic barriefsee the recent experi-
ments by Haret al. [9]), and then pulling it out from the
traps by the application of a force at one end. Another pos-
sible application is the desorption of a long chain molecule
adsorbed on a surface by pulling at one end. Our aim in this
paper is to investigate the dynamics of the escape of a chain
from a potential well as a result of applying a force at one of
its ends. We consider only the one-dimensional problem, and
our approach is much less sophisticated than that of [REf.

as we do not take into account the excluded volume interac-
tion. We bring out the physical reason for the existence of FIG. 1. The forced unzipping of DNA.
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F recently used to study the related problem of escape of a
polymer over a barrief11]. The chain is approximated as a
string, with segmentgbeads labeled by their positiom
along the chainn is taken to be a continuous variable, hav-
ing values ranging from+N to O (this is convenient for the
present problem The position of thenth segment in space

0 (one dimensiohis denoted byR(n,t), wheret is time. In the
Rouse model, this position undergoes overdamped Brownian

-IW—PL motion, and its time development is described by the equa-
R—> tion

VIR) —>

FIG. 2. The polymer trapped in a potential well, subject to a )
forceF. g0R(n,t)_m<? R(n,t)

ot r7n2

-V'(R(n,t))+f(n,t). (3

of the potentigl and subject to a forcé at one of its ends.
We take the number of segments in the polymer tdlb&éhe  |n the above/ is a friction coefficient for thenth segment.
partition function for a free polymer, that is not subject to The termm[#°R(n,t)/dn?] comes from the fact that stretch-
any force but has one end BRt=0, may be calculated @&  ing the chain can lower its entropy and hence increase its
=JdRG(R,0N), whereG(R,0N) is the propagator for the free energy. Consequently, the parameter 3kgT/I? [see
unforced molecule, which obeys the differential equation  Doi and Edward$10], Eq.(4.5). They used the symbdaifor
» the quantity that we calin]. V(R) is the free energy of a
R segment of chain, located at the positiGhand V'(R)
IN 6 gN? =dV(R)/dR. f(n,t) are random forces acting on theh
segment, and have the correlation  function
(see Ref[10]). | is the Kuhn length for the chain, afland  (f(n,t)f(ny,t1))=2¢kgTS(n—n;) 8(t—t;,) [see Ref.[10],

G(R,Ry,N)=8(N) S(R—Ry)

1
+ kB—TV( R)

R, denote the positions of the two ends of the chain. Eq.(4.12]. The deterministic part of E¢3), which will play
In the presence of a force acting at the end aR, the  a key role in our analysis, is obtained by replacing the ran-
partition function becomes dom noise term in Eq(3), by its mean. As we are applying
a force at one end of the polym@tn=0), and as the other
7= Jw dRG(R,0N)eRF/keT (1) end is free, the boundary conditions to be satisfied are
- R(n,1) F
Using the ground state dominance approximation for the an m 4
propagator, valid for long polymeidQ], we can write the n=0
above as JR(N,1)
=0. 5)
an
n=-N

2= | aras (R0 T, (0
The above equations may equivalently be written as

where ¢y(R) is the lowest eigenfunction of the
operator H=—(1%/6)(¢°/JR?)+ (1kgT)V(R), having R__

the eigenvalueE,/(kgT). Now, for large values ofR, ot oR(n)
the  eigenfunction R) ~exp(— (= 6E,/I%kgT)R i ,
~exp(— QWVOII ksT) Rioivrzere iE(the(Iast gtep \E;ve) h?alve where we have defined the free energy functional
neglected the “zero point energy” contribution to the lowest o m/ JR\2

eigenvalue and approximated it byV,, whereV, is the E[R]:f dn[—(— +V(R)—FR(n)8(n+¢);.
depth of the potential well. On using this in E), we -N 2\ n

realize that forF>F .= \/6kgTV,/I?, the contribution from v
large values oR make the integral diverge, indicating that
for F>F., the polymer is pulled out of the hole. Fér
<F., the patrtition function is finite, indicating that the mol-
ecule remains trapped. In this analysis, we have neglect
the zero-point energy, which, in the polymer problem, is
equivalent to neglecting the effect of thermal fluctuations
Thermal fluctuations makEg. slightly lower[7].

E[R)] +f(n,t), (6)

e(—0) is a small positive humber. The process of pulling
out may be made physically clearer by analyzing this free
energy functional. For this, we consider the free energy hy-

rsurface that results from Ed4), (5), and(7). We find the
extrema on this surface by putting/(6R)E[ R]= 0, which
leads to

9°R
lll. ROUSE MODEL AND THE FREE ENERGY PROFILE m—=V'(R) for n<0. )
FOR THE PULLED POLYMER an

The process that we study is shown in Fig. 2. For itsThis has to be solved, subject to the conditions of E4s.
description, we use the continuum limit of the Rouse modeland (5). Imagining and speaking af as time for the rest of
discussed in detail by Doi and Edwarfis0], which was this section, we realize that this is just Newton’s equation for
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initial state ——————i> @,\,w_ Free Energy Hypersurface
A B
fg—— F2/(2m) F<F¢ -
A TS
g sy
S A S —

R->

FIG. 3. The upside down potential V(R). The linesAB and
CD represent the solutions of E(8), corresponding to initial and
transition states, respectively. The corresponding configurations o
the polymer are represented by the coiled curves above them. T
stand for the transition state. The kinetic energy atrthed end is
F2/2m, and this must be less than the height of the poteMjalif
the extrema are to exist.

reaction coordinate
a particle of massn, moving in the upside down potential
—=V(R). In Fig. 3, we show this potential. The boundary loc
condition of Eq.(5) means that the particle has to start at the
time n=—N, with zero velocity and end at the tinre=0,

with the velocityF/m. This means that at the end of its path, . . .
its kinetic energy is=2/2m. At n=—N, the particle can at in only the average behavior of the segments, in the process

the most start at the top of the potential, where its total enplc pulling out. This may be obtained by analyzing the deter-

ergy isVy. If it obeyed Eq.(8), then, atn=0, its kinetic ministic equation

energy has to be less than this amount. Thus we obtain the 5

condition thatV,>F?2/2m (or equivalently,F.>F) for the g‘?R(n't) :m’? R(n,t) ~V'(R(N.1)) ©)

free energy surface to have a local minimuif this condi- ot an2 o

tion is satisfied, then for any finite value bf we can find

two solutions to Eq(8) satisfying the boundary conditions where we have replaced the random tin,t) by its aver-
(thiS is true for potentials of the Shape shown in the figure age value, viz. 0. We now wish to ana|yze this equation
These two solutions are shown in Flg 3. In the first SOlUtionsubject to the two boundary conditions of Eq@) and (5)
(shown as lineAB in the figure, the particle starts near the This equation is just a nonlinear diffusion equation.
maximum of —V(R), at the timen=—N, and takes a very Equation (9) is very difficult to solve for any realistic
long time to move away from the maximum,; it eventually v(R). However, we can use the following physical picture.
arrives at pointB at the final timen=0, with exactly the e takeV(R) to be a short ranged well, having a depth of
right kinetic energy of?/2m. As this corresponds to a con- v/, and to have a rather sharp boundary like the one in Fig.
figuration for the polymer where almost all is(assumedto 2. The change over from-V, to the flat region where
be large segments are near the minimum of the potential/(R)=0 occurs over a region of width, which is assumed
well V(R), we can estimate the free energy for this configu-to pe small. This means tht (R(n,t)) resembles a Diraé
ration to be~—NV,. The second solutior; D, also shown  fynction, which implies thapR(n,t)/dn has to change very

in Flg 3, Corresponds to the partide Starting from rest fromrapicuy across this region, and would resemble a Step func-
an appropriate value d® (point C in Fig. 3) at the timen  tjon. If we consider the process of escape from the well, then,
=—N and arriving an=0 with the kinetic energf%2m.  at any time, the units of the polymer with<n(t) would
The pal’ticle Spends Only relatively small amount of time inhaveR(n't)zo, and the segments from(t) to no(t) would

the region where the potential energyV(R) is nonzero. pe spread across the region of width We shall refer to
One easily estimates the free energy of the polymer to bg (t) as the peeling point. On multiplying Eq9) by
~—N(F?2m). Thus, for a polymer oN segments, there is  3R(n,t)/dn, and integrating fromn(t) to ny(t), we obtain

a barrier of heighN(Vo— (F2/2m))=N(F2—F2)/2m, to be

FIG. 4. The free energy hypersurface. FoF. it has both a
al maximum and a minimum, while fét>F no local extrema
exist. E, . is the activation energy and is equaINnQFﬁ—Fz)IZm.

overcome for the pulling the polymer out. AS—F, this m(JR(n,t)\? no(MJR(N,t) JR(N,t)

barrier is reduced, and K> F then the free energy surface —< an ) — Vo= J _ ot an dn.

has no local minimum—its minimum is at infinity—which No(t) mi)

means that the pulling out is barrierless and would occur (10
spontaneously. A pictorial representation of this scenario is o

given in Fig. 4. In arriving at Eq. (100 we have used the fact that

(9R(n,t)/dn)pn y=0 andV[R(n;(t))]= — V,. If the widthw

is small, then we are justified in neglecting the right hand
IV. DYNAMICS side of the Eq. (10, and then we find that

2 . .
We now consider the case wili>F ., so that the pulling  (?R(n,t)/dn); y=2Vo/m, which on taking the square root
out of the chain has no activation barrier. We are interestethay be written as
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TF 1.0
F/Fc =2
I
o 20 =-0.876

=
-N n{t} 0 E

d & 05
FIG. 5. The moving boundary value problem. The fofees 8
applied atn=0. n varies from—N to 0. At a given timet, the %‘
portion with 0>n>n,(t) has been pulled out from the well. >

(aR(n,t)) = E (12) %% 15 1.0 05 0.0
an ng(t) m nV§/(2mt) ->

whereF .= y2mV,. (If we picture the process as in Fig. 5, FIG. 6. Plots ofymZ/2tR(n,1)/F againstny¢/2mt.

then we need not worry about the case whdig=

—v2mV,). Now all that we have to do is to solve the dif- wherez, is related tong(t) by

fusion equation(9), outside the well region, subject to the ny(t)=2 ot

above boundary condition. Outside the well, E%).becomes ° o

the simpler diffusion equation These equations can be solved to fiptz) and z,. The
result is

JR(N,t) #R(n,t)
l =m

, 12
at O-)nZ ( ) o 2 —7%2
P(Z)Z—Z (Fe—F)\/ e
which is a linear equation. As the range of the potential well m erf _0)
is small in comparison with the total length of the polymer, V2
we can take
z Zy

Thus we now have a moving boundary value problem: W&yvherez,(<0) is the solution of the equation
have to solve Eq12) for R(n,t), and determin@,(t), such

that conditiond 4), (11), and(13) are satisfiedsee Fig. 5 for - 2\ 2, (F-Fo
5 erfl —=|e%'“zy=

a pictorial representation of the proceds thus simplifying

the equation, our assumption of neglecting the right hand Fe

side of the Eq(10) is crucial. Physically, what is being done

is that near the point of breaking away from the potential, thNote thatz, is a function of € —F¢)/F only. Using all the
segments are assumed to be at equilibrium. This means thapove results, we obtain

the time scale for peeling the polymer away from the well is

slow in comparison with the time scale for the establishment R(n,t) [{m 4 (F—F¢) \/5 —n2clamt
of local equilibrium near the peeling point. F V2t "Vaomt z ) P
0

(19

Usually, moving boundary value problems are difficult to F erf(—
solve. However, in this case, it is possible to find similarity V2
solutions to these equations. For this, we fn,t)
=\tp(z), wherez=n/(a\/t), with a=2m/¢: n [ & erf(in /i)) 20)
2mt J2 2mt) [
d’p(z)  dp(2) B
42 T3 —p(2)=0. (14 To demonstrate the nature of this solution, we note that the

right hand side is a function afy{/2mt alone, and make a
plot of the left hand side against this variable in Fig. 6. The
important conclusion that we can draw from the above is that
dp(z) = the point of detachment of the polymer from the well is
( e ) = (15  given by the equation(t)=z,\2mt/{, wherez, is the so-
z=0 lution of Eq.(19) and ist independent. As the left hand side
of Eqg. (19) is positive, one has a solution fag only if (F
(dp(Z)) _aF (169 —Fo)/Fc>0, and again this just means the existence of the
dz | __ m critical force (a similar conclusion was arrived at by Bhatta-
charjed 7]). His answer was slightly different, as his analysis
and took the noise term too into accounThe pulling out of the
polymer is complete when,(t)=—N. Hence the time re-
p(z,)=0, (170 quired to pull out the chain is given by

Note thatz € (—,0). The boundary conditions become
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N \2 value problem has a similarity solution, and this leads to the
tho= (Zo_a) . concluzsion that the time required to pull the chain out scales
like N<.

For forces slightly exceeding the critical force, one can solve Obviously, there is scope for improvement of our analy-
Eq. (19) and obtain sis. One would like to perform a more detailed analysis, in-
cluding the effects of noise. Also, the effects of hydrody-

(F_FC)\F 12 namic interactions and the excluded volume interactions

0T " F. V& - have to be included. Inclusion of these may be done by

modifying Eq.(3) to
Hence we conclude thatpo~N2. Further, for small

(F=Fo), g(g f;t]'t) =mf dnlh(n—nl)LrLl’t)—V'(R(n,t))
tpo— (F—Fo) L. (21) o

+f(n,t)
V. CONCLUSIONS
[see EQq.(4.50 of Ref.[10]]. In general,h(n)~n"", with

We now summarize our results and point out the draw+, <1 (different values can be used ferto account for Zimm
backs of our analySiS. USing the Rouse model, we find thaaynamics or excluded volume interactions—see qul_g)
for a polymer trapped in a potential well, subject to a force atand (4.69 of Ref.[10]). With the boundary conditions same
one of its endS, there exists a critical forE@ Below this as in our Eqs(s), (11), and (13)’ one finds thatp0~N1+U_
critical force the pulllng out is an activated process, with an Our results above' however, are 0n|y the first few Steps in
activation energy proportional to the number of segments ifhe analysis of this very interesting problem. The most im-
the chain. So the pulllng out would not occur. For forCESportant next step, 0bvi0us|y, is to go beyond our mean-field
higher thanF., there is no barrier, and the process woulddescription by including the fluctuations. It seems likely that

occur spontaneously. The dynamics of the pulling out is deflyctuations can modify the long time behavior qualitatively.
scribed by a nonlinear Rouse equation, which is rather diffi-

cult to solve. We find an approximate solution (@ confin-

ing ourselves to the average behavior of the positions of the
segments, andb) introducing a local equilibrium assump- | thank Professor S.M. Bhattacharjee for his comments,
tion, which enables us to convert the nonlinear equation to rofessor P.L. Sachdev for a discussion on nonlinear PDE,
moving boundary value problem. This moving boundaryand Bidisa Das for help with the figures.
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