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We investigate the statistics of extinction sizes and the taxonomy in a trophic model of evolution recently
proposedPhys. Rev. Lett82, 652(1999]. By further exploring the parameters of this model, we find that the
distribution of extinction sizedl(s) shows typically a characteristic maximum before developing the power-
law behavioN(s)~s™ ¢ with a~2, in agreement with empirical observations. Furthermore, the derivation of
the a=—2 exponent given by Dross@lPhys. Rev. Lett81, 5011(1998] for this model is completed. The
extinction sizes in each trophic level are also analyzed; one finds that at the fourth level arel4jptiie
extinction size statistics is a power law with exponent 1.4, and exponential-like at the second level, also in
agreement with some empirical data not previously explained by current models. On the other hand, in contrast
to the observed power-law distribution of the number of species in genera, numerical simulations yield an
exponential law. A modification of the model is presented that provides an approximate potential behavior for
taxonomy, and some consequences for future modeling are outlined.

PACS numbed(s): 87.10+¢€, 05.40—a, 05.45-a

[. INTRODUCTION order to make it slightly more realistic. In Sec. Ill we analyze
the distribution of extinction sizes in each trophic level and

The problem of large-scale evolutionary patterns has atcompare with some empirical data. Section IV explores the
tracted the attention of physicists in recent yddis Several  distribution of species in genera, and the last section is de-
approaches to macroevolution and extinction patterns haveéoted to conclusions.
been suggested, some based on internal dyndiie§ and
others on externally driven phenomef@®6] or mixed de- Il. STATISTICS OF EXTINCTION SIZES
scriptions assuming nonstationarfi§,7]. Recently, Amaral _ i )
and Meyer(AM) have proposed a simplified model for mac- _ 1he AM model is defined by a simple set of rulgs.
roevolution based on a trophic, multilayer description offi'St species at the bottofasal layer (=1) are extinct
Earth’s ecology{8]. The model introducet trophic levels ~ With some probabilityu, presumably associated with ran-
with a numberN of niches each. Living species can created0m external events. Each species inl>1 layers receives
new species at some rate in the nearest levels provided thiPuts from its immediate lower trophic levels. These con-
the randomly chosen niche is empty. Species at the |Owe§tect|or)s are not weighted and simply |nd|_cat¢_3 whether or not
level vanish randomly at rate, and species at higher levels & SPecies in the—1 layer supports a species in ta layer.
disappear only if all their preyspecies become extiiiet, Ve can indicate the connections between speciebs- 1
ecological avalanches are at wirk and speciesjel (herei,j=1,...N) by W(i,I-1;j,1)

This model presents some interesting properties, such as_%{pyl}- If the state of a specigs=1 ata given time stepis
power law for the distribution of extinction size®(s) indicated asS(j,1;t), then the rule for extinctioffor | >1) is
~s~ %, with =2, in agreement with available data from the N
fossil record[9]. This value for the exponent can also be S _ TP
obtained analytically10] (see Sec. Il for a comment on this S+ 1) ®( Z’l WL T= 1] ’I))’ @
demonstration Another interesting property of the model is
that time correlations of the number of species also fit wellwhere®(z) =1 if z>0 and zero otherwise. In other words a
with fossil record databases. Specifically, the number of spespecies cannot survive if no inputs from lower layers are
cies displays ¥/ fluctuations in timeg9]. present. In Fig. 1 we see an example of AM dynamics, for a

Our aim in this paper is to study numerically the predic-network withL=5 levels andN=50 species per level. At
tions of the trophic model for two main patterns in the fossilt=2485(and starting from a random initial conditipa fully
record, namely, the statistics of extinction size and the fracdeveloped ecology is formed, where we see that a large num-
tality of taxonomy. In this context, it has been shown that theber of species is sustained by the bottom layer. But the ex-
number of gener&(s) formed bys species also scales as tinction of S(1,13) triggers a massive extinction event that
G(s)~s " wherer~ —2 for most group$11]. propagates to the upper laydig. 1(b)].

The paper is organized as follows. Section Il deals with The model is completed by defining a diversification pro-
the distribution of extinction sizes. A point is made about thecess. Diversification occurs as follows: For each surviving
proper definition of an extinction event, and the demonstraspecies at layelra nearest layel’ e {l— 1], + 1} is chosen
tion of the — 2 exponent given by Drossgl0] is completed;  (except for the top and bottom layers, where only two nearest
some minor modifications are also introduced in the model idevels are availab)e Then a random sitenel’ is also se-
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-_::—" 3 FIG. 2. Distribution of extinction events for the AM model. The
8. - values of the parameters are=0.02, p=0.01 andw=0.004, p
=2 =0.002. A maximum is found in the first case, in agreement with
the fossil recordsee inset
0 10 20 30 40 50 supplies—adds all the extinctions of the first one along a
Niche time step. In this sense, it is worth stressing that the exponent

— 2 derived theoretically by Drossel is related to, but strictly
is not, the exponent of the extinction size distribution per
time step,P(s). In order to calculate this second distribution,
one has to combin®44(s), the extinction size distribution
for the death of only one species in the lowest level, with the

lected. If empty, it is occupied by a new species, viihrey Poisson statisticBp,(l) for the number of extinctions in this
species chosen at random from the layer below. After |argé?vel. Even if one neglects the correlations between one ex-
extinction events, upper layers can be empty, but new spdinction and the subsequent ones, the resulting expression,
cies are generated and a new, evolving graph of connectiof@mely,

develops[Fig. 1(c)]. For very smallp’s, a power law is

obtained. But for largeip’s, the distribution of extinction °

sizes follows a curve that is no longer a simple straight line P(S):lzl Peo(l)t 2 Puds)Pads)t, (2

on a log-log plot(see Fig. 2 It increases up to a maximum - 2j=15=S

and later on decays as a power law with exponrest?. It is

interesting to notice that the fossil recofdsing a 2-Myr  is very cumbersome to deal with analytically and, in practice,
resolution in the histograjmalso shows a maximum before only numerical simulations can solve it. If one simulates a
developing the power-law tailinset, Fig. 2 when enough Poisson process witRys~s 2 for the parameters used in
time resolution(here ST=2 Myr) is considered. The pres- our simulations, one finds curves similar to Fig. 2. Therefore,
ence of a maximum has an immediate interest in terms of théhere is no contradiction between the distributions displayed
underlying dynamics responsible for the fossil record. If ain Fig. 2 [for P(s)] and the exponent found by Drossel for
pure self-organized critical system were at work, then thePy«(S).

power lawN(s)~s~“ should be recovered at the smallest On the other hand, Fig. 2 shows thafs) decays as a
scales This is certainly not the case. It introduces a characpower law with exponeni=2. The value of the exponent is

FIG. 1. Example of Amaral-Meyer model of extinction dynam-
ics: a five-level system wittN=50 niches is shown fot=2485
(where we can see a well-established trophic wabt=2487, just
after a mass extinction event, andtat2500, recovering.

teristic extinction size that needs some interpretation. found to be slightly dependent on the death natd=or N
It is convenient to make a point about the adequate defi=1000u=0.02, andp=0.01, one hasy=2.15, and foru
nition of the distribution of extinction sizes. DrosgdlO] =0.004 andp=0.002, ®=1.99. In both casesy is very

demonstrated that, when one species in the lowest level dieslose to 2, and in any case inside the error bounds from the
the probability for an extinction of sizescales as 2. One  fossil record data.

must not confuse this distribution, corresponding to the ex- With these points clarified, one realizes that the demon-
tinction sizesper dead species in the lowest lefielt us call ~ stration of the=—2 exponent developed bi(s) at high

it Pgs(s)], with the distributions plotted in Fig. 2, namely, enough extinction sizes must still be completed. One may
the distribution of extinction sizeper time stepP(s); the  give the following argument. As long as the average number
second distribution—which is what the fossil record actuallyof dead species per unit time in the lowest level is not high,
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if one of these deaths gives rise to a large extinction event, it
is quite probable that this is the only large extinction that
takes place in that time step, sinBgs~s~ 2 decreases rap-
idly with s. Therefore, a large extinction of sizeduring a
time step is approximately equivalent to a large extinction of
sizes per dead species, nameR(s)=P44(s)~s 2.

One can also estimate the location of the maximum in the
extinction distributionP(s). We know that when one species
in the lowest level dies, the probability for an extinction of
sizes scales as ™~ 2. This means that 60% of the extinctions
triggered by a death in the lowest level are of sizgsihce
{7Y(2)=0.6]. Then, most of the time a species at thel
layer disappears, and no further extinction takes plach, If
denotes the average number of species in the first level at the
stationary state, this implies that most of the time, the num-
ber of extinctions in a time step will beNp. It is easy to
see thalN;~N(1—p/u), so that forN=1000,=0.02, and
p=0.01, N.p~5; meanwhile, for the casg=0.004 andp
=0.002, one hadl;p~1. These predictions for the location
of the maxima agree well with numerical simulations, as
shown in Fig. 2: the maximum is found at-5 in the first
case, but it is absent in the second one.

One major point that makes the AM model unrealistic
from the ecological point of view is that species diversify

Frequency

Frequency

EXTINCTIONS AND TAXONOMY IN A TROPHIC MODEL . ..

0.42

T\A.

ERL 2N

-’
o

[ V4

o
Extinction size

Ll
10
Extinction size

with equal probability into all the available levels, i.e., the
parent level, the one immediately above, and the one below. FiG. 3. (a) Distribution of extinction sizes per trophic levels in
It is more reasonable to consider that the probability of Spethe AM model. From top to botton =2 (approximately exponen-
ciation toward lower trophic levels is very small, and thattial), |=4, and1=6 (potential curve with exponernt=1.4). (N
speciation into the same level is much more common thar-1000k=3, x=0.02,p=0.01.) Frequency of extinction sizes for
into the others(to generate a new species with similar (b) planktonic foraminifera andc) ammonites.

trophic traits is rather common, to become a higher-level

Species r%qtjr:res tthe d(tevelolpmentl of rllgw sophisticated Stk g obey a Poisson distribution fol(s), consistently with
egies, and the return to a lower level Is a very rare eventy,o .anqom nature of the dynamics. At the second level, they
usually linked with the development of parasitic strategies satisfy an exponential laM,(s)~e~ with 0.13< e<0.25:

2 -~ . . ,

To test the AM model’'s robustness to this biologically sen- T, o :
sible criticism, we have considered that speciation take?nd the distributionsl,, 5(s) clearly exhibit power laws, i.e.,
“ with ay=~1.4[Fig. 3a@)].

place only into two levels, the parent level and the oneN'>3(S)“_S : |
above, the former having a larger probability. One observes Numerical simulations show that the value of the expo-
that this slight, more realistic modification does not changd®nt is only slightly dependent on the parameters; Kor
the generic behavior of the model with respect to the extinc= 10, the power-law behavior is obtained at lower trophic
tion size distribution. levels than foik=3, and the exponent is agaBj~1.5. For

smalleru andp values, the exponent decreases slightly.
It is interesting to note that this result is consistent with
lll. EXTINCTION DISTRIBUTION PER TROPHIC LEVEL available data from the fossil record. If we look at well-

One point that can be directly addressed by the modefiefined extinct groups, roughly related to trophic levlss
(which has not been previously analyzed in other models t@&most impossible to have a whole group with all species
our knowledggis the statistics of extinctions in each trophic confined to a single level in the trophic chaiwe can see
level. This is especially interesting since it can eventually béhat the AM model shows remarkable agreement with them.
compared with observations. All previous studies have bee®ata from planktonic foraminifer@vhich occupy lower lev-
focused on comparing the model results with the frequencgls in marine food chainsare clearly exponentially distrib-
distribution for the whole fossil record. This is an interestinguted. This is shown in Fig.(8), where we have plotted data
additonal property that is likely to have a key role in future from a study by Patterson and Fow]&2], who analyzed the
developments of evolution models: different trophic levelsextinction record of planktonic foraminifera from the Juras-
are likely to react in different ways to environmental pertur-sic through the Holocene. The observed distribution is in fact
bations and thus display a range of possible statistical patlose to an exponential and to a Poisson distributiwith
terns. Since information available from the fossil recordbetter agreement with the fijsData fitting provides an ex-
gives specific data for different trophic groups3], extinc-  ponent €e=0.48+0.04. Data available from other well-
tions per trophic level are highly valuable information. preserved groups, such as ammonitehich have a record

Let us indicate byN(s) the distribution of extinction spanning 320 Myr have a power-law behavior withB
sizes for thdth level. The pattern produced by the model at=1.48+0.07[14], consistently with their higher position in
different levels is the following. Extinctions in the lowest food webs.
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IV. TAXONOMY 10

T
jJu ]

The fossil record at all taxonomic levelspecies, genera,
classes, orders, eishows that the frequency distribution of 4
the number of subtaxésay, specigswithin taxa(say, gen-
erg follows a power lawf11]. These observations are impor-
tant since the self-similar character of the taxonomy is re-
lated to the fact that the tree of lifelefined by species that
branch into new specigss the result of a given dynamical
process. Some models of large-scale evolution have bee
shown to be able to link the self-similar fluctuations of the
extinction record with the self-similarity observed in the tax-
onomy. This is thus relevant structural information that pro-
vides an independent test for theoretical models.

We have performed numerical simulations in order to E 0C®e
analyze the frequency distribution predicted by the trophic o | ©
model. To do so, we have defined a genus as the number ¢ 10 ' ; A——9
species at the same level having the same parent. The resul 0 5 10 15 20
provide an exponential behavifFig. 4a)], with coefficients (@) Number of species
in the exponential of order unity: 0.69 fér=1, 0.84 fork
=3, and 0.77 fok=20. 10

This exponential distribution can be obtained analytically
for k=1. This is a particularly simple case, since the extinc-
tion rate isp for all species, and the distribution of lifetimes
is described simply byP(t)=pe P. For k>1, however, 10
the lifetime distribution is much more complex; in particular,
it depends on the trophic levgl0].

Since the speciation rate in the parent level is much largel g
than in the one higher, we will make the approximation in E’
our calculations that all the descendants belong to the sam 0 10
level. Our aim is to evaluate the statistics of the number of @
descendants per species along its lifespan.R(et) be the
probability that a species has exacatlydescendants when it
dies. The probability that a species with lifetintehas n 10
descendants is simply a binomial distribution,
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P(n,t)= n"ha-1t" )

with t=n, andII the speciation rate. Let us recall thatis .

the rate of speciation attempts, but that speciation actually () Number of species

occurs only if the randomly chosen niche is empty. At the

stationary state, speciation rates and death rates are equal, soF!G- 4. Frequency of species in genefa. The trophic model
thatI1=p. Sincell is small(below 0.02, we may approxi- provides an exponential law, in disagreement with the fossil record:

mate P(n,t) by a Poisson distribution. After changing the k=1 (®).k=3 (1), andk=20 (O); the other parameters are as
sum to an integral and some simple calculations, we get in Fig. 3.(b) By taking an exponential dependence of the speciation
' rate on the number of predatoys= uob"P, one has approximately

power-law curves g,=0.004; three values df are shown

P(n) E P(n,t) o _ . o
i= provide it. To see this, let us realize that in this model the
B N n lifetime of species has a well-defined time scatek/p (in
ZJ pe—pt(Ht) dt= P 11 (4) fact, it grows fromp ! at the lowest level td&/p at higher
n n! p+Il\p+II)° levels [10]). Furthermore, since the system reache@ia

stable stationary state, the origination rate equals the death
which is an exponential law. This result can also be found byate, namely]1=7"1. Then the typical number of offspring
calculating the characteristic function B{n). Sincell=p,  will be 7II=1, i.e., a few units, as confirmed by the numeri-
we getP(n)~e "2 Then the exponent is found to be cal simulations. Therefore, in order to get a power law in the
In2=0.7, as obtained in the simulations. taxonomy, one has to introduce somé hocmodifications

Taxonomy in the fossil record follows a power law. Since either in the death or in the origination mechanism.

a power-law distribution implies the absence of a character- First, we have analyzed the case where the number of
istic scale, there cannot exist a characteristic number of offpreyspecies is not the same for all predators. This changes
spring per parent species. However, the AM model seems tthe lifetime distributions. But even if the number are chosen
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at random(between 1 and 100, for instancer follow a  nent has been obtained in other studies disdooth inter-
power-law distribution, the offspring frequency distribution nalist and externalist model& only partially supports the
is exponential. Secondly, in order to keep somehow the biomodel accuracy. Analysis of the distribution of extinction
logical resemblance between a species and its progeny, vaizes in each trophic level yields interesting additional infor-
have assumed that species have the preyspecies of their pamation not previously available from othénontrophig
ents, plus some others, chosen at random Wpteyspecies. models: it shows exponential shapes for the second level,
The subsequent taxonomy for a wide rang&k @hlues does and power laws for higher levels, with exponeatl.4. In-
not change: it remains exponential with the same exponentserestingly, these results are consistent with fossil data, such
Finally, we have considered that the speciation rate inas those studied for Ammonoid familiéRef. [14]).
creases with the number of predators. This can be justified by Finally, we have obtained the frequency distribution of
the theory that evolutionary rates depend inversely on effecspecies into a genus predicted by the model; it is exponential,
tive population sizg15]. Since, in general, the greater the in contrast to the power-law behavior displayed by the fossil
number of predators, the less their population abundanceecord, and in this sense it is a flaw of the model. We have
then the larger the mutation rates. The results are only paintroduced somad hocmodifications in the model in order
tially successful. If one assumes the speciation patéo  to recover the fossil data observations. The best results were
depend exponentially on the predator numbey, i.e., u obtained by considering that the speciation rate depends on
= uob"P, one obtains approximately potential curves bor the number of predators. If this dependence is exponential,
=2 [see Fig. 4b)] with exponent~—2; the results are bet- the taxonomy approximately follows a power law, but only
ter for lower values ofu,. However, if one takes a linear for a narrow range of the exponential base. Our study sug-
dependence of. on np one does not observe a power law. gests that future models of macroevolution should incorpo-
The introduction of a critical number of predators over whichrate the trophic structure present in real ecologies. There is
a species disappear does not appreciably change this behaformation available for different groups and different spa-
ior. tial and temporal scales that might be of great help for testing
the models.

V. SUMMARY AND DISCUSSION
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