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Extinctions and taxonomy in a trophic model of coevolution
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We investigate the statistics of extinction sizes and the taxonomy in a trophic model of evolution recently
proposed@Phys. Rev. Lett.82, 652~1999!#. By further exploring the parameters of this model, we find that the
distribution of extinction sizesN(s) shows typically a characteristic maximum before developing the power-
law behaviorN(s)'s2a with a'2, in agreement with empirical observations. Furthermore, the derivation of
the a522 exponent given by Drossel@Phys. Rev. Lett.81, 5011 ~1998!# for this model is completed. The
extinction sizes in each trophic level are also analyzed; one finds that at the fourth level and up (l>4) the
extinction size statistics is a power law with exponenta l.1.4, and exponential-like at the second level, also in
agreement with some empirical data not previously explained by current models. On the other hand, in contrast
to the observed power-law distribution of the number of species in genera, numerical simulations yield an
exponential law. A modification of the model is presented that provides an approximate potential behavior for
taxonomy, and some consequences for future modeling are outlined.

PACS number~s!: 87.10.1e, 05.40.2a, 05.45.2a
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I. INTRODUCTION

The problem of large-scale evolutionary patterns has
tracted the attention of physicists in recent years@1#. Several
approaches to macroevolution and extinction patterns h
been suggested, some based on internal dynamics@2–4# and
others on externally driven phenomena@5,6# or mixed de-
scriptions assuming nonstationarity@6,7#. Recently, Amaral
and Meyer~AM ! have proposed a simplified model for ma
roevolution based on a trophic, multilayer description
Earth’s ecology@8#. The model introducesL trophic levels
with a numberN of niches each. Living species can crea
new species at some rate in the nearest levels provided
the randomly chosen niche is empty. Species at the low
level vanish randomly at ratep, and species at higher leve
disappear only if all their preyspecies become extinct~i.e.,
ecological avalanches are at work!.

This model presents some interesting properties, such
power law for the distribution of extinction sizes,P(s)
;s2a, with a.2, in agreement with available data from th
fossil record@9#. This value for the exponent can also b
obtained analytically@10# ~see Sec. II for a comment on th
demonstration!. Another interesting property of the model
that time correlations of the number of species also fit w
with fossil record databases. Specifically, the number of s
cies displays 1/f fluctuations in time@9#.

Our aim in this paper is to study numerically the pred
tions of the trophic model for two main patterns in the fos
record, namely, the statistics of extinction size and the fr
tality of taxonomy. In this context, it has been shown that
number of generaG(s) formed bys species also scales a
G(s)'s2t wheret'22 for most groups@11#.

The paper is organized as follows. Section II deals w
the distribution of extinction sizes. A point is made about t
proper definition of an extinction event, and the demons
tion of the22 exponent given by Drossel@10# is completed;
some minor modifications are also introduced in the mode
PRE 621063-651X/2000/62~1!/1119~5!/$15.00
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order to make it slightly more realistic. In Sec. III we analy
the distribution of extinction sizes in each trophic level a
compare with some empirical data. Section IV explores
distribution of species in genera, and the last section is
voted to conclusions.

II. STATISTICS OF EXTINCTION SIZES

The AM model is defined by a simple set of rules@8#.
First, species at the bottom~basal! layer (l 51) are extinct
with some probabilitym, presumably associated with ran
dom external events. Each species inL. l .1 layers receives
inputs from its immediate lower trophic levels. These co
nections are not weighted and simply indicate whether or
a species in thel 21 layer supports a species in thel th layer.
We can indicate the connections between speciesi P l 21
and speciesj P l ~here i , j 51, . . . ,N) by W( i ,l 21; j ,l )
P$0,1%. If the state of a speciesj P l at a given time stept is
indicated asS( j ,l ;t), then the rule for extinction~for l .1) is

S~ j ,l ;t11!5QS (
i 51

N

W~ i ,l 21; j ,l !D , ~1!

whereQ(z)51 if z.0 and zero otherwise. In other words
species cannot survive if no inputs from lower layers a
present. In Fig. 1 we see an example of AM dynamics, fo
network with L55 levels andN550 species per level. A
t52485~and starting from a random initial condition! a fully
developed ecology is formed, where we see that a large n
ber of species is sustained by the bottom layer. But the
tinction of S(1,13) triggers a massive extinction event th
propagates to the upper layers@Fig. 1~b!#.

The model is completed by defining a diversification pr
cess. Diversification occurs as follows: For each surviv
species at layerl a nearest layerl 8P$ l 21,l ,l 11% is chosen
~except for the top and bottom layers, where only two nea
levels are available!. Then a random sitemP l 8 is also se-
1119 ©2000 The American Physical Society
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lected. If empty, it is occupied by a new species, withk prey
species chosen at random from the layer below. After la
extinction events, upper layers can be empty, but new s
cies are generated and a new, evolving graph of connect
develops@Fig. 1~c!#. For very smallp’s, a power law is
obtained. But for largerp’s, the distribution of extinction
sizes follows a curve that is no longer a simple straight l
on a log-log plot~see Fig. 2!. It increases up to a maximum
and later on decays as a power law with exponenta.2. It is
interesting to notice that the fossil record~using a 2-Myr
resolution in the histogram! also shows a maximum befor
developing the power-law tail~inset, Fig. 2! when enough
time resolution~heredT52 Myr) is considered. The pres
ence of a maximum has an immediate interest in terms of
underlying dynamics responsible for the fossil record. I
pure self-organized critical system were at work, then
power lawN(s)'s2a should be recovered at the smalle
scales. This is certainly not the case. It introduces a char
teristic extinction size that needs some interpretation.

It is convenient to make a point about the adequate d
nition of the distribution of extinction sizes. Drossel@10#
demonstrated that, when one species in the lowest level
the probability for an extinction of sizes scales ass22. One
must not confuse this distribution, corresponding to the
tinction sizesper dead species in the lowest level@let us call
it Pds(s)], with the distributions plotted in Fig. 2, namely
the distribution of extinction sizesper time step, P(s); the
second distribution—which is what the fossil record actua

FIG. 1. Example of Amaral-Meyer model of extinction dynam
ics: a five-level system withN550 niches is shown fort52485
~where we can see a well-established trophic web!, at t52487, just
after a mass extinction event, and att52500, recovering.
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supplies—adds all the extinctions of the first one along
time step. In this sense, it is worth stressing that the expon
22 derived theoretically by Drossel is related to, but stric
is not, the exponent of the extinction size distribution p
time step,P(s). In order to calculate this second distributio
one has to combinePds(s), the extinction size distribution
for the death of only one species in the lowest level, with
Poisson statisticsPPo( l ) for the number of extinctions in this
level. Even if one neglects the correlations between one
tinction and the subsequent ones, the resulting express
namely,

P~s!5(
l 51

s

PPo~ l !H (
( j 51

l sj 5s

Pds~s1!•••Pds~sl !J , ~2!

is very cumbersome to deal with analytically and, in practi
only numerical simulations can solve it. If one simulates
Poisson process withPds;s22 for the parameters used i
our simulations, one finds curves similar to Fig. 2. Therefo
there is no contradiction between the distributions displa
in Fig. 2 @for P(s)# and the exponent found by Drossel fo
Pds(s).

On the other hand, Fig. 2 shows thatP(s) decays as a
power law with exponenta.2. The value of the exponent i
found to be slightly dependent on the death ratep. For N
51000,m50.02, andp50.01, one hasa.2.15, and form
50.004 andp50.002, a.1.99. In both cases,a is very
close to 2, and in any case inside the error bounds from
fossil record data.

With these points clarified, one realizes that the dem
stration of the.22 exponent developed byP(s) at high
enough extinction sizes must still be completed. One m
give the following argument. As long as the average num
of dead species per unit time in the lowest level is not hi

FIG. 2. Distribution of extinction events for the AM model. Th
values of the parameters arem50.02, p50.01 andm50.004, p
50.002. A maximum is found in the first case, in agreement w
the fossil record~see inset!.
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if one of these deaths gives rise to a large extinction even
is quite probable that this is the only large extinction th
takes place in that time step, sincePds;s22 decreases rap
idly with s. Therefore, a large extinction of sizes during a
time step is approximately equivalent to a large extinction
sizes per dead species, namely,P(s).Pds(s);s22.

One can also estimate the location of the maximum in
extinction distributionP(s). We know that when one specie
in the lowest level dies, the probability for an extinction
sizes scales ass22. This means that 60% of the extinction
triggered by a death in the lowest level are of size 1@since
z21(2).0.6#. Then, most of the time a species at thel 51
layer disappears, and no further extinction takes place. IfN1
denotes the average number of species in the first level a
stationary state, this implies that most of the time, the nu
ber of extinctions in a time step will be.N1p. It is easy to
see thatN1'N(12p/m), so that forN51000,m50.02, and
p50.01, N1p'5; meanwhile, for the casem50.004 andp
50.002, one hasN1p'1. These predictions for the locatio
of the maxima agree well with numerical simulations,
shown in Fig. 2: the maximum is found ats;5 in the first
case, but it is absent in the second one.

One major point that makes the AM model unrealis
from the ecological point of view is that species divers
with equal probability into all the available levels, i.e., th
parent level, the one immediately above, and the one be
It is more reasonable to consider that the probability of s
ciation toward lower trophic levels is very small, and th
speciation into the same level is much more common t
into the others~to generate a new species with simil
trophic traits is rather common, to become a higher-le
species requires the development of new sophisticated s
egies, and the return to a lower level is a very rare ev
usually linked with the development of parasitic strategie!.
To test the AM model’s robustness to this biologically se
sible criticism, we have considered that speciation ta
place only into two levels, the parent level and the o
above, the former having a larger probability. One obser
that this slight, more realistic modification does not chan
the generic behavior of the model with respect to the exti
tion size distribution.

III. EXTINCTION DISTRIBUTION PER TROPHIC LEVEL

One point that can be directly addressed by the mo
~which has not been previously analyzed in other model
our knowledge! is the statistics of extinctions in each troph
level. This is especially interesting since it can eventually
compared with observations. All previous studies have b
focused on comparing the model results with the freque
distribution for the whole fossil record. This is an interesti
additonal property that is likely to have a key role in futu
developments of evolution models: different trophic lev
are likely to react in different ways to environmental pertu
bations and thus display a range of possible statistical
terns. Since information available from the fossil reco
gives specific data for different trophic groups@13#, extinc-
tions per trophic level are highly valuable information.

Let us indicate byNl(s) the distribution of extinction
sizes for thel th level. The pattern produced by the model
different levels is the following. Extinctions in the lowe
it
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level obey a Poisson distribution forNl(s), consistently with
the random nature of the dynamics. At the second level, t
satisfy an exponential lawN2(s)'e2es with 0.13,e,0.25;
and the distributionsNl .3(s) clearly exhibit power laws, i.e.
Nl .3(s)'s2a l with a l'1.4 @Fig. 3~a!#.

Numerical simulations show that the value of the exp
nent is only slightly dependent on the parameters; fok
510, the power-law behavior is obtained at lower troph
levels than fork53, and the exponent is againb l'1.5. For
smallerm andp values, the exponent decreases slightly.

It is interesting to note that this result is consistent w
available data from the fossil record. If we look at we
defined extinct groups, roughly related to trophic levels~it is
almost impossible to have a whole group with all spec
confined to a single level in the trophic chain! we can see
that the AM model shows remarkable agreement with the
Data from planktonic foraminifera~which occupy lower lev-
els in marine food chains! are clearly exponentially distrib
uted. This is shown in Fig. 3~b!, where we have plotted dat
from a study by Patterson and Fowler@12#, who analyzed the
extinction record of planktonic foraminifera from the Jura
sic through the Holocene. The observed distribution is in f
close to an exponential and to a Poisson distribution~with
better agreement with the first!. Data fitting provides an ex-
ponent e50.4860.04. Data available from other well
preserved groups, such as ammonites~which have a record
spanning 320 Myr! have a power-law behavior withb
51.4860.07 @14#, consistently with their higher position in
food webs.

FIG. 3. ~a! Distribution of extinction sizes per trophic levels i
the AM model. From top to bottom,l 52 ~approximately exponen-
tial!, l 54, and l 56 ~potential curve with exponent'1.4). (N
51000,k53,m50.02,p50.01.) Frequency of extinction sizes fo
~b! planktonic foraminifera and~c! ammonites.
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IV. TAXONOMY

The fossil record at all taxonomic levels~species, genera
classes, orders, etc.! shows that the frequency distribution o
the number of subtaxa~say, species! within taxa ~say, gen-
era! follows a power law@11#. These observations are impo
tant since the self-similar character of the taxonomy is
lated to the fact that the tree of life~defined by species tha
branch into new species! is the result of a given dynamica
process. Some models of large-scale evolution have b
shown to be able to link the self-similar fluctuations of t
extinction record with the self-similarity observed in the ta
onomy. This is thus relevant structural information that p
vides an independent test for theoretical models.

We have performed numerical simulations in order
analyze the frequency distribution predicted by the trop
model. To do so, we have defined a genus as the numb
species at the same level having the same parent. The re
provide an exponential behavior@Fig. 4~a!#, with coefficients
in the exponential of order unity: 0.69 fork51, 0.84 fork
53, and 0.77 fork520.

This exponential distribution can be obtained analytica
for k51. This is a particularly simple case, since the extin
tion rate isp for all species, and the distribution of lifetime
is described simply byPT(t)5pe2pt. For k.1, however,
the lifetime distribution is much more complex; in particula
it depends on the trophic level@10#.

Since the speciation rate in the parent level is much lar
than in the one higher, we will make the approximation
our calculations that all the descendants belong to the s
level. Our aim is to evaluate the statistics of the number
descendants per species along its lifespan. LetP(n) be the
probability that a species has exactlyn descendants when
dies. The probability that a species with lifetimet has n
descendants is simply a binomial distribution,

P~n,t !5S t

nDPn~12P! t2n ~3!

with t>n, andP the speciation rate. Let us recall thatm is
the rate of speciation attempts, but that speciation actu
occurs only if the randomly chosen niche is empty. At t
stationary state, speciation rates and death rates are equ
that P5p. SinceP is small~below 0.01!, we may approxi-
mate P(n,t) by a Poisson distribution. After changing th
sum to an integral and some simple calculations, we get

P~n!5(
t5n

`

PT~ t !P~n,t !

.E
n

`

pe2pt
~Pt !n

n!
dt.

p

p1P S P

p1P D n

, ~4!

which is an exponential law. This result can also be found
calculating the characteristic function ofP(n). SinceP5p,
we get P(n);e2n ln 2. Then the exponent is found to b
ln 2.0.7, as obtained in the simulations.

Taxonomy in the fossil record follows a power law. Sin
a power-law distribution implies the absence of a charac
istic scale, there cannot exist a characteristic number of
spring per parent species. However, the AM model seem
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provide it. To see this, let us realize that in this model t
lifetime of species has a well-defined time scalet'k/p ~in
fact, it grows fromp21 at the lowest level tok/p at higher
levels @10#!. Furthermore, since the system reaches a~un-
stable! stationary state, the origination rate equals the de
rate, namely,P.t21. Then the typical number of offspring
will be tP.1, i.e., a few units, as confirmed by the nume
cal simulations. Therefore, in order to get a power law in
taxonomy, one has to introduce somead hocmodifications
either in the death or in the origination mechanism.

First, we have analyzed the case where the numbe
preyspecies is not the same for all predators. This chan
the lifetime distributions. But even if the number are chos

FIG. 4. Frequency of species in genera.~a! The trophic model
provides an exponential law, in disagreement with the fossil reco
k51 (d),k53 (h), andk520 (s); the other parameters are a
in Fig. 3. ~b! By taking an exponential dependence of the speciat
rate on the number of predators,m5m0bnp, one has approximately
power-law curves (m050.004; three values ofb are shown!.
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PRE 62 1123EXTINCTIONS AND TAXONOMY IN A TROPHIC MODEL . . .
at random~between 1 and 100, for instance! or follow a
power-law distribution, the offspring frequency distributio
is exponential. Secondly, in order to keep somehow the
logical resemblance between a species and its progeny
have assumed that species have the preyspecies of thei
ents, plus some others, chosen at random up tok preyspecies.
The subsequent taxonomy for a wide range ofk values does
not change: it remains exponential with the same expone

Finally, we have considered that the speciation rate
creases with the number of predators. This can be justifie
the theory that evolutionary rates depend inversely on ef
tive population size@15#. Since, in general, the greater th
number of predators, the less their population abunda
then the larger the mutation rates. The results are only
tially successful. If one assumes the speciation ratem to
depend exponentially on the predator numbernp, i.e., m
5m0bnp, one obtains approximately potential curves forb
.2 @see Fig. 4~b!# with exponent'22; the results are bet
ter for lower values ofm0. However, if one takes a linea
dependence ofm on np one does not observe a power la
The introduction of a critical number of predators over whi
a species disappear does not appreciably change this be
ior.

V. SUMMARY AND DISCUSSION

We have studied several aspects of a trophic mode
macroevolution recently presented by Amaral and Mey
First, we have seen that it can provide distribution functio
for extinction sizes having a maximum before developing
power-law tail with exponenta52, in agreement with avail-
able data from global extinction statistics. Since this ex
d
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nent has been obtained in other studies also~in both inter-
nalist and externalist models! it only partially supports the
model accuracy. Analysis of the distribution of extinctio
sizes in each trophic level yields interesting additional inf
mation not previously available from other~nontrophic!
models: it shows exponential shapes for the second le
and power laws for higher levels, with exponent'1.4. In-
terestingly, these results are consistent with fossil data, s
as those studied for Ammonoid families~Ref. @14#!.

Finally, we have obtained the frequency distribution
species into a genus predicted by the model; it is exponen
in contrast to the power-law behavior displayed by the fos
record, and in this sense it is a flaw of the model. We ha
introduced somead hocmodifications in the model in orde
to recover the fossil data observations. The best results w
obtained by considering that the speciation rate depend
the number of predators. If this dependence is exponen
the taxonomy approximately follows a power law, but on
for a narrow range of the exponential base. Our study s
gests that future models of macroevolution should incor
rate the trophic structure present in real ecologies. Ther
information available for different groups and different sp
tial and temporal scales that might be of great help for tes
the models.
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