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Elastic property of single double-stranded DNA molecules:
Theoretical study and comparison with experiments
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This paper aims at a comprehensive understanding of the novel elastic property of double-stranded DNA
~dsDNA! discovered very recently through single-molecule manipulation techniques. A general elastic model
for double-stranded biopolymers is proposed, and a structural parameter called the folding anglew is intro-
duced to characterize their deformations. The mechanical property of long dsDNA molecules is then studied
based on this model, where the base-stacking interactions between DNA adjacent nucleotide base pairs, the
steric effects of base pairs, and the electrostatic interactions along DNA backbones are taken into account.
Quantitative results are obtained by using a path integral method, and excellent agreement between theory and
the observations reported by five major experimental groups are attained. The strong intensity of the base
stacking interactions ensures the structural stability of DNA, while the short-ranged nature of such interactions
makes externally stimulated large structural fluctuations possible. The entropic elasticity, highly extensibility,
and supercoiling property of DNA are all closely related to this account. The present work also suggests the
possibility that negative torque can induce structural transitions in highly extended DNA from the right-handed
B form to left-handed configurations similar to theZ-form configuration. Some formulas concerned with the
application of path integral methods to polymeric systems are listed in the Appendixes.

PACS number~s!: 87.15.By, 05.50.1q, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

The DNA molecule is the primary genetic material
most organisms. It is a double-helical biopolymer in whi
two chains of complementary nucleotides~the subunits
whose sequence constitutes the genetic message! wind ~usu-
ally right-handedly! around a common axis to form a doubl
helical structure@1#. Because of this unique structure, th
elastic property of DNA molecule influences its biologic
functions greatly. There are mainly three kinds of deform
tions in a DNA double helix: a stretching and bending of t
molecule and a twisting of one nucleotide chain relative
its counterpart. All these deformations have vital biologic
significance. During DNA replication, hydrogen bonds b
tween the complementary DNA bases should be broken,
the two nucleotide chains should be separated. This str
separation process requires a cooperative unwinding of
double helix@2#. In a DNA recombination reaction, RecA
proteins ~recombination proteins of TypeA! polymerize
along DNA template and the DNA molecule is stretched
1.5 times its relaxed contour length@3,4#. It is suspected tha
thermal fluctuations of the DNA central axis might be ve
important for RecA polymerization@5#. Another important
example is the process of chromosome condensation du
prophase of the cell cycle, where a long~circular! DNA
chain wraps tightly onto histone proteins and is severely b
@2#. Furthermore, in living cells the DNA chain is usual
closed, i.e., the two ends of the molecule are linked toge
by covalent bonds and the molecule becomes endless.
this chain-closing process, all the quantities characteriz
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the topological state of the chain are fixed and can only
changed externally by topoisomerases, which are capab
transiently cutting one DNA strand or both and making o
strand pass through the other at the cutting point~in the case
of type I topoisomerases@6#! or one segment of DNA passe
through another~in the case of type II topoisomerases@7,8#!.
It is possible that this kind of enzyme-induced topolog
changing process is also closely related to the particular
chanic property of the DNA molecule. For example, the f
quency of collisions between two distant DNA segments i
circular DNA molecule is influenced by the different kn
types and different linking numbers~for a definition of this
quantity, see below and in Sec. II C!. A thorough investiga-
tion of the deformation and elasticity of DNA will enable u
to gain a better understanding of many important biologi
processes concerned with life and growth.

A detailed study of DNA elasticity has now become po
sible due to recent experimental developments, includ
e.g., optical tweezer methods, atomic force microscopy,
fluorescence microscopy. These techniques make it pos
to manipulate single polymeric molecules directly, and
record their elastic responses with a high precision. Exp
ments done on double-stranded DNA~dsDNA! have re-
vealed that this molecule has very interesting elastic prop
ties@9–16#. When a torsionally relaxed DNA is pulled with
force of less than 10 picoNetwon~pN!, its elastic response
can be quantitatively understood by regarding the chain a
inextensible thin string with a certain bending rigidi
~namely, the wormlike chain model@9,17,18#!. However, if
the external force is increased up to 65 pN, the DNA ch
becomes highly extensible. At this force, the molecule tr
sits to an overstretched configuration termedS-DNA, which
is 1.6 times longer than the same molecule in its stand
1045 ©2000 The American Physical Society
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B-form structure@11,12#. In addition to external forces, it is
also possible to apply torsional constraints to a DNA doub
helix by external torques. The linking number of DNA, i.e
the total topological times one DNA strand winds around
other, can be fixed at a value larger~less! than the molecule’s
relaxed value. In such cases we say that the DNA molecu
positively ~negatively! supercoiled. It was shown experime
tally @13# that when the external force is less than a thresh
value of about 0.3 pN, the extension of DNA molecule d
creases with increasing twist stress and the elastic resp
of positively supercoiled DNA is similar to that of negative
supercoiled DNA, indicating that the DNA chain might b
regarded as achiral. However, if the external force is
creased to be larger than this threshold, negatively and p
tively supercoiled DNA molecules behave quite different
Under the condition of a fixed external force between 0.3 a
3 pN, while positive twist stress keeps shrinking the DN
polymer, the extension of negatively supercoiled DNA is
sensitive to the supercoiling degree@13,14#. In the higher
force region, it was suggested by some authors that p
tively supercoiled DNA may transit to a configuration call
Pauling-like DNA (P-DNA) with exposed nucleotide base
@15#, while negative torque may lead to strand separation
the DNA molecule~the denaturation of the DNA double he
lix @14#!. A very recent systematic observation performed
Léger et al. @16#, on the other hand, suggested another p
sibility: that negative supercoiling may result in a le
handedZ-form configuration in DNA.

The above-mentioned complicated elastic property
vealed by the experiments may be directly related to
versatile roles played by the DNA molecule in living orga
isms. Theoretically, to understand the DNA elastic prope
is of current interest. Models concerned with one or anot
aspect of DNA elasticity were proposed, and valuable
sights were obtained~see, for example, Refs.@19,17,18,20–
28#!, and now it is widely accepted that the competition b
tween DNA bending and torsional deformations deser
considerable attention in order to understand the elastic p
erty of DNA molecules. However, it is still a great challen
to understand systematically and quantitatively all aspect
the DNA mechanical property based on the same uni
framework. What is the intrinsic reason for the DNA mo
ecule’s entropic elasticity and high degree of extensibility,
well as its supercoiling property? Is it possible for negat
torque to stabilize left-handed DNA configurations? The
are just some examples of unsolved questions.

In the present work, we have tried to obtain a compreh
sive and quantitative understanding of DNA mechani
properties. We have postulated that the double-stranded
ture of the DNA structure should be extremely important
its elastic property, and therefore we have constructed a
eral elastic model in which this characteristic is prope
taken into account via the introduction of a structural para
eter: the folding anglew. The elastic property of long
dsDNA molecules was then studied based on this mo
where the base-stacking interactions between DNA adja
nucleotide base pairs, their steric effects, and the electros
interactions along DNA backbones were all consider
Quantitative results were obtained by using the path inte
method, and an excellent agreement between theory and
experimental observations of several groups was attaine
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was revealed that, on the one hand, the strong intensity o
base-stacking interactions ensures the structural stabilit
the DNA molecule, while, on the other hand, the sho
ranged nature of such interactions makes externally sti
lated large structural fluctuations possible. The entropic e
ticity, highly extensibility, and supercoiling property of th
dsDNA molecule are all closely related to this fact. T
present work also revealed the possibility that negat
torque can induce structural transitions in highly extend
DNA from right-handedB-form-like configurations to left-
handedZ-form-like configurations. Some discussions on th
respect were performed, and we suggested that a pos
direct way to check the validity of this opinion is to measu
the values of the critical torques under which such transiti
are anticipated to take place according to the present ca
lations.

This paper is organized as follows: In Sec. II we introdu
the elastic model for dsDNA biopolymers. At the action
an external force, the elastic response of dsDNA molecule
investigated in Sec. III, and compared with experimental
servations of Smith and co-workers@9,12# and Cluzelet al.
@11#. Section IV focuses on supercoiled dsDNA molecul
where the relationship between the extension and super
ing degree is obtained numerically and compared with
experiment of Stricket al. @13#. From the calculated folding
angle distribution, we infer that negative torque can ca
structural transitions in dsDNA molecules from right-hand
double helixes to left-handed ones. Section V is reserved
conclusions. Two appendixes are also presented: in App
dix A we review some basic ideas on the application of p
integral method in polymer physics, and in Appendix B w
list the matrix elements of the operators in Eqs.~15! and
~23!. Some parts of this work were briefly reported in a pr
vious paper@29#.

II. ELASTIC MODEL OF DOUBLE-STRANDED DNA
MOLECULE

As already stressed, the DNA molecule is a doub
stranded biopolymer. Its two complementary sug
phosphate chains twist around each other to form a rig
handed double helix. Each chain is a linear polynucleot
consisting of the following four bases: two purines (A and
G) and two pyrimidines (C andT) @1,2#. The two chains are
joined together by hydrogen bonds between pairs of nu
otidesA-T and G-C. Hereafter, we refer to the two suga
phosphate chains as thebackbones, and the hydrogen-
bonded pairs of nucleotides as thebase pairs. In this section
we discuss the energetics of such an elastic system~see Fig.
1!. First, the bending energy of the backbones of su
double-stranded polymers will be considered; then we w
discuss the interactions between DNA base pairs and en
terms related to external fields.

A. Bending and folding deformations

Backbones can be regarded as two inextensible worm
chains characterized by a very small bending rigidityk
5kBTlp , wherekB is Boltzmann’s constant,T is the envi-
ronmental temperature, andl p.1.5 nm is the bending per
sistence length of single-stranded DNA~ssDNA! chains@12#.
The bending energy of each backbone is thus expresse
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(k/2)*0
L(dt i /ds)2ds, where t i(s) ( i 51 and 2! is the unit

tangent vector at arclengths along thei th backbone@30,31#,
andL is the total contour length of each backbone. The
sition vectors of the two backbones are expressed asr i(s)
5*st i(s8)ds8.

Since there are many relatively rigid base pairs betw
the two backbones in many cases the lateral distance
tween the backbones can be regarded to be constant
equal to 2R.1 In this subsection we focus on the bendi
energy of the backbones; therefore, for the moment, we
gard each base pair as a rigid rod of length 2R linking be-
tween the two backbones and pointing along a direction
noted by a unit vectorb from r1 to r2 ~Fig. 1!. Then r2(s)
2r1(s)52Rb(s). In B-form DNA the base pair plane i
perpendicular to the DNA axis; therefore, in our model t
relative sliding of the two backbones is not considered a
the base pair rod is thought to be perpendicular to both ba
bones @31#, with b(s)•t1(s)5b(s)•t2(s)[0. The central
axis of the double-stranded polymer can be defined asr (s)
5r1(s)1Rb(s) @5r2(s)2Rb(s)5(r1(s)1r2(s))/2#, and
its tangent vector is denoted byt. In consistence with actua
DNA structures, the central axial tangentt is also perpen-
dicular to b, i.e., b(s)•t(s)50. @Notice, however, thatt(s)
Þdr /ds; in this paper,s always refers to the arclength of th
backbones.#

Since all the tangent vectorst1 , t2, andt lie on the same
plane perpendicular tob, we can write that

t1~s!5t~s!cosw~s!1n~s!sinw~s!,

t2~s!5t~s!cosw~s!2n~s!sinw~s!, ~1!

wheren is also a unit vector, andn5b3t, andw is defined

1In our present work, we have not taken into account the poss
deformations of the nucleotide base pairs. In many cases this
be a reasonable assumption. However, under some extreme c
tions such kinds of deformations may turn out to be important.
example, when a DNA double helix is stretched and at the sa
time has a large positive torque applied to it, the nucleotide b
pairs may collapse~see Ref.@15# for a description!.

FIG. 1. Schematic representation of the double-stranded D
model used in this paper. The right part demonstrates the defin
of w on the localt-n plane, wheret, t1 and t2 are the tangentia
vectors of the central axis, and the two backbones, respectivelw
is the folding angle; and the unit vectorb5t3n is perpendicular to
the t-n plane.
-
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as half the rotational angle fromt2 to t1, with b being the
rotational axis~Fig. 1!. We call w the folding angle, and it
can vary in the range (2p/2, 1p/2), with w.0 corre-
sponding to right-handed rotations and hence right-han
double-helical configurations, andw,0 to left-handed ones
With the help of Eq.~1!, we know that

db

ds
5

t22t1

2R
52

sinw

R
n ~2!

and

dr

ds
5

1

2
~ t11t2!5t cosw. ~3!

Equation ~3! indicates that cosw measures the extent t
which the backbones are ‘‘folded’’ with respect to the cent
axis. Based on Eqs.~1!–~3!, the total bending energy of th
two backbones can be expressed in the following form:

Eb5
k

2E0

LS dt1

dsD 2

ds1
k

2E0

LS dt2

dsD 2

ds

5kE
0

L

dsF S dt

dsD
2

cos2 w1sin2 wS dn

dsD
2

1S dw

dsD 2G
5E

0

L

dsFkS dt

dsD
2

1kS dw

dsD 2

1
k

R2sin4 w G . ~4!

The bending energy is thus decomposed into the bend
energy of the central axis@the first term of Eq.~4!# plus the
folding energyof the backbones@the second and third term
of Eq. ~4!#. The physical meanings of these two energy co
tributions are very clear, and Eq.~4! is very helpful for our
following calculations. In Eq.~4!, the bending energy of the
central axis is very similar with that of a wormlike cha
@18#, both of which are related to the square of the chang
rate of the axial tangent vectors. But there are two import
differences: ~a! in the derivative dt/ds of Eq. ~4!, the
arclength parameters is measured along the backbone, n
along the central axis; and~b! in the wormlike chain model
the central axis is inextensible, while here the central axi
extensible.

In deriving Eq.~4!, the base pairs are models just as th
rigid rods of fixed length, i.e., the DNA molecule is viewe
as a ladderlike structure~see Fig. 1!. Actually, however, base
pairs form disklike structures and have a finite volume. T
steric effects caused by the finite volume of base pairs
anticipated to hinder considerably the bending deformat
of the central axis, and hence will increase its bending rig
ity greatly @1#. Furthermore, the dsDNA molecule is a stron
polyelectrolyte, with negatively charged groups distribut
regularly along the chain’s surface. The electrostatic rep
sion force between these negatively charged groups will a
considerably increase the bending rigidity of the dsDN
chain@1#. To quantitatively take into account the above me
tioned two kinds of effects is very difficult. Here we treat th
problem phenomenologically by simply replacing the ben
ing rigidity k in the first term of Eq.~4! with a quantityk* .
It is required thatk* .k, and the precise value ofk* will
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then be determined self-consistently by the best fitting w
experimental data, as shown in Sec. III.

B. Base-stacking interactions between base pairs

In Sec. II A, we have discussed in detail the bending
ergy of dsDNA polymers, which is caused by a bending
the backbones, as well as steric effects and electrostati
teractions. In the dsDNA molecule there is another kind
important interaction, namely, the base-stacking interac
between adjacent nucleotide base pairs@1,2#. Base-stacking
interactions originate from the weak van der Waals attrac
between the polar groups in adjacent nucleotide base p
Such interactions are short ranged, and their total effec
usually described by a potential energy of the Lennard-Jo
form ~6-12 potential@1#!. Base-stacking interactions play
significant role in the stabilization of the DNA double heli
The main reason why DNA can but RNA cannot form a lo
double helix is as follows@32#: Because of the steric inter
ference caused by the hydroxyl group attached to the8
carbon of RNA riboses, the stacking interaction between
jacent RNA nucleotide base pairs is very weak and can
stabilize the formed double-helical structure; while in t
DNA ribose, a hydrogen atom is attached to its 28 carbon,
and serious steric interference is avoided~fortunately!.

In a continuum theory of elasticity, the summed to
base-stacking potential energy is converted into the form
the integration

ELJ5 (
i 51

N21

Ui ,i 115E
0

L

r~w!ds, ~5!

whereUi ,i 11 is the base-stacking potential between thei th
and (i 11)th base pairs,N is the total number of base pair
and the base-stacking energy densityr is expressed as

r~w!5H e

r 0
F S cosw0

cosw D 12

22S cosw0

cosw D 6G ~ for w>0!

e

r 0
@cos12w022 cos6 w0# ~ for w,0!.

~6!

In Eq. ~6!, the parameterr 0 is the backbonearclength be-
tween adjacent bases (r 05L/N); w0 is a parameter related t
the equilibrium distance between a DNA dimer (r 0 cosw0
;3.4 Å ); ande is the base stacking intensity which is ge
erally base-sequence specific@1#. In this paper we focus on
macroscopic properties of long DNA chains composed
relatively random sequences; therefore, we just considere in
the average sense and take it as a constant, wite
.14.0kBT averaged over quantum mechanically calcula
results on all the different DNA dimers@1#.

The asymmetric base-stacking potential@Eq. ~6!# ensures
that a relaxed DNA molecule takes on a right-hand
double-helix configuration~i.e., theB form!, with its folding
anglew;w0. To change the local configuration of DNA con
siderably from itsB form generally requires a free energy
the order ofe per base pair. Thus, the DNA molecule will b
very stable under normal physiological conditions, and th
mal energy can only make it fluctuate very slightly around
equilibrium configuration, sincee@kT. Nevertheless, al-
though the stacking intensitye in dsDNA is very strong
h
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d

d
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s

compared with the thermal energy, the base-stacking inte
tion by its nature is short ranged, and hence sensitive to
distance between the adjacent base pairs. If a dsDNA c
is stretched by large external forces, which cause the ave
inter-base-pair distance to exceed some threshold value
termined intrinsically by the molecule, the restoring for
provided by the base-stacking interactions will no longer
able to offset the external forces. Consequently, it will
possible that theB-form configuration of dsDNA will col-
lapse, and the chain will become highly extensible. Thus,
the one hand, the strong base-stacking interaction ens
that the standardB-form configuration is very stable upo
thermal fluctuations and small external forces~this is re-
quired for the biological functions of DNA molecule to b
properly fulfilled @2#!; however, on the other hand, its sho
rangedness gives it considerable latitude to change its
figuration to adapt to possible severe environments~other-
wise, the chain may be pulled apart by external forces,
example, during DNA segregation@2#!. This property of
DNA base-stacking interactions is very important to t
dsDNA molecule. As we will see in Secs. III and IV, th
mechanical properties of a DNA chain are indeed clos
related to the above-mentioned insight.

C. External forces and torques

In the previous two subsections, we have described
intrinsic energy of the DNA double helix. Experimentally,
probe the elastic response of linear DNA molecule, the po
mer chain is often pulled by external force fields and/or u
twisted or overtwisted by external torques. To study the m
chanic response of the dsDNA molecule, in this subsec
we consider the energy terms related to external forces
torques in our theoretical framework.

For the external force fields, here we constrained o
selves to the simplest situation where one terminal of a D
molecule is fixed and the other terminal is pulled with a for
F5 f z0 along the direction of the unit vectorz0 @9#. ~In fact,
hydrodynamic fields or electric fields are also frequen
used to stretch semiflexible polymers@33#, but we will not
discuss such cases in this paper.! The end-to-end vector of a
DNA chain is expressed as*0

Lt(s)cosw(s)dsaccording to Eq.
~3!. Then the total ‘‘potential’’ energy of the chain in th
external force field is

Ef52E
0

L

t coswds•F52E
0

L

f t•z0 coswds. ~7!

In the experimental setup, external torques can be app
on a linear dsDNA molecule by the following procedur
first, DNA ligases are used to ligate all the possible sing
stranded nicks; then the two strands of a dsDNA molecul
one end are fixed onto a template, while the two strand
the other end are attached tightly to a magnetic bead; a
wards, torques are introduced into a DNA double helix
rotating the magnet bead with an external magnetic fi
@11,15#. The torque energy is then related to the topologi
turns caused by the external torque on a DNA double he
The total number of times one DNA strand winds topolo
cally around the other, which is usually termed the total lin
ing number Lk@34–36#, is expressed as the sum of the twis
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ing number Tw„r1(r2),r … of backboner1 ~or r2) around the
central axisr and the writhing number Wr(r ) of the central
axis, i.e., Lk5Tw1Wr. According to Refs.@35–37# and Eq.
~2!, we obtain that

Tw~r1 ,r !5
1

2pE0

L

t3b•
db

ds
ds5

1

2pE0

Lsinw

R
ds. ~8!

The writhing number of the central axis is generally mu
more difficult to calculate. It is expressed as the followi
Gauss integral over the central axis@34#:

Wr~r !5
1

4pE E dr3dr 8•~r2r 8!

ur2r 8u3
. ~9!

In the case of linear chains, provided that some fixed dir
tion ~for example, the direction of the external force,z0) can
be specified, and that the tangent vectort never points to
2z0 ~i.e., t•z0Þ21), it was proved by Fuller that the writh
ing number@Eq. ~9!# can be calculated alternatively accor
ing to the following formula@38#:

Wr~r !5
1

2pE0

L z03t•dt/ds

11z0•t
ds. ~10!

The above equation can be further simplified for highly e
tended linear DNA chains whose tangentt fluctuates only
slightly aroundz0. In this case, Eq.~10! leads to the approxi-
mate expression that

Wr~r !.
1

4pE0

LF2ty

dtx
ds

1tx

dty
dsGds, ~11!

wheretx and ty are the two components oft with respect to
two arbitrarily chosen orthonormal directions (x0 andy0) on
the plane perpendicular toz0, respectively.

The energy caused by the external torque of magnitudG
is then equal to

Et522pG Lk522pG~Tw1Wr!. ~12!

To conclude this section, the total energy of a dsDN
molecule under the action of an external force and an ex
nal torque is expressed as

E5Eb1ELJ1Ef1Et5E
0

LFk* S dt

dsD
2

1kS dw

dsD 2

1
k

R2sin4 w

1r~w!2 f t•z0 cosw2
G

R
sinw2G

z03t•dt/ds

11z0•t
ds

~13!

.E
0

LFk* S dt

dsD
2

1kS dw

dsD 2

1
k

R2sin4 w1r~w!

2 f t•z0 cosw2
G

R
sinw1

G

2
ty

dtx
ds

2
G

2
tx

dty
dsGds. ~14!

Note that Eq.~13! can be applied only in the case of high
extended DNA. In the following two sections, we will stud
the mechanical property of single dsDNA molecules ba
c-

-

r-

d

on the model energy@Eqs. ~13! and ~14!#. The theoretical
results will be compared with experimental observations a
discussed.

III. EXTENSIBILITY AND ENTROPIC ELASTICITY
OF DNA

In this section we investigate the elastic responses
single DNA molecules under the actions of external forc
based on the model introduced in Sec. II. There is no ex
nal torque acted upon; thusG50 in Eq. ~13!. The particular
form of the energy function@Eq. ~13!# of the present mode
makes it convenient for us to study its statistical property
the path integral method. In Appendix A a detailed descrip-
tion of the application of the path integral method to polym
physics is given@39#. Our calculations in this section and th
next section are based on this method.

For a polymer whose energy is expressed in the form
Eq. ~13! with G50, according to the technique outlined
Appendix A @see Eqs.~A1! and ~A7!#, the Green equation
governing the evolution of the ‘‘wave function’’C(t,w;s)
of the system is obtained to be of the form

]C~ t,w;s!

]s
5F ]2

4l p* ]t2
1

]2

4l p]w2 1
f cosw

kBT
t•z02

r~w!

kBT

2
l p

R2sin4 wGC~ t,w;s!, ~15!

where l p* 5k* /kBT and l 5k/kBT. The spectrum of the
above Green equation is discrete and, for a long dsD
molecule according to Eqs.~A10! and ~A13!, its average
extension can be obtained either by a differentiation of
ground-state eigenvalueg0 of Eq. ~15! with respect tof,

^Z&5E
0

L

^t•z0 cosw&ds5LkBT
]g0

] f
, ~16!

or by a direct integration with the normalized ground-sta
eigenfunction,F0(t,w), of Eq. ~15!:

^Z&5LE uF0u2t•z0 coswdtdw. ~17!

Both g0 and F0(t,w) can be obtained numerically throug
standard diagonalization methods and identical results
obtained by Eqs.~16! and ~17!. Here we just briefly outline
the main procedures in converting Eq.~15! into the form of a
matrix.

First, for our convenience, we perform the transformat

w5w̃2
p

2
; ~18!

hence the new argumentw̃ can change in the range from 0 t
p. Then we choose a combination ofYlm(t) and f n(w̃) as the
base function of the Green equation@Eq. ~15!#:

C~ t,w̃;s!5(
lmn

Clmn~s!Ylm~ t! f n~ w̃ !. ~19!
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In the above expression, Ylm(t)5Ylm(u,f) ( l
50,1,2, . . . ;m50,61, . . . ,6 l ) are the spherical harmonic
@40#, whereu andf are the two directional angles oft, i.e.,
t5(sinu cosf,sinu sinf,cosu); and

f n~ w̃ !5A2

a
sinS np

a
w̃ D ~n51,2, . . .! ~20!

are the eigenfunctions of one-dimensional infinitely de
square potential well of widtha.2

With the wave functionC being expanded using th
above mentioned base functions, the operator acting onC
@i.e., the expression in the square brackets of Eq.~15!# can
also be written in matrix form under these base functio
This matrix, whose elements are listed in Appendix B,
then diagolized numerically to obtain its ground-state eig
value and eigenfunction. To simplify the calculation, we fu
ther note that in the present case of Eq.~15!, the ground state
is independent off, i.e., m can be set tom50 in Eq. ~19!.

The resulting force vs extension relation obtained fro
Eqs. ~16! or ~17! is shown in Fig. 2 in the whole relevan
force range, and compared with the experimental observa
of Cluzel et al. @11#. The theoretical curve in this figure i
obtained with just one adjustable parameter~see the caption
of Fig. 2!; the agreement with experiment is excellent. Figu

2In the actual calculations, the right boundary of the square we
chosen to be slightly less thanp to avoid flush off of computer
memory caused by the divergence of the base-stacking pote

@Eq. ~6!# at w̃5p. We seta50.95p in this paper. However, we
have checked that the results are almost identical for other value
a, provided thata>165°.

FIG. 2. Force-extension relation of torsionally relaxed DN
molecule. Experimental data are from Fig. 2A of Ref.@11# ~sym-
bols!. The theoretical curve is obtained by the following consid
ations: ~a! l p51.5 nm and e514.0kBT; ~b! l p* 553.0/
2^cosw&f50 nm, r 050.34/̂ cosw&f50 nm and R5(0.34310.5/2p)
3^tanw& f 50 nm; and~c! the value ofw0 is adjusted to fit the data
For eachw0, the value of^cosw&f50 is obtained self-consistently
The present curve is drawn withw0562.0° ~in close consistency
with the structural property of DNA!, and^cosw&f50 is determined
to be 0.573840. The DNA extension is scaled with itsB-form con-
tour lengthL^cosw&f50.
p

.

-

on

e

2 demonstrates that the high extensibility of the DNA m
ecule under large external forces can be quantitatively
plained by the present model.

To further understand the force-induced extensibility
DNA, in Fig. 3 the folding angle distribution of a dsDNA
molecule is shown, with the external force kept at differe
values. Here, according to Eq.~A13! the folding angle dis-
tribution P(w) is calculated by the formula

P~w!5E uF0~ t,w!u2dt. ~21!

Figures 2 and 3, taken together, demonstrate that the e
tic behaviors of the dsDNA molecule are radically differe
under the condition of low and large applied forces. In t
following, we will discuss these separately.

The low-force region. When the external force is low
(<10 pN), the folding angle is distributed narrowly aroun
an angle ofw.157°, and there is no probability for th
folding angle to take on values less than 0°~Fig. 3!, indicat-
ing that the DNA chain is completely in the right-hande
B-form configuration with small axial fluctuations. Thi
should be attributed to the strong base-stacking intensity
pointed out in Sec. II B. Consequently, the elasticity of t
DNA is solely caused by thermal fluctuations in the ax
tangentt ~Fig. 2!, and the DNA molecule can be regarded
an inextensible chain. This is the physical reason why, in
force region, the elastic behavior of the DNA can be w
described by the wormlike chain model@17,18,41#. Indeed,
as shown in Fig. 4, at forces<10 pN, the wormlike chain
model and the present model give identical results. Thus
can conclude with confidence that, when external fields
not strong, the wormlike chain model is a good approxim
tion of the present model to describe the elastic property
dsDNA molecules; the bending persistence length of
molecule is 2l p* ^cosw&, as indicated by Eqs.~3! and ~4!.

The large-force region. With a continuous increase of ex
ternal pulling forces, the axial fluctuations become more a
more significant. For example, at forces.50 pN, although
the folding angle distribution is still peaked atw.57°, there
is also a considerable probability for the folding angle to
distributed in the regionw;0° ~Fig. 3!. Therefore, at this
force region, the DNA polymer can no longer be regarded
inextensible. Atf .65 pN, another peak in the folding ang
distribution begins to emerge atw.0°, marking the onset of

is

ial

of

-

FIG. 3. Folding angle distribution for torsionally relaxed DN
molecules under external forces.
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a cooperative transition fromB-form DNA to overstretched
S-form DNA @11,12#. This is closely related to the shor
ranged nature of the base-stacking interactions@1# ~see Sec.
II B !. At even higher forces (f >80 pN),3 the DNA molecule
changes completely into an overstretched form, with its fo
ing angle peaked atw50°.

The force-induced axial fluctuations in the DNA doub
helix can be biologically significant. For example, it has be
demonstrated that axial fluctuations in dsDNA considera
enhance the polymerization of RecA proteins along the D
chain@5,42,43#. A quantitative study of the coupling betwee
RecA polymerization and DNA axial fluctuation is antic
pated to be helpful.

It seems that in experiments@11,12# the transition to
S-DNA occurs even more cooperatively and abruptly th
predicted by the present theory~see Fig. 2!. This may be
related to the existence of single-stranded breaks~nicks! in
the dsDNA molecules used in the experiments. Nicks
DNA backbones can lead to strand separation or to a rela
sliding of backbones@11,12#, and this can make the trans
tion process more cooperative. However, the comprehen
agreement achieved in Figs. 2 and 4 indicates that such
fects are only of limited significance. The elasticity of th
DNA is mainly determined by the competition between t
folding angle fluctuation and the tangential fluctuatio
which are governed, respectively, by the base-stacking in
actions (e) and the axial bending rigidity (k* ) in Eq. ~13!.

IV. ELASTIC PROPERTY OF SUPERCOILED DNA

In Sec. III, we have discussed the elastic response of l
DNA chains under the action of external forces. In t
present section, we study the elasticity of a supercoiled D
double helix. For this purpose, in the experimental setup
the possible nicks in the DNA nucleotide strands are liga
@13#, and a torque as well as an external pulling force act
one terminal of the DNA double helix, which typically un

3This thresholdf t of the overstretch force is also consistent with
plain evaluation from a base-stacking potential ofe; f tr 0, i.e., f t

;90 pN.

FIG. 4. Low-force elastic behavior of DNA. Here the expe
mental data are from Fig. 5B of Ref.@9#, the dotted curve is ob-
tained for a wormlike chain with bending persistence length 5
nm, and the parameters for the solid curve are the same as tho
Fig. 2.
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twists or overtwists the originalB-form double helix to some
extent and makes its total linking number~refer to Sec. II C
for the definition of the linking number! less or greater than
the equilibrium value. We say that such DNA molecul
with deficit ~excess! linking numbers are negatively~posi-
tively! supercoiled, and define the degree of supercoiling

s5
Lk2Lk0

Lk0
, ~22!

where Lk0 represents the linking number of a relaxed DN
molecule of the same contour length. In living organism
DNA molecules are often negatively supercoiled, with
linking number deficit of abouts520.06. Thus, a detailed
investigation on the mechanical property of supercoi
DNA molecules is not only of academic interest, but can a
help us to understand the possible biological advantage
negative supercoiling.

A. Relationship between extension and supercoiling degree

We focus on the property of highly extended DNA mo
ecules whose tangent vectors fluctuate only slightly aro
the force directionz0. According to what we mentioned in
Sec. II C, in this case an approximate energy expression@Eq.
~14!# can be used. The external stretching force is restric
to be greater than 0.3 pN to make sure that the end-to-
distance of the DNA chain approaches its contour length~see
Fig. 5!. Based on Eqs.~14! and~A7!, the Green equation fo
highly stretched and supercoiled dsDNA is then obtained
be

]C~ t,w;s!

]s
5F ]2

4l p* ]t2
1

]2

4l p]w2 1
f cosw

kBT
t•z02

r~w!

kBT

2
l p

R2sin4 w1
G

RkBT
sinw2

G

4kBTlp*
]

]f

1
G2

16l p* ~kBT!2sin2 uGC~ t,w;s!, ~23!

where (u,f) are the two directional angles oft, as men-
tioned in Sec. III. Similar to what we did in Sec. III, we ca
now express the above Green equation in matrix form us
the combinations of spherical harmonicsYlm(u,f) and
f n(w) as the base functions. The ground-state eigenvalue
eigenfunction of Eq.~23! can then be obtained numerical
for given applied force and torque and the average exten
be calculated through Eq.~16! or through the formula

^Z&5LE x0~ t,w!t•z0 coswF0~ t,w!dtdw, ~24!

wherex0(t,w) is the ground-state left-eigenfunction of E
~23!.4 The writhing number@Eq. ~11!# is calculated accord-
ing to Eq.~A16! to be

4As remarked in Appendix A, because the operator in the squ
brackets of Eq.~23! acting onC(t,w;s) is not Hermitian, the re-
sulting matrix form of the operator may not be diagonalized
unitary matrices. Consequently, in general,x0(t,w)ÞF0* (t,w).
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^Wr&5L
G

16p l p* kBT
E x0~ t,w!sin2 uF0~ t,w!dtdw,

~25!

and the average linking number is then calculated to be

^Lk&5^Tw&1^Wr&5
L

2pRE x0 sinwF0dtdw

1
LG

16p l p* kBT
E x0 sin2 uF0dtdw. ~26!

Thus, after we have obtained the ground-state eigenv
as well as its left and right eigenfunctions numerically, w
can calculate numerically all the quantities of our intere
for example, the average extension, the average superco
degree, and the folding angle distribution~see also Appendix
A!. The relation between the extension and supercoiling
gree can also be obtained by fixing the external force
changing the value of the applied torque. To calculate
ground-state eigenvalue and eigenfunctions of an asym
ric matrix turns out to be complicated and time consumi
Fortunately, as we have calculated in Appendix B, ea
eigenfunction of Eq.~23! shares the same quantitym; the
matrix for m50 is still Hermitian, and can be diagonalize
by unitary matrices. The ground-state eigenvalue form50 is
lower by several orders than those formÞ0 in the whole
relevant region of external torqueG from 25.0kBT to
5.0kBT. Thus, actually, we only need to consider the case
m50, and in this case we still havex0(t,w)5F0* (t,w). The
whole procedure we performed in Sec. III can safely be
peated in this section, and the relationships between fo
and extension and torque and linking number can con
quently be calculated.

To make the calculation further easier, and also to m
sure that the above-mentioned calculation is indeed corr
here we introduce an approximate method which reduces
computational complexity considerably. It turns out that t
calculated results using this method are in considera
agreement with the above-mentioned precise method. In
experiment of Ref.@13#, the applied external forces chang
in the region of 0.3–10 pN. In this region, as demonstrate

FIG. 5. Extension vs supercoiling relations at fixed pulli
forces for torsionally constrained DNA. The parameters for
curves are the same as in Fig. 2, and experimental data are
Fig. 3 of Ref.@13# ~symbols!.
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Figs. 3 and 4, both the tangential (t) and folding angle (w)
fluctuations of dsDNA molecules are small. Taking this fa
into account, in Eq.~14! the energy termk* (dt/ds)2 can be
approximately calculated to bek* „(dtx /ds)21(dty /ds)2

…,
and f t•z0 cosw.f cosw2f^cosw&(tx

21ty
2)/2. Thus Eq.~14! is

decomposed into two ‘‘independent’’ parts. The first part
related only tow. At each value off andG, we can calculate
the average quantitieŝcosw& and ^sinw& based on this en-
ergy using the path integral method. The second part is q
dratic in tx and ty , therefore the average values oft•z0 and
Wr @Eq. ~11!# can be obtained analytically. Using this d
composition and preaveraging technique, the average ex
sion and average supercoiling degree can both be calcu
at each value of the external force and torque, and the r
tion between the extension and linking number at fix
forces can be then obtained.

The theoretical relationship between extension and su
coiling degree is shown in Fig. 5 and compared with t
experiment of Stricket al. @13#. In obtaining these curves
the values of the parameters are the same as those us
Fig. 2, and no adjustment has been made to fit the exp
mental data. We find that in the case of negatively sup
coiled DNA, the theoretical and experimental results are
quantitative agreement, indicating that the present mode
capable of explaining the elasticity of negatively supercoi
DNA; in the case of positively supercoiled DNA, the agre
ment between theory and experiment is not so good, e
cially when the external force is relatively large. In th
present work, we have not considered possible deformat
of the nucleotide base pairs. While this assumption might
reasonable in the negatively supercoiled case, it may fail
a positively supercoiled DNA chain, especially at lar
stretching forces. The work done by Allemandet al. @15#
suggested that a positive supercoiled and highly exten
DNA molecule can take on Pauling-like configurations w
exposed bases. To better understand the elastic proper
positively supercoiled DNA, it is certainly necessary for
to take into account the deformations of base pairs.

For a negatively supercoiled DNA molecule, both theo
and experiment reveal the following elastic aspects:~a!
When the external force is small, the DNA molecule c
shake off its torsional stress by writhing its central ax
which can lead to an increase in the negative writhing nu
ber, and hence restore the local folding manner of DN
strands to that ofB-form DNA. ~b! However, a writhing of
the central axis causes a shortening of DNA end-to-end
tension, which becomes more and more unfavorable as
external force is increased. Therefore, at large forces,
torsional stress caused by negative torque~supercoiling de-
gree! begins to unwind theB-form double helix, and triggers
the transition of DNA internal structure, where a contin
ously increasing portion of DNA takes on some certain co
figuration as supercoiling increases, while its total extens
remains almost invariant. Our Monte Carlo simulations ha
also confirmed the above insight@44#.

What is the new configuration? According to Ref.@13#,
such a configuration corresponds to denatured DNA s
ments, i.e., negative torque leads to a breakage of hydro
bonds between the complementary DNA bases, and co
quently to strand separation. The authors of Ref.@13# also
performed an elegant experiment in which short sing
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stranded homologous DNA segments were inserted into
experimental buffer@14#. They found, in confirmation of
their insight, that these homologous DNA probes indeed b
onto negatively supercoiled dsDNA molecules. Recen
Léger et al. @16# also performed experiments on sing
dsDNA molecules. To explain their experimental res
qualitatively, they found that a left-handedZ-form DNA
molecule should be considered a possible configuration f
negatively supercoiled dsDNA chain, while the molecu
need not be denatured. As seen in Fig. 5, although
present model has not taken into account the possibility
strand separation, it can quantitatively explain the beha
of negatively supercoiled DNA. Therefore, it may be help
for us to investigate the possibility of formation of lef
handed configurations based on our present model. This
fort is made in Sec. IV B, where the energetics of such c
figurations will also be discussed.

B. Possible left-handed DNA configurations

We mentioned in Sec. II A that left-handed configuratio
correspond tow,0 in our present model~see also Fig. 1!.
Based on the present model, then information about the
configuration mentioned in Sec. IV A can be revealed by
folding angle distributionsP(w), as discussed in Sec. III. In
the present case,P(w) is calculated as

P~w!5E x0~ t,w!F0~ t,w!dt, ~27!

where, as mentioned in Sec. IV A,F0(t,w) andx0(t,w) are,
respectively, the ground-state right and left eigenfunction
Eq. ~23!, and, actually,x0(t,w)5F0* (t,w).

The calculated folding angle distribution@45# is shown in
Fig. 6, which is radically different from that of the torsion
ally relaxed dsDNA molecules shown in Fig. 3. This dist
bution has the following aspects: When the torsional stres
small ~with a supercoiling degreeusu,0.025), the distribu-
tion has only one steep peak atw.157.0°, indicating that
the DNA is completely inB form. With an increase of tor-
sional stress, however, another peak appears atw.248.6°
and the total probability for the folding angle to be neg
tively valued increases gradually with supercoiling. Sin
negative folding angles correspond to left-handed configu
tions, the present model suggests that, with an increas

FIG. 6. Folding angle distributions for negatively supercoil
DNA molecule pulled with a force of 1.3 pN.
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supercoiling, the left-handed DNA conformation is nucleat
and then elongates along the DNA chain asB-DNA disap-
pears gradually. The whole chain becomes completely
handed ats.21.85.

It is worth noting that,~a! as the supercoiling degre
changes, the positions of the two peaks of the folding an
distribution remain almost fixed; and~b! between these two
peaks, there exists an extended region of folding angle fr
0 to p/6 which always has only an extremely small probab
ity of occurrence. Thus a negatively supercoiled DNA c
have two possible stable configurations: a right-handedB
form and a left-handed configuration with an average fold
angle.248.6°. A transition between these two structur
for a DNA segment will generally lead to an abrupt and fin
variation in the folding angle.

To obtain the energetics of such transitions, we have
culated how the sum of the base-stacking energy and
sional energy, (k/R2)sin4 w1r(w)2(G/R)sinw, changes with
external torque@45#. Figure 7~a! shows the numerical result
and Fig. 7~b! demonstrates the relation between the sup
coiling degree and external torque.~In both figures the ex-
ternal force is fixed at 1.3 pN.! From these figures we ca

FIG. 7. ~a! The sum of the average base-stacking and torsio
energy per base pair at a force of 1.3 pN. For highly extended D
only these two interactions are sensitive to torque.~b! The relation
between the DNA supercoiling degree and the external torque
force of 1.3 pN.
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infer that ~a! for negative torque less than the critical val
Gc.23.8kBT, DNA can only stay inB-form state;~b! near
this critical torque, DNA can either be right or left hande
and, as negative supercoiling increases@see Fig. 7~b!# more
and more DNA segments will stay in the left-handed for
which is much lower in energy (.22.0kBT per base pair!
but stable only when the torque reachesGc ; and ~c! for
negative torque greater thanGc , the DNA is completely left
handed.

Nevertheless, we should emphasize that the above ca
lations are all based on our present model, which assu
that nucleotide base pairs do not break. Figure 5 indica
that for negatively supercoiled DNA chains, the extension
supercoiling degree relation can be quantitatively explai
by the present model. Figure 6 reveals the reason for
quantitative agreement is that the present model allows
the possibility of the occurrence of left-handed DNA co
figurations. At the present time, to state that the negativ
supercoiled DNA will ‘‘prefer’’ left-handed configuration
rather than denaturation and strand separation is prema
To clarify this question, the present model should be i
proved to consider deformations of DNA base pairs. On
experimental side, it might also be helpful to measure p
cisely the critical torque at which the elastic behavior
negatively supercoiled DNA changes abruptly, and to co
pare the measured results with the value calculated in
present work. In the earlier experiment of Allemandet al.
@15#, the critical torque was estimated to be;22kBT, by
assuming the torsional rigidity of dsDNA to be 75 nm, a
assuming that torsional stress builds up linearly along
DNA chain. This value, however, may not be preci
enough, since the torsional rigidity of dsDNA molecule
not a precisely determined quantity, and the values given
different groups are scattered widely.5

The structural parameters of the left-handed configura
suggested by Figs. 6 and 7 are listed in Table I@45#, and
compared with those ofZ-form DNA @2#. The strong simi-
larity between these parameters suggests that the tor

5Another possibility may be that we have overestimated the va
of the critical torque. It may be possible that the transition fro
right- to left-handed configurations is initiated in the weaker A
rich regions, whose value ofe should be less than the average val
taken by the present paper.

TABLE I. For the torque-induced left-handed DNA configur
tion, the average rise per base pair (d), the pitch per turn of the
helix, and the number of base pairs per turn of the helix~Num.! are
calculated and listed under different external forces and torq
The last row contains the corresponding values forZ-form DNA.

Force~pN! Torque (kBT) d(Å ) Pitch (Å ) Num.

1.3 25.0 3.59 41.20 11.48
1.0 25.0 3.57 40.93 11.44
1.3 24.0 3.83 46.76 12.19
1.0 24.0 3.82 46.38 12.15

Z form 3.8 45.6 12
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induced left-handed configurations, if they really exist, b
long to Z-form DNA @2,16,45#.

V. CONCLUSION

In this paper, we have presented an elastic model
double-stranded biopolymers such as DNA molecules. T
key progress is that the bending deformations of the ba
bones of DNA molecules and the base-stacking interacti
existing between adjacent DNA base pairs are quantitativ
considered in this model, with the introduction of a structu
parameter: the folding anglew. This model has also qualita
tively taken into account the effects of the steric effects
DNA base pairs and electrostatic interactions along DN
chain. In the calculation technique, the model is investiga
using the path integral method; in addition, Green equati
similar in form to the Schro¨dinger equation in quantum me
chanics are derived, and their ground-state eigenvalues
eigenfunctions are obtained by precise numerical calc
tions. The force-extension relationship in torsionally relax
DNA chains, and the extension-linking number relationsh
in torsionally constrained DNA chains are studied and co
pared with experimental results. A DNA molecule’s entrop
elasticity and highly extensibility, as well as the elastic pro
erty of negatively supercoiled DNA, can all be quantitative
explained by the present theory. The comprehensive ag
ment between theory and experiments indicated that sh
ranged base-stacking interactions are very important in
termining the elastic response of double-stranded D
molecules. The present work showed that highly exten
and negatively supercoiled DNA molecules can be l
handed, probably in theZ-form configuration. A possible
way to check the validity of this opinion is to measure t
critical external torque at which the transition betwe
B-form DNA and the new configuration takes place.

The present work regarded DNA basepairs as rigid
jects, and did not consider their possible deformations
the possibility of strand separation. The comprehens
agreement between theory and experiments indicates
this approach is well justified in many cases. However,
mentioned in Sec. II A, under some extreme conditions t
assumption may not be appropriate. For example, recent
perimental work by Allemandet al. @15# showed that posi-
tively supercoiled DNA under high applied force can take
Pauling-like configurations with exposed bases. In this c
the base pairing of DNA is severely distorted, and beca
the present model has not taken into account the poss
deformations of the base pairs, the theoretical results
positively supercoiled DNA molecules are not in quantitati
agreement with experiment~see Fig. 5!. Furthermore, al-
though the present work showed that left-handed DNA c
figurations can be stabilized by negative torques, much
oretical work is still needed to calculate the denaturation f
energy and to compare with the free energy of left-hand
DNA configurations.
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APPENDIX A: PATH INTEGRAL METHOD
IN POLYMER PHYSICS

In this appendix we review some basic ideas on the
plication of the path integral method to the study of po
meric systems@39#. Consider a polymeric string, and su
pose its total ‘‘arclength’’ isL, and along each arclengt
point s one can define ann-dimensional ‘‘vector’’ r (s) to
describe the polymer’s local state at this point.6 We further
assume that the energy density~per unit arclength! of the
polymer can be written in the general form

re~r ,s!5
m

2 S dr

dsD
2

1A~r !•
dr

ds
1V~r !, ~A1!

whereV(r ) is a scalar field andA(r ) is a vectorial field. The
total partition function of the system is expressed by
integration

J~L !5E E dr ff f~r f !G~r f ,L;r i ,0!f i~r i !dr i , ~A2!

where f i(r ) and f f(r ) are the probability distributions o
the vectorr at the initial (s50) and final (s5L) arclength
point points, respectively.G(r ,s;r 8,s8) is called the Green
function, and is defined as

G~r ,s;r 8,s8!5E
r8

r
D@r 9~s!#expF2bE

s8

s

ds9re~r 9,s9!G ,
~A3!

where integration is carried over all possible configuratio
of r 9, andb51/kBT is the Boltzmann coefficient. It can b
verified that the Green function defined above satisfies
relation @39#

G~r ,s;r 8,s8!5E dr 9G~r ,s;r 9,s9!G~r 9,s9;r 8,s8!

~s8,s9,s!. ~A4!

The total free energy of the system is then expressed as

F52kBT ln J. ~A5!

To calculate the total partition functionJ, we define an
auxiliary functionC(r ,s) and call it the wave function, be
cause of its similarity to the true wave function of quantu

6For example, in the case of a flexible Gaussian chain,r is a
three-dimensional position vector; in the case of a semiflex
chain, such as a wormlike chain@18,41#, r is the unit tangent vecto
of the polymer and is two dimensional.
y

-

e

s

e

systems. Suppose the value ofC at arclength points is re-
lated to its value ats8 through the following formula such
that7

C~r ,s!5E dr 8G~r ,s;r 8,s8!C~r 8,s8! ~s.s8!; ~A6!

then we can derive, from Eqs.~A1!, ~A3!, and~A6!, that@39#

]C~r ,s!

]s
5F “ r

2

2mb
2bV~r !1

A~r !•“ r

m
1
“ r•A~r !

2m

1
bA2~r !

2m GC~r ,s!5ĤC~r ,s!. ~A7!

Equation~A7! is called the Green equation; it is very simila
to the Schro¨dinger equation of quantum mechanics@40#.
However, there is an important difference. In the case
A(r )Þ0, the operatorĤ in Eq. ~A7! is not Hermitian. There-
fore, in this case the matrix form of the operatorĤ may not
be diagonalized by unitary matrix.

Denote the eigenvalues and the right eigenfunctions
Eq. ~A7! as2gi and u i &5F i(r ) ( i 50,1, . . . ),respectively.
Then it is easy to see, from the approach of quantum m
chanics, that

C~s!5(
i

e2gi (s2s8)u i ~s!&^ i ~s8!uC~s8!&, ~A8!

where^ i u5x i(r ) ( i 50,1, . . . )denote the left eigenfunction
of Eq. ~A7!, which satisfy the following relation:

^ i u i 8&5E drx i~r !F i 8~r !5d i
i 8 .

In the case whereĤ is Hermitian @i.e., A(r )50#, then we
can conclude that

x i~r !5F i* ~r !.

From Eqs.~A2!, ~A6!, ~A7!, and~A8! we know that

J~L !5E drE dr 8G~r ,L;r 8,s8!f f~r !f i~r 8!

5(
i

^f f u i &^ i uf i&e
2giL5e2g0L^f f u0&^0uf i&

@ for L@1/~g12g0!#. ~A9!

Consequently, for long polymer chains the total free ene
density is just expressed as

e 7In fact, the choice of the wave functionC(r ,s) is not limited.
Any function determined by an integration of the form of Eq.~A6!
can be viewed as a wave function.
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F/L5kBTg0 , ~A10!

and any quantity of interest can then be calculated by dif
entiation ofF. For example, the average extension of a po
mer under external force fieldf can be calculated aŝZ&
5]F/] f 5LkBT]g0 /] f .

We continue to discuss another very important quant
the distribution probability ofr at arclengths, P(r ,s). This
probability is calculated from the following expression:
y

k
o

r-
-

,

P~r ,s!5

E dr fE dr if f~r f !G~r f ,L;r ,s!G~r ,s;r i ,0!f i~r i !

E dr fE dr if f~r f !G~r f ,L;r i ,0!f i~r i !

.

~A11!

Based on Eqs.~A6! and~A8! we can rewrite Eq.~A11! in the
following form:
P~r ,s!5

E dr fE dr iE dr 8f f~r f !G~r f ,L;r 8,s!d~r 82r !G~r ,s;r i ,0!f i~r i !

E dr fE dr if f~r f !G~r f ,L;r i ,0!f i~r i !

5

(
m

(
n

^f f um&^nuf i&xm~r !Fn~r !exp@2gm~L2s!2gns#

(
m

^f f um&^muf i&exp~2gmL !

. ~A12!
be

e

For the most important case of 0!s!L, Eq. ~A12! then
gives that the probability distribution ofr is independent of
arclengths, i.e.,

P~r ,s!5x0~r !F0~r ! ~ for 0!s!L !. ~A13!

With the help of Eq.~A13!, the average value of a quantit
which is a function ofr can be obtained. For example,

^Q~s!&5E drQ~r !P~r ,s!5E drx0~r !Q~r !F0~r !

5^0uQu0& ~A14!

and

K E
0

L

Q„r ~s!…dsL 5E
0

L

^Q~s!&ds5L^0uQu0&

@ for L@1/~g12g0!#.
~A15!

Finally, we list the formula for calculating^B(r )
•dr /ds&; hereB(r ) is a given vectorial field. The formula
reads

K B~r !•
dr

dsL 5
1

2
^0u@r•~ĤB!2B•~Ĥr !#u0&

@ for L@1/~g12g0!#. ~A16!

APPENDIX B: MATRIX FORMALISM
OF THE GREEN EQUATION „23…

In Eq. ~23! @and also Eq.~15!# the variablest andw are
coupled together. Denote the operator in the square brac
of Eq. ~23! asĤ. We express this operator in matrix form. T
ets

this end we choose the base functions of this system to
combinations of spherical harmonicsYlm(u,f) and f n(w̃)
@see Eq.~20!#.

For m50, the base functions are expressed to be

u i &5u l •Nw1n&5u l ;n&5Yl0~u,f! f n~ w̃ !; ~B1!

and form51,2, . . . , thebase functions are expressed to b

u i &5u2~ l 2m!•Nw12~n21!1k&5u l ;n;k&

5Ylm
(k)~u,f! f n~ w̃ !. ~B2!

In the above two equations,n51,2, . . . ,Nw , with Nw set to
be 60 in our present calculations;l 50,1, . . . ,Nl21 for the
case ofm50 ~with Nl set to 30); orl 5m,m11, . . . ,m
1Nl21 for the case ofmÞ0 ~with Nl set to 15).k51 and
2, and

Yl0~u,f!5A2l 11

4p
Pl~cosu!,

Ylm
(1)~u,f!5~21!mA2l 11

2p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!cos~mf!,

Ylm
(2)~u,f!5~21!mA2l 11

2p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!sin~mf!.

With the above definitions, we then obtain that, form
50,
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^ i pu~2Ĥ !u i &5^ l p ;npu~2Ĥ !u l ;n&5d l
l pdn

npF l ~ l 11!

4l p*
1

n2p2

4l pa2G
2

f

kBT
@d l p

l 11al ,01d l p

l 21al 21,0#^npusinw̃un&

1d l p

l ^npuFr~w̃ !

kBT
1

l p

R2cos4 w̃G un&

1d l p

l G

RkBT
^npucosw̃un&

2dnp

n G2

16l p* ~kBT!2@d l p

l ~12al ,0
2 2al 21,0

2 !

2d l p

l 12al ,0al 11,02d l p

l 22al 21,0al 22,0#; ~B3!

and, formÞ0,

^ i pu~2Ĥ !u i &5^ l p ;np ;kpu~2Ĥ !u l ;n;k&5d l p

l dnp

n dkp

k F l ~ l 11!

4l p*

1
n2p2

4l pa2G2
f

kBT
dkp

k @d l p

l 11al ,m1d l p

l 21al 21,m#

3^npusinw̃un&1d l p

l dkp

k ^npuFr~w̃ !

kBT

1
l p

R2cos4 w̃G un&1d l p

l dkp

k G

RkBT
^npucosw̃un&

1d l p

l dnp

n G

4l p* kBT
~k2kp!m
n

atl

hi-

F

J.

.

n

.

2dnp

n dkp

k G2

16l p* ~kBT!2@d l p

l ~12al ,m
2 2al 21,m

2 !

2d l p

l 12al ,mal 11,m2d l p

l 22al 21,mal 22,m#. ~B4!

In Eqs.~B3! and ~B4!, the following notations are used:

al ,m5A ~ l 11!22m2

~2l 11!~2l 13!
,

^npuy~ w̃ !un&5
2

aE0

a

sinS nppw̃

a
D y~ w̃ !sinS npw̃

a
D ,

wherey(w̃) is any function ofw̃.
The ground-state eigenvalues of the matrices@Eqs. ~B3!

and~B4!# have been calculated at force 1.3 pN in the who
relevant region ofG from 25.0kBT to 15.0kBT. We have
found that the ground-state eigenvalues for the case om
50 are of the order of210 nm21, while those for the case
of mÞ0 are of the order of 106 nm21 ~data not shown!.
Thus we can conclude with confidence that the ‘‘low e
ergy’’ eigenstates of the system all have the samem50.
This can greatly reduce the calculation tasks.

As a final point, here we demonstrate how to calculate
average values of the quantities of our interest. Supp
y(t,w̃) is a quantity whose average value we are interes
in. DenoteU as the unitary matrix which can diagonalize th
matrix Eq. ~B3!. @Because the matrix Eq.~B3! is real sym-
metric,U is actually a real orthogonal matrix.# Then its col-
umn vectoru( i )5( jU( j ,i )u j & ( i 51,2, . . . ) corresponds to
the i th eigenvector of Eq.~B3!. Consequently, we can calcu
late based, on Eq.~A14!, that

^y~ t,w̃ !&5(
i ,i p

U~ i p,1!U~ i ,1!^ i puy~ t,w̃ !u i &. ~B5!
nd
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