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Random walks in logarithmic and power-law potentials, nonuniversal persistence,
and vortex dynamics in the two-dimensionalXY model
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The Langevin equation for a particierandom walker”) moving ind-dimensional space under an attractive
central force and driven by a Gaussian white noise is considered for the case of a power-law foyce,
~—r"7. The “persistence probability, Py(t), that the particle has not visited the origin up to timnes
calculated for a number of cases. For 1, the force is asymptotically irrelevafwith respect to the noige
and the asymptotics d¥((t) are those of a free random walker. ko 1, the noise igdangerouslyirrelevant
and the asymptotics oPy(t) can be extracted from a weak noise limit within a path-integral formalism
employing the Onsager-Machlup functional. The casel, corresponding to a logarithmic potential, is most
interesting because the noise is exactly marginal. In this &g¢) decays as a power lawy(t) ~t~? with
an exponend that depends continuously on the ratio of the strength of the potential to the strength of the noise.
This case, withd=2, is relevant to the annihilation dynamics of a vortex-antivortex pair in the two-
dimensionalXY model. Although the noise is multiplicative in the latter case, the relevant Langevin equation
can be transformed to the standard form discussed in the first part of the paper. The mean annihilation time for
a pair initially separated byis given byt(r)~r? In(r/a) wherea is a microscopic cutoffthe vortex core size
Implications for the nonequilibrium critical dynamics of the system are discussed and compared to numerical
simulation results.

PACS numbes): 05.40.Fb, 05.40.Jc, 05.70.Ln

I. INTRODUCTION we will address a different, and more fundamental, aspect of
nonequilibrium critical dynamics.

This paper deals with two seemingly distinct topics: per- If a system at its critical temperature evolves from a non-
sistence and nonequilibrium critical dynamics. We show thaequilibrium initial state, critical correlations develop over a
they are related in the context of the nonequilibrium criticallength scale£(t), which increases with time. According to
dynamics of the two-dimensioné2D) XY model with non-  the standard theorj12], é~t'# for larget, wherez is the
conserved order parameter. The link is established througtritical exponent forequilibrium critical dynamics. This re-
the study of ad-dimensional random walker moving in a sult, which is in accord with simple dynamical scaling, has
logarithmic potential. been demonstrated within a field-theoretic framew{dg].

Persistence phenomena are related to first-passage probhis approach also shows that the resi(it) ~t' is inde-
lems for stochastic processes. Consider a stochastic procgssndent of the initial conditions.

X(t). The “persistence probability,Py(t), is the probability In the present work we challenge this picture for the spe-
thatx(t) has not crossed some given level,(often taken to  cific case of the 2DXY model with nonconserved order pa-
be zer9, up to timet. The probability distributionP,(t), of  rameter, and show th&(t) ~t*?if there are no free vortices
the first-passage timfg.e., the first timet for which x(t) present in the initial state, whil&(t) ~ (t/In t)*? if free vor-
=X.] is Py=—dPy/dt. A familiar example is the 1D ran- tices are present. Physically, these two cases correspond to
dom walk, with Langevin equatiodx/dt= £(t), whereé(t) ordered initial statee.g., the equilibrium state dt=0), and

is a Gaussian white noise. For initial conditie(0)=x,, the  disordered initial statede.g., the equilibrium state af
probability that the walker has not crossed the origin ( =«), respectively. Furthermore, since the 2Y model is
=0) up to timet decays asPy(t)~xo/tY? for t>x2. The  described, through the Kosterlitz-Thoule&sT) theory[13],
power entering this algebraic decay has been termed they a critical line, T<Tgy, rather than a single critical point,
“persistence exponent,’d, i.e., #=1/2 for the 1D random the above dependence on initial conditions will persist
walk. throughout the KT phase.

Persistence phenomena have been widely studied in re- The connection with persistence arises as follows. For an
cent yearg1-11]. Theoretical and computational studies in- initial condition containing free vortices and antivortices,
clude spin systems in on] and higher[3] dimensions, vortex-antivortex annihilation is the slowest relaxation pro-
diffusion fields[4], fluctuating interfacef5], phase-ordering cess. Much can be learned by studying the annihilation of a
dynamics[6], and reaction-diffusion systern(§]. Experi-  single, initially widely separated, vortex-antivortex pair. The
mental studies include the coarsening dynamics of breatprobability that they have not annihilated up to titrgefines
figures[8], soap frothd 9], and twisted nematic liquid crys- a persistence problem. By a series of transformations, this
tals [10]. Persistence in nonequilibrium critical phenomenacan be mapped onto a random walk in a logarithmic poten-
has been studied in the context of the global order parametetial. Analysis of this problem shows that the persistence ex-
M(t), (e.g., the total magnetization of a ferromagnee-  ponenté is a continuous function of the ratio of the strength
garded as a stochastic procgsd], but in the present work of the potential to the strength of the thermal noise, kds
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nonuniversal In the context of the vortex problem, we find A. Reduction to a one-dimensional problem

0=mp(T)/KsT, wherepg(T) is the large-scale spin-wave  The analysis starts from the equivalent Fokker-Planck

stiffness at temperaturé. Since the ratigps/kgT takes the gy ation for the probability distributior®(r,t), for the po-
universal value 2t at Txr, we obtain6(Tyxr)=2, while  ition of the particle at time:

0(T)—o asT—0.

Although the vortex problem in two dimensions was the P
initial motivation for the present study, for pedagogical rea- It =V.
sons we will begin(Sec. ) by discussing the-dimensional
random walk in a logarithmic potential, and deriving the per-This equation can be reduced to an effectively one-
sistence properties. We show that the exporgmtepends dimensional equation in terms of the radial coordinatey
continuously on the ratio of the strength of the potential tointegrating over the angle variables. Writing (r,Q)), and

the strength of the noidd 4], i.e., the logarithmic potential is defining the radial probability distribution Q(r,t)
marginalin the renormalization-group sense. In Sec. lll we =r4-17dOP(r,0,t), gives
consider the case of a general attractive power-law force,

F(r)=(—A/r%)r, where the logarithmic potential corre- @
sponds too=1. We show that folo>1 the force is irrel- at
evant(relative to the noigeas far as asymptotic persistence
properties are concerned, so the results of the free randowhered,=d/dr and
walk still hold. Foro<1, by contrast, the force is relevant
and the noise becomes irrelevant. For zero noise, however, b= é+1—d. (5)

. (3

A.
FF‘FDVP

=Do, , 4

b
FQ_"O"rQ

the dynamics are deterministic, so the persistence asymptot- D

ics are governed by rare fluctuations of the noise. In this_ = ) . . .
sense, the noise idangerouslyirrelevant. The asymptotic ThiS is equivalent to the radial Langevin equation
persistence follows from an optimal patbr steepest de- dr A (d—1)D

scenj approach formally valid in the weak noise limit —=— =+ ——— + (1), (6)
[15,16. The result is the “stretched-exponential” decay, dt r r

Po(t) ~exd —constx t(1~ /(1 +a)], ) " o
Section IV deals with the application of the previous re-Where(&(t)&(t'))=2D s(t—t'), i.e., projecting Eq(1) onto
sults to the problem of vortex-antivortex annihilation in the € radial direction leads to an additional repulsive forde (
KT phase of the 2DXY model. The potential energy of a _ 1)D/I, proportional to the noise strength. This megsee
free vortex-antivortex pair is logarithmic in their separation, E9- (5)] that a particle moving in a logarithmic potential in
space dimensiod has the same radial distribution function

so this is the marginal case with a nonuniver&@aAn addi- ! A I
tional complication is that the effective vortex mobility is @S @ free particlérandom walker moving in dimensiord”
=d—A/D (which need not be an integer, or even positive

scale(i.e., separationdependent, implying, via the Einstein
relation between mobility and diffusion constant, that the
noise strength is also scale dependent or, equivalently, that B. The persistence probability

the noise is multiplicative. However, this system can be |n this subsection we derive an exact expression for the
transformed to an additive noise problem identical to thabersistence probabilitP,(t). First we make the change of
discussed in Sec. Il. Although the persistence exponent i§ariabIeQ=r(1‘b)’2R in Eq. (4). Then the equation govern-

nonuniversal, the dependence of the typical annihilation timelang the relaxation modeR(r,t) = R,(r)exp(—DKt) becomes
on the initial separationr has the universal formt ’

~r?In(r/a), wherea is a (nonuniversal short-distance cut- d?R, 1dR, V2
off, for all T<Tyy. Standard scaling arguments then suggest >t T dr k?— — | R=0, (7)
that, for an initial condition containing many free vortices dr r
and antivortices, the characteristic length scale describing thvE\!/here
approach to equilibrium will grow asé(t)~ (t/Int)*?
throughout the KT phase. v=(1+b)/2. (8)
Il. RANDOM WALKER IN A LOGARITHMIC POTENTIAL The solutions are the Bessel functiohgkr) andJ_ (kr),
. . . ) . .___so the general solution is
The Langevin equation for an isotropic, continuous-time
random walker moving i dimensions in the central poten- %
tial V(r)=Alnr is Q(r,t)=r(1‘b”2fO dif a(k)J,(kr)+B(k)J_(kr)]
dr A X exp( — DK?t) 9
— == —r 4+ .
qi= " A, 1)

The desired solution has to satisfy the initial condition
where the Gaussian white noise has the correlation functio®(r,0)= 8(r —ry). To determinePy(t) we impose an ab-
(i,j=1,...4d) sorbing boundary at=0, such that the particle is removed if

it reaches the origin. To determine the appropriate solution
(&i(DE&(t"))=2D6;6(t—t"). (2)  we note from Eq(4) that the probability current is
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j(r)y=—D(3,Q+bQ/r). (10
Consider separately the two terms in the general sol¢fhn
The term involvingd, behaves as for r — 0, while the term
in J_, behaves as °. Both terms have corrections which
multiply the leading terms by power series iifi. Inserting
both forms into Eq.(10) shows that the first term gives a
finite (and negativecurrent atr =0, so that for this solution

the origin is an absorbing point, or current sink. The second
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the conditionb>—1 requiresd’ <2, i.e., the probability to
reachr =0 for a random walk ird’=2 dimensions is zero.

For b>—1, the persistence probabilitfRy(t), can be
readily calculated from Eq12) by first computing the cur-
rent(10) atr =0. This current gives the rate of change of the
persistence,

o dP
1(0)= 5= —Pu(b), (13

term, on the other hand, gives zero current and the origin is
a not a special point: This solution therefore gives the spherigpere P,(t) is the probability distribution for the time at

cally averaged Greens function for diffusion ¢ii=1—b
dimensions.

which the particle first reaches the oridfirst passage time
Using Eqgs.(10) and(12) gives the final result:

Using the orthogonality properties of Bessel functions to

determine the functiona(k) and (k) in each case, we find
that the Greens function is given by

r2+r2
4Dt

rro)
2Dt)’
(11

P a-D)2 o
QG(r,t):ro(_) J dk kJ_,(krg)Jd_,(kr)
) 0
X exp( — Dk?t)

rg (1| (1-DP |
~2Dt\rg ex e

wherel (z) is the modified Bessel function, while the rel-
evant solution for an absorbing point at the origin is

[\ (1-b)2
Qabs(r:t): rO(r_)
0

r2+r3
4Dt

o )
2Dt/
(12)

f dk kJ,(krg)J,(kr)
0
X exp( — DK?t)

ro [r)(-DPR2 |
—ﬁ G ex v

At this point a comment on the possible valuesbois
needed. The leading term @ for r —0 isO(r ~?), and this
gives rise to zero current at=0 as discussed above. The
next-to-leading term, however, 8(r?>~°) leading to a cur-
rent of orderr ", This vanishes as—0 only for b<1.
Thus the Greens function is ill defined foe=1: The non-
zero current at =0 in this regime means the radial probabil-
ity distributionQg(r,t) collapses onto the origin. In terms of
the dimensiord’ of a free random walk we have=1—d’,
so the requiremertt<<1 meansd’ >0, which makes physi-

. B 4D r(2) (3+b)/2 r(z)
()= wzlat) M apg)

I'[(1+b)/2] ra
The persistence probability By(t) = f{’ds Py(s). Using the
larget behavior of Eq(14) gives

2
o

Po(t)— (15

(1+b)/2
4Dt>

1
I'[(3+ b)/2](
for t—oo. Thus the “persistence exponentd, is given by

0=(1+b)/2, (16)
and is nonuniversal. For the free random walk in dimension
d’, this translates t@=(2—d’)/2.

The nonuniversality of with respect to the strengtia,
of the potential is special to the case of a logarithmic poten-
tial, for which the Langevin equatiofl) is invariant under
the rescalings —ar, t—a’t of space and time. This means
that the potential is anarginal perturbation with respect to
the equation withA=0, and it is this marginality which is
responsible for the continuous variation éfwith A (actu-
ally, with the ratioA/D) through its dependence dnwhich
we recall is defined by Eq5). The conditionb> — 1 for the
particle to visit the origin with probability one is equivalent
to A>(d—2)D. Note that ford=1 this even allows &suf-
ficiently weak repulsive potential, whereas fde2 a guar-
anteed visit to the origin requires a sufficiently strong attrac-
tive potential.

In the following section we discuss the case of a general
power-law potential, corresponding to a forcE(r)
=—A/r?. We show that the force is irrelevant for>1, and

cal sense. A physically reasonable Greens function can bge asymptotic persistence probability is that of a free ran-

restored for the cas#>0, A=dD, whereb=1, by regulat-
ing ther =0 singularity of the forceF(r)=—A/r. For ex-
ample, ifF=—A/(r +¢€) we expect the Greens function to
have a width which vanishes with

dom walker. Folo<1 the force is a relevant perturbation to
the free random walker. In this case the noise term is irrel-
evant, but dangerously irrelevant as far as the calculation of
Po(t) is concerned. We show that in this cad®gt) decays

We turn now to the more interesting case, for presents a stretched exponential.

purposes, of the distributio®,,r,t), appropriate to an ab-
sorbing point atr=0. Equation(12) gives Q,s~r for r
—0, so the current(10) at the origin isj(0)=—-D(1
+Db)(Qaps/r) =o- This requiresb>—1, sincej(0)<0 for
an absorbing boundary, ai@lis necessarily non-negative. In
terms of the equivalent free random walk with dimensidn

IIl. RANDOM WALKER IN A POWER-LAW POTENTIAL

After reducing the problem, as in the previous section, to
an effectively one-dimensional problem for the distanad
the particle from the origin, the radial Langevin equation
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reads ism, augmented by a steepest descent calculation valid for
D—0. Finally, we note that the crucial factor
dr A (d—-1)D (At)1~ YA+ 9)/D in the exponent of Eq(20), and in par-
dt ;Jr erg(t)- (17 ficular the value of the exponeft, can be deduced imme-

diately from dimensional analysis once one recognizes that
(i) the result must be independent rjf, and (ii) the factor

A. Scaling analysis 1/D is a necessary consequence of activated dynamics.
Under the scale transformations—ar, t—a’t, the
Langevin equatior{17) retains the same form, but with po- B. Path-integral formulation for o<1

tential strengthA and noise strength rescaled to We begin from the probability distribution functional for

A =aZ 1 oA, (18) th_e noise_historf(t). Since the noise is Gaussian and white,
this functional is

D’'=a’ °D. (19

; (21

1
PL&t)]=N exp( -5 j dté(t)

For o#1 these equations have two nontrivial fixed points:
(i) A>0, D=0, with z=1+ o, which is stable D scales , o .

to zero at large timefor o<1, and whereN is a normalization constant. This can be transformed
(i) A=0, D>0, with z=2, which is stable for>1. For to a probability distribution functional for(t) using the

the special case'=1, there is a line of fixed points wita ~ L@ngevin equatiori17):

=2 andA/D arbitrary. In this last case, as we have seen, the 1

exponenty depends continuously oA/D. o P[r(t)]=N J[f(t)]eXF< — Ss[r(t)])' (22)
At the second fixed point, witle>1, the force is irrel-

evant: it falls off too rapidly with distance to affect the ) . .
asymptotic large-time behavior. In particular, the exporgent Whered[r] is the Jacobian of the transformation frdt) to

is given by the zero-force valug=(2—d)/2 (0<d<2). r(t), whose precise form will not concern us, agd ] is the

At the first fixed point, witho<1, thenoiseis irrelevant,  Onsager-Machlup functiongor action,
If we setD to zero, the proces§l?7) is deterministic A
particle staring atr, reaches the origin in a time Sr]= EJ dt
=r5"I[(1+ o)A]. The limiting behavior oP(t) at larget 4
is, therefore, dominated by rare events: the noise daa
gerouslyirrelevant variable in this context, and we cannot It is convenient to computB(t), the probability density
simply set it to zero. Instead, we have to examine the limit offor the first visit to the origin(recall thatP,=—dP,/dt),
small but nonzer®. given that the particle starts frong att=0. This is given by
We can argue for the asymptotic form Bfy(t) as fol-  the path integral
lows. A long survival time of the particle is a rare event,
dominated by an activated process where the particle initially 1
movesaway from the origin The potential corresponding to Pl(t)wf dr(t)J[r(t)]exp{ N BS[r(t)]), (24)
the force— A/r? is V(r)=Ar'"?/(1— o). Suppose the par-
ticle is driven(by the nois¢ to a pointr;. The time for a  where the time integral in E¢23) now runs from 0 td (and
subsequent deterministic descent to the origin tis we introduce a dummy time integration varialsle and the
=r}*?I[A(1+ ¢)]. The activation barrier for the “uphill”  path integral is over all paths(s) which satisfyr(0)=r,
process isAV=[A/(1—a)](ri"7—r{ ), so the probabil- andr(t)=0. The use of~ in Eq. (24) means we are con-
ity to reachr, before the origin is of order exp(A/(1  cerned only with the leading exponential terms and not with
—0)]r;°/D), where the term img in AV has been taken out the prefactors.
and absorbed into a pre-exponential factor. Using the time In the limit D—0, the path integral can be evaluated by
for the subsequent free descent to estimpfe i.e., r;  Steepest descents. To leading order the Jacolfia(t) ], can
~[A(L+0)t]Y1* 9 gives be replaced by[r.(t)], wherer(t) is the “classical”’ path
which minimizes the actior§[r]. The Jacobian therefore
A (1-0)/(1+0) contributes to the prefactor, and we will not consider it fur-
Po(t)~exp — m[A(“"T)t] * ther. In a similar way, the termd1)D/r in Sis subdomi-
(20) nant forD—0 and can be dropped to leading order.
As noted above, the dominant pdffath of least actionis
a stretched-exponential forrR,(t) ~exp(—constxtf), with  the one which keepé(t) as small as possible for as long as
B=(1-0)/(1+ ). Note that the coefficient d does not possible. This is achieved by having the particle move ini-
depend on the initial displacemeny. The reason is that the tially away from the origin“uphill” ), where a smaller noise
rare trajectories for which the particle survives a long timeforce is needed to overcome the deterministic force driving
take the particle far from its original position. the particle towards the origin. The patl(t) therefore con-
Despite its crudeness, this argument gives the correct resists of two parts: an uphill part to a maximum displacement
sult up to a constant of order unity in the exponent. This isr 1, followed by a deterministic{=0) downhill part. Only
shown in the next subsection using a path-integral formalthe uphill path has a nonzero action associated with it.

dl‘+A d].D2 23
mr—g—(—)T- (23
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The variational problem for the uphill path is simplified time. For example, the spin-spin correlation function has,
[16] by introducing the velocity =dr/ds and parametrizing according to the KT theory13], the equilibrium form
the path byv(r) instead ofr (s). The action then becomes C(r)~r~ (M, for all T<Tyr. Consider now a system pre-

pared in a random initial state, with only short-range spatial
1 (rudr
soi=5[ S

2 . . .
correlations, and allowed to evolve in contact with a heat
0

A
v+ —

o (29 bath at temperaturé<Tgy. According to the conventional

theory of nonequilibrium critical phenomenia?], the sys-
The variational equatio®S/sv=0 becomes + A% (yvr©)2  tem will approach equilibrium via a dynamical scaling state,
=0, with solutionsy = =A/r”. The minus sign corresponds characterized by a growing length scaigt). For example,
to the deterministic downhill path, with zero action, the plusthe scaling form for the spin-spin correlation function reads
sign to the uphill path. The action for the latter is

1 r
fdr A C(r,t):r—”f(%). (30

1-0o 1-0o
= ry 7—r . 26
o ra. 1_0_( 1 0 ) ( )
The scaling functionf(x) has the limiting behavioif (0)
=const[so that equilibrium is recovered fg(t) — o], while
f(x) falls off rapidly for x>1, representing the fact that the
rdr 1 spins are uncorrelated on length scales large compared to
|
;

The timest,, ty associated with the uphill and downhill
paths, respectively, are

— = [r1" -5, 27 &Q).
v Al+o) The standard theory of nonequilibrium critical dynamics
predicts that the length scadét) should grow ast(t) ~t'?,

0

1+o
t= ri’ 28) wherez is the equilibrium dynamical exponent. This should
ATA(l+o)” hold independent of the initial conditions, though the scaling

_ _ o _ _ function f(x) in Eqg. (30) can depend on initial conditions. A
The final step is to eliminate, in Eq.(26) in favor of the  commonly considered case is uniform initial conditicia
total timet=t,+tq. Fort—o, r;— andro<r, in Eq.  spins parallél For this case one requires thitx)~x” for
(27). Dropping thﬁ ferms i in Egs.(26) and (27) gives  x—w, since the long-range order present in the initial con-
ri=[A(1l+o)t/2]Y* ) and dition will persist at any finite time.
In a recent paper, however, Bray al. [17] have argued,
Py(t)~exp(—S/D) on the basis of numerical simulations and physical argu-
A
=R T 1-o)D

A(l+0) (10)/(1+a)) ments, that this picture breaks down for the XIY model

2

with nonconserved dynamidsnodel A of the Hohenberg-
Halperin[18] classification. Specifically, the growth of(t)
(290  will depend on whether the initial state contains free vortices
and antivortices. In particular, they argue that for a uniform
The persistence probabilit,(t) = [ dt Py(t), clearly has initial condition, for which there are no free vorticext) is
the same asymptotic form. It differs from E@O) only by  determined by spin-wave theory to k&) ~t2[19]. On the
factors of order unity, as promised. It is easy to show that thether hand, for a random initial condition there are many free
corrections due to keeping tng term in Eq.(27) vanish for  vortices and antivortices present. The dominant coarsening
t—oo, while the correction associated with theterm in Eq.  mechanism in this case is vortex-antivortex annihilation, and
(26) represents a time-independent prefactor. This prefactothis leads tog(t) ~ (t/In t)/2,
exr[Aré”’/(l—o)D] can, of course, be very largand very
sensitive torg) for smallD.
It is important to note that while the asymptotic fof@p)
was derived in the limitD—O0, it actually holds as an Physical arguments fog(t)~ (t/Int)*? have been given
asymptotic result for alD, sinceD is an irrelevant variable previously for the coarsening dynamicsTat 0 from a ran-

B. Vortex-antivortex annihilation

and scales to zero ds- . dom initial condition[20,21]. The basic ide§20] is to con-
sider a single vortex-antivortex pair, and to derive expres-
IV. VORTEX-ANTIVORTEX ANNIHILATION sions for the energyE(r) of the pair, and hence the force,
IN THE 2D XY MODEL F(r)=—dE,/dr, between them, as a function of their sepa-

rationr. The result isE,~In(r/a) (wherea, the vortex core
scale, is a microscopic lengthand hence=~ —1/r. Cru-
As a final application of these methods, we consider vor<ially it is found [20] that the vortex mobilityw, which re-
tex dynamics in the two-dimensionéD) XY model, which lates the forcd~, to the velocityv, viav=uF, also depends
was in fact the motivation for the present study. At all tem-logarithmically on the pair separatiop.~1/In(r/a). At T
peraturesT<Tyy, where Tt is the Kosterlitz-Thouless =0, therefore, the variable obeys the deterministic equa-
(KT) transition temperature, a system prepared in a noneqution
librium initial state will approach the equilibrium state
through a coarsening mechanism in which local equilibrium
is established over a length scadét) which grows with

A. Nonequilibrium critical dynamics

r
a

dr 1
=—= (31)

In — =
dt r’
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up to an overall constant which can be absorbed into thevhere the notatiory, indicates the residual dependenceyof

timescale. Integrating this equation gives the annihilatioronv at noninfinitesimal velocities. Inserting the equilibrium

time for a pair initially separated by a distanecg>a, vortex configuration, which is isotropic, gives the limiting

namelyt~r§|n(r0/a), which one can invert to obtain,  zero-velocity friction constanty,=E,/psl'= (7/1")In(L/a),

~[t/In(t/a®)]*2. This already suggests that, in a many vortexi.€., o, like the vortex energ¥, , diverges logarithmically

situation, lengths and time are related &) ~ (t/In t)*2, with the system sizel.. For a vortex-antivortex pair, this
This result can be motivated in another way using scalingranslates into a logarithmic dependence on the separation

arguments. If the characteristic scale in a many-vortex sys-20],

tem is &, the typical force on a vortex scales as,1lthe

typical mobility as 1/Inf{/a) and the typical velocity as T

dé/dt. This gives Ing/a)dé/dt~1/¢, i.e., é~(t/Int)*2 as be- 7(”2(F In

fore. We now discuss the influence of thermal fluctuations on

the annihilation of a single vortex-antivortex pair at Nonzero  ne effect of thermal fluctuations, neglected up to now, is

r

a

. (35

temperatures. twofold. First, as in the equilibrium theory, thermally acti-
vated bound vortex-antivortex pairs lead to a renormalization
C. Vortex-antivortex annihilation at T>0 of the spin-wave stiffnesg, and kinetic coefficient]’, to

As a first step, we present a detailed and quantitativd®mperature-dependent functiong(T) and I'(T), that de-

treatment of thef=0 arguments employed in the previous scribe the large length-scale properties of the system. In

subsection. It is convenient to adopt a continuum approacfadilibrium, however, there are ricee vortices at any tem-
based on the nonlinear model Hamiltonian perature below the KT transition temperatuiiger. This
means that the large-scale properties are described by the

R spin-wave theory. In this theory all vortices are neglected
H="23] d2r (v )2 (32) . - -
2 ¢, and the angle representatiom(r)=[cosd(r),siné(r)] is
employed, with the angle®(r) defined on the interval

hered is the two-component order-parameter field, sub'ecf_oo'w)' The effective Hamiltonian for the long-wavelength
whereg | W P b I ] degrees of freedom i$=[p<(T)/2]fd?r(V6)?, and the

. "2_ . . .
to a local constraing“=1, andps is the spin-wave stiffness. equation of motion is a6/dt=—T(T)(H/56)+ &(r.t)

FOI a field configura:cion describing a single free vortex, =T (T)ps(T)V26+&, where &(r,t) is a Gaussian white

=r/|r|, one has V$)?>=1/r?, leading to an energfE,  noise with correlator given by the fluctuation-dissipation

=(ps/2)f(d?r/r?)=mpsIn(L/a), whereL anda are the sys- theorem(&(r,t)&(r’,t"))=2I(T)kgTS(r—r’)8(t—t').

tem size and microscopic cutoff, respectively. A vortex- Since the equation of motion is linear, it can be solved

antivortex pair, separated by distancescreen each other’'s exactly. The dynamic exponent is=2 (for all T<Tg7).

far fields at scales larger tham leading to a pair energy Nonequilibrium properties can also be evaluated exactly in

E,(r)=2mpsin(r/a), and an attractive forcé =—dE,/dr  the absence of free vortic¢$9]. For nonequilibrium situa-

=—2mps/r between the vortex and the antivortex. tions where free vortices and antivortices are present, e.g.,
The corresponding continuum description of the nonconafter a quench into the KT phase from a disordefieidh-

served(model A) dynamics is given, ai =0, by the Lange- temperaturginitial condition, one can argue as follows. In

vin equation[18] the late stages of coarsening, when the remaining free vorti-
ces and antivortices are widely separated, with a typical
ad SH spacing&(t), the spin-wave theory can be used on scales
e ? (33 much larger than the microscopic scaéut smaller than
¢ &(t). For example, the calculation of the dynamics of a

. ) . ) single, widely separated vortex-antivortex pair would pro-
'I_'hls equation can be us¢a0] to compute the eff_e_ct|ve fric- ceed as af =0, but using the temperature-dependent func-
tion constanty(r) =1/u(r), whereu is the mobility, asso- o p(T) and T'(T) that incorporate the effect of thermal
ciated with the motion of the vortex and antivortex under theqyctuations on smaller length scaléStrictly one should use
force F . An isolated vortex moving at speadin the X 5 scale-dependent spin-wave stiffness and kinetic coefficient,
direction has field configurationp(x,y,t)=¢,(Xx—vt,y).  evaluated at scalé(t), but we are interested in the limit

Energy is dissipated at a rate £(t)— where these functions can be replaced by their
infinite-scale limits,p4(T) andI'(T).]
dE , [ oH ad In this approach the only modification of tHe=0 results
a:f dr 5—(2 ot would be the replacement of andI’, in the expression for

the annihilation time of a vortex-antivortex pair, by their
1 0 2 T-dependent generalizations, as follows. Lgandr, be the
=— —f d?r ( —) positions of the vortex and antivortex, angr,—r, be their

I at relative separation. The equations of motionifpandr,, at
B v2 " (M;U)Z T=0, read
r ' X

dr1_27TpSA
=— 5,02 (34) g =
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drp 27psn 1
YO =" (36) gz\/—_y, (42)
where y(r)=(=/T")In(r/a) is the vortex mobility. Subtract- 1
ing these gives the equation for the relative separation A=— ;VU =—g?Vu. (42
dr A7pga ; . i i
y(r)a: - St (37) The corresponding Fokker-Planck equation is
P )
Notice that the force-4mp</r corresponds to an effective Gt~V [-AP+2DgV(gP)]. (43
potential V= 2V(r), whereV(r) =2mpsIn(r/a) is the en-
ergy of a vortex-antivortex pair. Noting that A(r) is in the radial direction, i.e.A(r)
How do we generalize this equation T6>0? There are = —g?(r)(4,U)r, this equation can be reduced to a one-

two distinct effects. First as we have discussed, thermallgimensional equation for the angle-averaged radial distribu-
induced bound vortex-antivortex pairs renormalize the largetion function, Q(r,t)=r%"1fdQP(r,Q,t), just as in Sec.
scale spin-wave stiffness and kinetic coefficient toj| A:

temperature-dependent functiomg T) andI'(T), with non-

zero valuespg(Tyt) andI'(Tkt) at the transition, i.e., the 3Q=0,[9%(3, W)Q+2Dgd,(gQ)], (44)
spin-wave theory describes the large-distance, large-time be-

havior at and belowl 7. Above Ty, the spin-wave theory Where

breaks down due to the thermal nucleation of free vortices

and antivortices.

If the renormalization ops andI” were the only effects of
thermal fluctuations, we would conclude immediately that
deterministic annihilation of a single vortex-antivortex pair
would occur, as aff=0, on a time scale~r3In(ry/a), dr dw
wherer is the initial separation. A second consequence of q —gz(r)WJrg(r) &), (46)
thermal noise, however, is diffusion of the vortex and anti-
vortex. This means we have to add Langevin noise terms tQ ., (£(t)&(t"))=4D 8(t—t'), which in turn can be written
Eq. (36). We anticipate that the strength of the noise will be ;¢ 5 Langevin equation withdditivenoise, via the change of

proportional to y(r) on account of the fluctuation- variabledy=dr/g(r):
dissipation theoren(Einstein relation Therefore we write a

W(r)=U(r)—2D(d—=1)Inr. (45)

Equation (44) can be recast as the one-dimensional
Langevin equation

stochastic version of Eq37) in the form dy dw
qi- gy e (47)
y
dr

V(1) g =~ VUV &L, (38) We can now determine the potentibl(r) that corre-
sponds to a “physical” potentiaV/(r). Since the effective
where potential for the dynamics of is W(y), the stationary dis-
tribution fory is Py (y)<exd —W(y)/2D ], implying that the
(&(DE(t))=4Ds;8(t—t), (39)  radial distribution functionQ(r)="P,(y)(dy/dr), is given

by Q(r)=[g(r)] *exd —W(r)/2D] which, using Eq.(45),

andU(r) is a central potential which, it turns out, will differ implies 9_({)“_“’7_1 exp{—[U(r)—2DIng(r))/2D}. The pref-
by terms of orderD from the effective potentiaMu(r) ~ &ctor r® = is just the phase-space factor for the
=4mpsInr suggested by Eq37). We will determineU(r) d-dimensional space: the required stationary distribution
from the condition that the stationary distributi@(r) de- functlond_f?r motion in a potentiaVeu(r) [=2V(r)] is
rived from Eq.(38) satisfiesQ(r)=2mr exd —Ver(r)/2D].  Q(r)=r® ~exg—Veu(r)/2D]. Equating these two results
The strength of the noise in E8) is 4D, rather than the for Q(r), and usingVe(r)=2V(r), where V(r) is the
usual D (whereD=KkgT), since the noise acting on is vortex-antivortex potential energy, determirigér):
the sum of independent noises of strength acting onr
andry. P g g onfy U(r)=2V(r)+2D Ing(r). 48)

The noise term in Eq(38) is multiplicative noise in the T

Stratonovich sense. To determine the stationary distribution, he final equation foy(t) becomes

and hence infer the form df(r), we first write Eq.(38) in dy dv 2D dg 2(d—1)D\dr

the canonical form dat =| - Za - ? ar + - a/ +£&(1). (49
dr The final step is to apply thisather generalresult to the 2D
—= +
dt AN +g(D &L, 40 XY model. Insertingy(r)= vy, In(r/a) and V(r)=a In(r/a),

where yo=/T" and a=2mpg, in EQ. (49), using dr/dy
where =g(r)=1/Jy(r), and settingd=2, gives



110 A. J. BRAY PRE 62

scales and time scales deduced earlier from zero-temperature
+ &(1). (50 considerations, and that the coarsening growth |&¢)
~(t/Int)*2, holds for allT<Tyr.
To end this section we briefly discuss the equilibration of
e vortex density. We have arguéske alsd 20]) that for
the usual “downquench,” into the KT phase from the para-
1dg 1diny 1 1 magnetic phase, the typical vortex separation increases as
“gdr-2 dr " 2rh(ia) << £(t)~ (t/Int)*?, as free vortices and antivortices annihilate.
So the density,py, of free vortices decreases gs,

for r—oe. This means that this term can be dropped in the™ 1/£(t)*~(In9)/t, a result confirmed numerically by Yurke
calculation of the large-distance behavior of the system. Furét & [20]. What about the corresponding upquench, from

; ; ; ; T=0 to another temperature in the KT phase? In this case no
thermore, integrating the relatiody/dr=+/y(r) gives, to ) p o P .
leading order for larger, y=ry(r)=ryoIn(r/a), with free vortices appear, t_)ut one can st|II.d|sc_[@2] .the time
corrections which are again of relative order Ila). To scale frc])r the equilibration oLbouEd pairs with given sepi':\ra—
. : o tion. These pairs are created at the core saalgZimensiona
leading order, therefore, Eq50) reduces to(inserting « analysis of Eq(51) suggests—y?~r2In(r/a) as the relevant

dy 2 (D—a D dg
dt Jy(r)

r g dr
Consider now the size of the second term in the Iargf—}:h
bracket. Using Eq(41) gives

=27ps) timescale for pairs at scafe As far as the vortices are con-
dy 2D—4mps qerned, therefore, both types of quench involve similqr rela}—
G- v Té, (51)  tions between time scales and length scales. The main point
y is that bound pairs do not change qualitatively the large-
with (£(t)£(t'))=4D 8(t—t"). distance form of spin-correlation functions, whereas free vor-

Apart from a doubling of the noise strengi,— 2D, as- tices _do. The rglaxation of any quantity _expressible in terms
sociated with the fact that we are dealing here with a twof Spin correlations only, such as the Binder paramétee
body problem, the resulB1) is identical to Eq.(6) derived the following sectioh, will therefore be different for down-
in Sec. Il A for a particle moving in a logarithmic potential, quénches and upquenches.
except that the coordinate corresponds ta +/yqIn(r/a) in
the present context as a result of the scale-dependent mobil- D. Comparison with simulation data

ity. Vortex-antivortex annihilation can be qleemed to have Recent simulation daid 7] support the conclusions of the
occurred whem=a, the vortex core size, which corresponds gpove analysis. Since the method and results have already
to y=0, so our previous results on persistence in a logarithheen presented in a short pagé7], we will just briefly

mic potential can be applied directly to the persistence probrecall the salient features here. The nearest-neighbor lattice
lem for a vortex-antivortex pair. In particular the parameteryamiltonianH = — 3}y cos@—6;) was simulated on square

b, which controls the first-passage time distributi®h(t),  |attices of sizeL X L, for 12<L <48. Both uniform(all spins

and persistence probability?o(t), according to Eqs(14)  paralle) and disorderedrandomly orientated spinsnitial

and (15), respectively, is obtained by settily=4mps, d  conditions were employed. In both cases, the “time-

=2 andD—2D =2kgT in Eg. (5) to give dependent Binder cumulan{23,24
_ 27TpS(T) B M(t)Z 2
T TkeT 2 g(L,t)=2- EEM(T;Z (54

The ratio pg(T)/kgT is a decreasing function of, and .

approaches the universal limit2for T—Ty+. Itis related where M(t) is the total magnetization at time was mea-
to the exponenty(T)=kgT/2mpg(T), i.e.,b=(1—7n)/5. It  sured, and a finite-size scalingy(L,t)="f[&(t)/L], at-
follows thatb is a decreasing function of, diverging to  tempted, where&(t) is a characteristic length scale at titne
infinity for T—0, and approaching the limiting value 3 for  In [17], all simulations were at the KT temperatufe
T—Tkt, wheren=1/4. Recall that the persistence exponent=0.90[25]. In earlier work, Lucet al.[26] have additionally

is #=(1+Db)/2, so 6 varies continuously betweef(0)=oo studied some lower temperature within the KT phase. For
and 6(Tkt)=2, where the infinite limiting value aT=0 uniform initial conditions, a good scaling collapse was ob-
simply reflects the deterministic collapse in the absence ofained using a characteristic length sc&(é) ~t*, with an
thermal noise. The persistence exponent for vortexexponent that tends to Afrom slightly smaller valuesfor
antivortex annihilation is therefore nonuniversal, dependindarge L in accordance with the predictions of spin-wave

continuously onT: theory. This is entirely reasonable since the uniform initial
conditions contain no free vortices and subsequent thermal

- mps(T) 1 53 fluctuations can only produce bound vortex-antivortex pairs.

kgT 2n(T)’ For disordered initial conditions, a naive collapse using

£(t)~t# gives unreasonably large valuesafin the range
for T<Tys. From Eq.(14) we see that the mean annihilation 2.3-2.4,[26,17, for all temperatures studied. Disordered
time is finite for allT<Tyy (sinceb=3), and the character- initial conditions seed the system with free vortices and an-
istic annihilation time scales a3vy3~rﬁln(r0/a) wherery  tivortices, so the analysis presented above suggests that a
is the initial separation. We conclude that thermal fluctuacharacteristic length scalf{t)~ (t/Int)*? is appropriate for
tions do not change the fundamental relation between lengtthis case. This form indeed yields an excellent data collapse.
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Lo is a short distance cutoff expectéand found to be of

order unity. The scaling collapse is excellent. For large

enoughL andt, this method of plotting the data and the

; ] previous method, using/[L?In(t/ty)] as scaling variable,
will be indistinguishable. For finite times and sizes, however,
a they differ slightly, and the new method gives an improved
5 v12 collapse.
g © 16
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E. Discussion

0.4
© 32 The fact thaté(t) depends on the initial conditions is

- 48 | surprising from the viewpoint of conventional nonequilib-
. rium critical dynamics[12], according to which(t)~t2,
where z is the dynamical exponent for equilibrium critical
dynamics. An equivalent statement in the context of finite-
o : 1 15 > size dynamical scaling is that the relaxation time grows with
t[L> In(L/L)] L as7(L)~L? independent of initial conditions. While this
seems to be true for most phase transiti@g., the 2D Ising
FIG. 1. Scaling plot for the time-dependent Binder parametermodel[27]) we have argued that it does not hold for spin
starting from a disordered initial condition, for system sizes correlations in the 2DXY model, at and belowl+, for
=12,16,24,32,48, andy=1.4 disordered initial conditions. We conjecture that the break-
down of the standard field-theoretic meth¢ig] in this case
. . . is due to the key role played by vortex configurations which,
In practice, the formg(t) =[t/In(Utg)[** is used, withto & gye to their nor?—pertu?bgtive c%aracter, aregnot accessible to
fitting parameter whose value is of order uriity]. perturbative methods based on a & expansion. The latter
The data can, however, be presented in another way. Thg,o\ves perturbing around a Gaussian theory, which cannot
Iog!c of finite-size dynamlcal scaling reqwres.that the scallngSupport topological defects. It would be interesting to inves-
variable can be written asir(L), wherer(L) is the relax-  tjgate whether similar results are obtained in other defect-
ation time of the finite-size system. For uniform initial con- yriven phase transitions.
ditions the spin-wave theory, which determines the relax-

0.2
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