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Random walks in logarithmic and power-law potentials, nonuniversal persistence,
and vortex dynamics in the two-dimensionalXY model

A. J. Bray
Department of Physics and Astronomy, The University, Manchester M13 9PL, United Kingdom

~Received 8 October 1999!

The Langevin equation for a particle~‘‘random walker’’! moving ind-dimensional space under an attractive
central force and driven by a Gaussian white noise is considered for the case of a power-law force,F(r )
;2r 2s. The ‘‘persistence probability,’’P0(t), that the particle has not visited the origin up to timet is
calculated for a number of cases. Fors.1, the force is asymptotically irrelevant~with respect to the noise!,
and the asymptotics ofP0(t) are those of a free random walker. Fors,1, the noise is~dangerously! irrelevant
and the asymptotics ofP0(t) can be extracted from a weak noise limit within a path-integral formalism
employing the Onsager-Machlup functional. The cases51, corresponding to a logarithmic potential, is most
interesting because the noise is exactly marginal. In this case,P0(t) decays as a power law,P0(t);t2u with
an exponentu that depends continuously on the ratio of the strength of the potential to the strength of the noise.
This case, withd52, is relevant to the annihilation dynamics of a vortex-antivortex pair in the two-
dimensionalXY model. Although the noise is multiplicative in the latter case, the relevant Langevin equation
can be transformed to the standard form discussed in the first part of the paper. The mean annihilation time for
a pair initially separated byr is given byt(r );r 2 ln(r/a) wherea is a microscopic cutoff~the vortex core size!.
Implications for the nonequilibrium critical dynamics of the system are discussed and compared to numerical
simulation results.

PACS number~s!: 05.40.Fb, 05.40.Jc, 05.70.Ln
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I. INTRODUCTION

This paper deals with two seemingly distinct topics: p
sistence and nonequilibrium critical dynamics. We show t
they are related in the context of the nonequilibrium critic
dynamics of the two-dimensional~2D! XY model with non-
conserved order parameter. The link is established thro
the study of ad-dimensional random walker moving in
logarithmic potential.

Persistence phenomena are related to first-passage
lems for stochastic processes. Consider a stochastic pro
x(t). The ‘‘persistence probability,’’P0(t), is the probability
thatx(t) has not crossed some given level,xc ~often taken to
be zero!, up to timet. The probability distribution,P1(t), of
the first-passage time@i.e., the first timet for which x(t)
5xc# is P152dP0 /dt. A familiar example is the 1D ran
dom walk, with Langevin equationdx/dt5j(t), wherej(t)
is a Gaussian white noise. For initial conditionx(0)5x0, the
probability that the walker has not crossed the originx
50) up to time t decays asP0(t);x0 /t1/2 for t@x0

2. The
power entering this algebraic decay has been termed
‘‘persistence exponent,’’u, i.e., u51/2 for the 1D random
walk.

Persistence phenomena have been widely studied in
cent years@1–11#. Theoretical and computational studies i
clude spin systems in one@2# and higher@3# dimensions,
diffusion fields@4#, fluctuating interfaces@5#, phase-ordering
dynamics @6#, and reaction-diffusion systems@7#. Experi-
mental studies include the coarsening dynamics of bre
figures@8#, soap froths@9#, and twisted nematic liquid crys
tals @10#. Persistence in nonequilibrium critical phenome
has been studied in the context of the global order param
M (t), ~e.g., the total magnetization of a ferromagnet!, re-
garded as a stochastic process@11#, but in the present work
PRE 621063-651X/2000/62~1!/103~10!/$15.00
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we will address a different, and more fundamental, aspec
nonequilibrium critical dynamics.

If a system at its critical temperature evolves from a no
equilibrium initial state, critical correlations develop over
length scale,j(t), which increases with time. According t
the standard theory@12#, j;t1/z for large t, wherez is the
critical exponent forequilibrium critical dynamics. This re-
sult, which is in accord with simple dynamical scaling, h
been demonstrated within a field-theoretic framework@12#.
This approach also shows that the resultj(t);t1/z is inde-
pendent of the initial conditions.

In the present work we challenge this picture for the s
cific case of the 2DXY model with nonconserved order pa
rameter, and show thatj(t);t1/2 if there are no free vortices
present in the initial state, whilej(t);(t/ ln t)1/2 if free vor-
tices are present. Physically, these two cases correspon
ordered initial states~e.g., the equilibrium state atT50), and
disordered initial states~e.g., the equilibrium state atT
5`), respectively. Furthermore, since the 2DXY model is
described, through the Kosterlitz-Thouless~KT! theory@13#,
by a critical line,T<TKT , rather than a single critical point
the above dependence on initial conditions will pers
throughout the KT phase.

The connection with persistence arises as follows. For
initial condition containing free vortices and antivortice
vortex-antivortex annihilation is the slowest relaxation pr
cess. Much can be learned by studying the annihilation o
single, initially widely separated, vortex-antivortex pair. Th
probability that they have not annihilated up to timet defines
a persistence problem. By a series of transformations,
can be mapped onto a random walk in a logarithmic pot
tial. Analysis of this problem shows that the persistence
ponentu is a continuous function of the ratio of the streng
of the potential to the strength of the thermal noise, i.e.,u is
103 ©2000 The American Physical Society
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nonuniversal. In the context of the vortex problem, we fin
u5prs(T)/kBT, wherers(T) is the large-scale spin-wav
stiffness at temperatureT. Since the ratiors /kBT takes the
universal value 2/p at TKT , we obtainu(TKT)52, while
u(T)→` asT→0.

Although the vortex problem in two dimensions was t
initial motivation for the present study, for pedagogical re
sons we will begin~Sec. II! by discussing thed-dimensional
random walk in a logarithmic potential, and deriving the p
sistence properties. We show that the exponentu depends
continuously on the ratio of the strength of the potential
the strength of the noise@14#, i.e., the logarithmic potential is
marginal in the renormalization-group sense. In Sec. III w
consider the case of a general attractive power-law fo
F(r )5(2A/r s) r̂ , where the logarithmic potential corre
sponds tos51. We show that fors.1 the force is irrel-
evant~relative to the noise! as far as asymptotic persisten
properties are concerned, so the results of the free ran
walk still hold. Fors,1, by contrast, the force is relevan
and the noise becomes irrelevant. For zero noise, howe
the dynamics are deterministic, so the persistence asym
ics are governed by rare fluctuations of the noise. In t
sense, the noise isdangerouslyirrelevant. The asymptotic
persistence follows from an optimal path~or steepest de
scent! approach formally valid in the weak noise lim
@15,16#. The result is the ‘‘stretched-exponential’’ deca
P0(t);exp@2const3t (12s)/(11s)#.

Section IV deals with the application of the previous r
sults to the problem of vortex-antivortex annihilation in t
KT phase of the 2DXY model. The potential energy of
free vortex-antivortex pair is logarithmic in their separatio
so this is the marginal case with a nonuniversalu. An addi-
tional complication is that the effective vortex mobility
scale~i.e., separation! dependent, implying, via the Einstei
relation between mobility and diffusion constant, that t
noise strength is also scale dependent or, equivalently,
the noise is multiplicative. However, this system can
transformed to an additive noise problem identical to t
discussed in Sec. II. Although the persistence exponen
nonuniversal, the dependence of the typical annihilation t
on the initial separationr has the universal formt
;r 2 ln(r/a), wherea is a ~nonuniversal! short-distance cut-
off, for all T<TKT . Standard scaling arguments then sugg
that, for an initial condition containing many free vortice
and antivortices, the characteristic length scale describing
approach to equilibrium will grow asj(t);(t/ ln t)1/2

throughout the KT phase.

II. RANDOM WALKER IN A LOGARITHMIC POTENTIAL

The Langevin equation for an isotropic, continuous-tim
random walker moving ind dimensions in the central poten
tial V(r )5A ln r is

dr

dt
52

A

r
r̂1j~ t !, ~1!

where the Gaussian white noise has the correlation func
( i , j 51, . . . ,d)

^j i~ t !j j~ t8!&52Dd i j d~ t2t8!. ~2!
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A. Reduction to a one-dimensional problem

The analysis starts from the equivalent Fokker-Plan
equation for the probability distribution,P(r ,t), for the po-
sition of the particle at timet:

]P

]t
5“•S A

r
r̂1D“PD . ~3!

This equation can be reduced to an effectively on
dimensional equation in terms of the radial coordinater by
integrating over the angle variables. Writingr5(r ,V), and
defining the radial probability distribution Q(r ,t)
5r d21*dVP(r ,V,t), gives

]Q

]t
5D] r S b

r
Q1] rQD , ~4!

where] r[]/]r and

b5
A

D
112d. ~5!

This is equivalent to the radial Langevin equation

dr

dt
52

A

r
1

~d21!D

r
1j~ t !, ~6!

where^j(t)j(t8)&52Dd(t2t8), i.e., projecting Eq.~1! onto
the radial direction leads to an additional repulsive forced
21)D/r , proportional to the noise strength. This means@see
Eq. ~5!# that a particle moving in a logarithmic potential i
space dimensiond has the same radial distribution functio
as a free particle~random walker! moving in dimensiond8
5d2A/D ~which need not be an integer, or even positiv!.

B. The persistence probability

In this subsection we derive an exact expression for
persistence probabilityP0(t). First we make the change o
variableQ5r (12b)/2R in Eq. ~4!. Then the equation govern
ing the relaxation modesR(r ,t)5Rk(r )exp(2Dk2t) becomes

d2Rk

dr2
1

1

r

dRk

dr
1S k22

n2

r 2 D Rk50, ~7!

where

n5~11b!/2. ~8!

The solutions are the Bessel functionsJn(kr) andJ2n(kr),
so the general solution is

Q~r ,t !5r (12b)/2E
0

`

dk@a~k!Jn~kr !1b~k!J2n~kr !#

3exp~2Dk2t !. ~9!

The desired solution has to satisfy the initial conditi
Q(r ,0)5d(r 2r 0). To determineP0(t) we impose an ab-
sorbing boundary atr 50, such that the particle is removed
it reaches the origin. To determine the appropriate solut
we note from Eq.~4! that the probability current is
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PRE 62 105RANDOM WALKS IN LOGARITHMIC AND POWER-LAW . . .
j ~r !52D~] rQ1bQ/r !. ~10!

Consider separately the two terms in the general solution~9!.
The term involvingJn behaves asr for r→0, while the term
in J2n behaves asr 2b. Both terms have corrections whic
multiply the leading terms by power series inr 2. Inserting
both forms into Eq.~10! shows that the first term gives
finite ~and negative! current atr 50, so that for this solution
the origin is an absorbing point, or current sink. The seco
term, on the other hand, gives zero current and the origi
a not a special point: This solution therefore gives the sph
cally averaged Greens function for diffusion ind8512b
dimensions.

Using the orthogonality properties of Bessel functions
determine the functionsa(k) andb(k) in each case, we find
that the Greens function is given by

QG~r ,t !5r 0S r

r 0
D (12b)/2E

0

`

dk kJ2n~kr0!J2n~kr !

3exp~2Dk2t !

5
r 0

2Dt S r

r 0
D (12b)/2

expS 2
r 21r 0

2

4Dt D I 2nS rr 0

2Dt D ,

~11!

where I n(z) is the modified Bessel function, while the re
evant solution for an absorbing point at the origin is

Qabs~r ,t !5r 0S r

r 0
D (12b)/2E

0

`

dk kJn~kr0!Jn~kr !

3exp~2Dk2t !

5
r 0

2Dt S r

r 0
D (12b)/2

expS 2
r 21r 0

2

4Dt D I nS rr 0

2Dt D .

~12!

At this point a comment on the possible values ofb is
needed. The leading term inQG for r→0 is O(r 2b), and this
gives rise to zero current atr 50 as discussed above. Th
next-to-leading term, however, isO(r 22b) leading to a cur-
rent of orderr 12b. This vanishes asr→0 only for b,1.
Thus the Greens function is ill defined forb>1: The non-
zero current atr 50 in this regime means the radial probab
ity distributionQG(r ,t) collapses onto the origin. In terms o
the dimensiond8 of a free random walk we haveb512d8,
so the requirementb,1 meansd8.0, which makes physi-
cal sense. A physically reasonable Greens function can
restored for the cased.0, A>dD, whereb>1, by regulat-
ing the r 50 singularity of the force,F(r )52A/r . For ex-
ample, if F52A/(r 1e) we expect the Greens function t
have a width which vanishes withe.

We turn now to the more interesting case, for pres
purposes, of the distributionQabs(r ,t), appropriate to an ab
sorbing point atr 50. Equation~12! gives Qabs;r for r
→0, so the current~10! at the origin is j (0)52D(1
1b)(Qabs/r ) r 50. This requiresb.21, since j (0),0 for
an absorbing boundary, andQ is necessarily non-negative. I
terms of the equivalent free random walk with dimensiond8,
d
is
i-

be

t

the conditionb.21 requiresd8,2, i.e., the probability to
reachr 50 for a random walk ind8>2 dimensions is zero.

For b.21, the persistence probability,P0(t), can be
readily calculated from Eq.~12! by first computing the cur-
rent ~10! at r 50. This current gives the rate of change of t
persistence,

j ~0!5
dP0

dt
52P1~ t !, ~13!

where P1(t) is the probability distribution for the time a
which the particle first reaches the origin~first passage time!.
Using Eqs.~10! and ~12! gives the final result:

P1~ t !5
1

G@~11b!/2#

4D

r 0
2 S r 0

2

4Dt D
(31b)/2

expS 2
r 0

2

4Dt D .

~14!

The persistence probability isP0(t)5* t
`ds P1(s). Using the

large-t behavior of Eq.~14! gives

P0~ t !→ 1

G@~31b!/2#
S r 0

2

4Dt D
(11b)/2

~15!

for t→`. Thus the ‘‘persistence exponent,’’u, is given by

u5~11b!/2, ~16!

and is nonuniversal. For the free random walk in dimens
d8, this translates tou5(22d8)/2.

The nonuniversality ofu with respect to the strength,A,
of the potential is special to the case of a logarithmic pot
tial, for which the Langevin equation~1! is invariant under
the rescalingsr→ar , t→a2t of space and time. This mean
that the potential is amarginal perturbation with respect to
the equation withA50, and it is this marginality which is
responsible for the continuous variation ofu with A ~actu-
ally, with the ratioA/D) through its dependence onb, which
we recall is defined by Eq.~5!. The conditionb.21 for the
particle to visit the origin with probability one is equivalen
to A.(d22)D. Note that ford51 this even allows a~suf-
ficiently weak! repulsive potential, whereas ford>2 a guar-
anteed visit to the origin requires a sufficiently strong attr
tive potential.

In the following section we discuss the case of a gene
power-law potential, corresponding to a forceF(r )
52A/r s. We show that the force is irrelevant fors.1, and
the asymptotic persistence probability is that of a free r
dom walker. Fors,1 the force is a relevant perturbation
the free random walker. In this case the noise term is ir
evant, but dangerously irrelevant as far as the calculation
P0(t) is concerned. We show that in this caseP0(t) decays
as a stretched exponential.

III. RANDOM WALKER IN A POWER-LAW POTENTIAL

After reducing the problem, as in the previous section,
an effectively one-dimensional problem for the distancer of
the particle from the origin, the radial Langevin equati
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reads

dr

dt
52

A

r s
1

~d21!D

r
1j~ t !. ~17!

A. Scaling analysis

Under the scale transformationsr→ar, t→azt, the
Langevin equation~17! retains the same form, but with po
tential strengthA and noise strengthD rescaled to

A85az212sA, ~18!

D85az22D. ~19!

For sÞ1 these equations have two nontrivial fixed points
~i! A.0, D50, with z511s, which is stable (D scales

to zero at large time! for s,1, and
~ii ! A50, D.0, with z52, which is stable fors.1. For

the special cases51, there is a line of fixed points withz
52 andA/D arbitrary. In this last case, as we have seen,
exponentu depends continuously onA/D.

At the second fixed point, withs.1, the force is irrel-
evant: it falls off too rapidly with distance to affect th
asymptotic large-time behavior. In particular, the exponenu
is given by the zero-force value,u5(22d)/2 (0,d,2).

At the first fixed point, withs,1, thenoiseis irrelevant.
If we set D to zero, the process~17! is deterministic: A
particle staring at r 0 reaches the origin in a timet
5r 0

11s/@(11s)A#. The limiting behavior ofP0(t) at larget
is, therefore, dominated by rare events: the noise is adan-
gerously irrelevant variable in this context, and we cann
simply set it to zero. Instead, we have to examine the limi
small but nonzeroD.

We can argue for the asymptotic form ofP0(t) as fol-
lows. A long survival time of the particle is a rare even
dominated by an activated process where the particle initi
movesaway from the origin. The potential corresponding t
the force2A/r s is V(r )5Ar12s/(12s). Suppose the par
ticle is driven ~by the noise! to a point r 1. The time for a
subsequent deterministic descent to the origin ist
5r 1

11s/@A(11s)#. The activation barrier for the ‘‘uphill’’
process isDV5@A/(12s)#(r 1

12s2r 0
12s), so the probabil-

ity to reach r 1 before the origin is of order exp(2@A/(1
2s)#r1

12s/D), where the term inr 0 in DV has been taken ou
and absorbed into a pre-exponential factor. Using the t
for the subsequent free descent to estimater 1, i.e., r 1
.@A(11s)t#1/(11s), gives

P0~ t !;expS 2
A

~12s!D
@A~11s!t# (12s)/(11s)D ,

~20!

a stretched-exponential form,P0(t);exp(2const3tb), with
b5(12s)/(11s). Note that the coefficient oftb does not
depend on the initial displacementr 0. The reason is that the
rare trajectories for which the particle survives a long tim
take the particle far from its original position.

Despite its crudeness, this argument gives the correc
sult up to a constant of order unity in the exponent. This
shown in the next subsection using a path-integral form
e

t
f

ly

e

e-
s
l-

ism, augmented by a steepest descent calculation valid
D→0. Finally, we note that the crucial facto
(At)(12s)/(11s)/D in the exponent of Eq.~20!, and in par-
ticular the value of the exponentb, can be deduced imme
diately from dimensional analysis once one recognizes
~i! the result must be independent ofr 0, and ~ii ! the factor
1/D is a necessary consequence of activated dynamics.

B. Path-integral formulation for sË1

We begin from the probability distribution functional fo
the noise historyj(t). Since the noise is Gaussian and whi
this functional is

P@j~ t !#5N expS 2
1

4DE dtj2~ t ! D , ~21!

whereN is a normalization constant. This can be transform
to a probability distribution functional forr (t) using the
Langevin equation~17!:

P@r ~ t !#5N J@r ~ t !#expS 2
1

D
S@r ~ t !# D , ~22!

whereJ@r # is the Jacobian of the transformation fromj(t) to
r (t), whose precise form will not concern us, andS@r # is the
Onsager-Machlup functional~or action!,

S@r #5
1

4E dtS dr

dt
1

A

r s
2~d21!

D

r D 2

. ~23!

It is convenient to computeP1(t), the probability density
for the first visit to the origin~recall thatP152dP0 /dt),
given that the particle starts fromr 0 at t50. This is given by
the path integral

P1~ t !;E dr~ t !J@r ~ t !#expS 2
1

D
S@r ~ t !# D , ~24!

where the time integral in Eq.~23! now runs from 0 tot ~and
we introduce a dummy time integration variables), and the
path integral is over all pathsr (s) which satisfyr (0)5r 0
and r (t)50. The use of; in Eq. ~24! means we are con
cerned only with the leading exponential terms and not w
the prefactors.

In the limit D→0, the path integral can be evaluated
steepest descents. To leading order the Jacobian,J@r (t)#, can
be replaced byJ@r c(t)#, wherer c(t) is the ‘‘classical’’ path
which minimizes the actionS@r #. The Jacobian therefore
contributes to the prefactor, and we will not consider it fu
ther. In a similar way, the term (d21)D/r in S is subdomi-
nant forD→0 and can be dropped to leading order.

As noted above, the dominant path~path of least action! is
the one which keepsj(t) as small as possible for as long a
possible. This is achieved by having the particle move i
tially away from the origin~‘‘uphill’’ !, where a smaller noise
force is needed to overcome the deterministic force driv
the particle towards the origin. The pathr c(t) therefore con-
sists of two parts: an uphill part to a maximum displacem
r 1, followed by a deterministic (j50) downhill part. Only
the uphill path has a nonzero action associated with it.
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The variational problem for the uphill path is simplifie
@16# by introducing the velocityv5dr/ds and parametrizing
the path byv(r ) instead ofr (s). The action then becomes

S@v#5
1

4Er 0

r 1dr

v S v1
A

r sD 2

. ~25!

The variational equationdS/dv50 becomes 12A2/(vr s)2

50, with solutionsv56A/r s. The minus sign correspond
to the deterministic downhill path, with zero action, the pl
sign to the uphill path. The action for the latter is

S5AE
r 0

r 1dr

r s
5

A

12s
~r 1

12s2r 0
12s!. ~26!

The times tu , td associated with the uphill and downhi
paths, respectively, are

tu5E
r 0

r 1dr

v
5

1

A~11s!
@r 1

11s2r 0
11s#, ~27!

td5
r 1

11s

A~11s!
. ~28!

The final step is to eliminater 1 in Eq. ~26! in favor of the
total time t5tu1td . For t→`, r 1→` and r 0!r 1 in Eq.
~27!. Dropping the terms inr 0 in Eqs. ~26! and ~27! gives
r 1.@A(11s)t/2#1/(11s) and

P1~ t !;exp~2S/D !

.expS 2
A

~12s!D FA~11s!

2
t G (12s)/(11s)D .

~29!

The persistence probability,P0(t)5* t
`dt P1(t), clearly has

the same asymptotic form. It differs from Eq.~20! only by
factors of order unity, as promised. It is easy to show that
corrections due to keeping ther 0 term in Eq.~27! vanish for
t→`, while the correction associated with ther 0 term in Eq.
~26! represents a time-independent prefactor. This prefac
exp@Ar0

12s/(12s)D# can, of course, be very large~and very
sensitive tor 0) for small D.

It is important to note that while the asymptotic form~29!
was derived in the limitD→0, it actually holds as an
asymptotic result for allD, sinceD is an irrelevant variable
and scales to zero ast→`.

IV. VORTEX-ANTIVORTEX ANNIHILATION
IN THE 2D XY MODEL

A. Nonequilibrium critical dynamics

As a final application of these methods, we consider v
tex dynamics in the two-dimensional~2D! XY model, which
was in fact the motivation for the present study. At all te
peraturesT<TKT , where TKT is the Kosterlitz-Thouless
~KT! transition temperature, a system prepared in a none
librium initial state will approach the equilibrium stat
through a coarsening mechanism in which local equilibri
is established over a length scalej(t) which grows with
e

r,

r-

-

i-

time. For example, the spin-spin correlation function h
according to the KT theory@13#, the equilibrium form
C(r );r 2h(T), for all T<TKT . Consider now a system pre
pared in a random initial state, with only short-range spa
correlations, and allowed to evolve in contact with a he
bath at temperatureT<TKT . According to the conventiona
theory of nonequilibrium critical phenomena@12#, the sys-
tem will approach equilibrium via a dynamical scaling sta
characterized by a growing length scalej(t). For example,
the scaling form for the spin-spin correlation function rea

C~r ,t !5
1

r h
f S r

j~ t ! D . ~30!

The scaling functionf (x) has the limiting behaviorf (0)
5const@so that equilibrium is recovered forj(t)→`#, while
f (x) falls off rapidly for x@1, representing the fact that th
spins are uncorrelated on length scales large compare
j(t).

The standard theory of nonequilibrium critical dynami
predicts that the length scalej(t) should grow asj(t);t1/z,
wherez is theequilibrium dynamical exponent. This shoul
hold independent of the initial conditions, though the scal
function f (x) in Eq. ~30! can depend on initial conditions. A
commonly considered case is uniform initial conditions~all
spins parallel!. For this case one requires thatf (x);xh for
x→`, since the long-range order present in the initial co
dition will persist at any finite time.

In a recent paper, however, Brayet al. @17# have argued,
on the basis of numerical simulations and physical ar
ments, that this picture breaks down for the 2DXY model
with nonconserved dynamics~model A of the Hohenberg-
Halperin@18# classification!. Specifically, the growth ofj(t)
will depend on whether the initial state contains free vortic
and antivortices. In particular, they argue that for a unifo
initial condition, for which there are no free vortices,j(t) is
determined by spin-wave theory to bej(t);t1/2 @19#. On the
other hand, for a random initial condition there are many f
vortices and antivortices present. The dominant coarsen
mechanism in this case is vortex-antivortex annihilation, a
this leads toj(t);(t/ ln t)1/2.

B. Vortex-antivortex annihilation

Physical arguments forj(t);(t/ ln t)1/2 have been given
previously for the coarsening dynamics atT50 from a ran-
dom initial condition@20,21#. The basic idea@20# is to con-
sider a single vortex-antivortex pair, and to derive expr
sions for the energy,Ep(r ) of the pair, and hence the force
F(r )52dEp /dr, between them, as a function of their sep
ration r. The result isEp; ln(r/a) ~wherea, the vortex core
scale, is a microscopic length!, and henceF;21/r . Cru-
cially it is found @20# that the vortex mobilitym, which re-
lates the forceF, to the velocityv, via v5mF, also depends
logarithmically on the pair separation:m;1/ln(r/a). At T
50, therefore, the variabler obeys the deterministic equa
tion

lnS r

aD dr

dt
52

1

r
, ~31!
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up to an overall constant which can be absorbed into
timescale. Integrating this equation gives the annihilat
time for a pair initially separated by a distancer 0@a,
namely t;r 0

2 ln(r0 /a), which one can invert to obtainr 0

;@ t/ ln(t/a2)#1/2. This already suggests that, in a many vort
situation, lengths and time are related byj(t);(t/ ln t)1/2.

This result can be motivated in another way using sca
arguments. If the characteristic scale in a many-vortex s
tem is j, the typical force on a vortex scales as 1/j, the
typical mobility as 1/ln(j/a) and the typical velocity as
dj/dt. This gives ln(j/a)dj/dt;1/j, i.e., j;(t/ ln t)1/2 as be-
fore. We now discuss the influence of thermal fluctuations
the annihilation of a single vortex-antivortex pair at nonze
temperatures.

C. Vortex-antivortex annihilation at TÌ0

As a first step, we present a detailed and quantita
treatment of theT50 arguments employed in the previou
subsection. It is convenient to adopt a continuum appro
based on the nonlinears model Hamiltonian

H5
rs

2 E d2r ~¹fW !2, ~32!

wherefW is the two-component order-parameter field, subj
to a local constraintfW 251, andrs is the spin-wave stiffness
For a field configuration describing a single free vortex,fW

5rW/urWu, one has (¹fW )251/r 2, leading to an energyEv
5(rs/2)*(d2r /r 2)5prs ln(L/a), whereL anda are the sys-
tem size and microscopic cutoff, respectively. A vorte
antivortex pair, separated by distancer, screen each other’
far fields at scales larger thanr, leading to a pair energy
Ep(r ).2prs ln(r/a), and an attractive forceF52dEp /dr
522prs /r between the vortex and the antivortex.

The corresponding continuum description of the nonc
served~model A! dynamics is given, atT50, by the Lange-
vin equation@18#

]fW

]t
52G

dH

dfW
. ~33!

This equation can be used@20# to compute the effective fric-
tion constantg(r )51/m(r ), wherem is the mobility, asso-
ciated with the motion of the vortex and antivortex under
force F . An isolated vortex moving at speedv in the x

direction has field configurationfW (x,y,t)5fW v(x2vt,y).
Energy is dissipated at a rate

dE

dt
5E d2r S dH

dfW
D •S ]fW

]t
D

52
1

GE d2r S ]fW

]t
D 2

52
v2

G E d2r S ]fW v

]x
D 2

52gvv2, ~34!
e
n

g
s-

n

e

h

t

-

-

e

where the notationgv indicates the residual dependence ofg
on v at noninfinitesimal velocities. Inserting the equilibriu
vortex configuration, which is isotropic, gives the limitin
zero-velocity friction constant:g05Ev /rsG5(p/G)ln(L/a),
i.e., g0, like the vortex energyEv , diverges logarithmically
with the system size,L. For a vortex-antivortex pair, this
translates into a logarithmic dependence on the separa
@20#,

g~r !.S p

G D lnS r

aD . ~35!

The effect of thermal fluctuations, neglected up to now
twofold. First, as in the equilibrium theory, thermally act
vated bound vortex-antivortex pairs lead to a renormalizat
of the spin-wave stiffness,rs , and kinetic coefficient,G, to
temperature-dependent functions,rs(T) and G(T), that de-
scribe the large length-scale properties of the system
equilibrium, however, there are nofree vortices at any tem-
perature below the KT transition temperature,TKT . This
means that the large-scale properties are described by
spin-wave theory. In this theory all vortices are neglec
and the angle representation,fW (r )5@cosu(r ),sinu(r )# is
employed, with the anglesu(r ) defined on the interva
(2`,`). The effective Hamiltonian for the long-waveleng
degrees of freedom isH5@rs(T)/2#*d2r (¹u)2, and the
equation of motion is ]u/dt52G(T)(dH/du)1j(r ,t)
5G(T)rs(T)¹2u1j, where j(r ,t) is a Gaussian white
noise with correlator given by the fluctuation-dissipati
theorem,̂ j(r ,t)j(r 8,t8)&52G(T)kBTd(r2r 8)d(t2t8).

Since the equation of motion is linear, it can be solv
exactly. The dynamic exponent isz52 ~for all T<TKT).
Nonequilibrium properties can also be evaluated exactly
the absence of free vortices@19#. For nonequilibrium situa-
tions where free vortices and antivortices are present, e
after a quench into the KT phase from a disordered~high-
temperature! initial condition, one can argue as follows. I
the late stages of coarsening, when the remaining free v
ces and antivortices are widely separated, with a typ
spacingj(t), the spin-wave theory can be used on sca
much larger than the microscopic scalea but smaller than
j(t). For example, the calculation of the dynamics of
single, widely separated vortex-antivortex pair would pr
ceed as atT50, but using the temperature-dependent fun
tion rs(T) and G(T) that incorporate the effect of therma
fluctuations on smaller length scales.@Strictly one should use
a scale-dependent spin-wave stiffness and kinetic coeffici
evaluated at scalej(t), but we are interested in the limi
j(t)→` where these functions can be replaced by th
infinite-scale limits,rs(T) andG(T).#

In this approach the only modification of theT50 results
would be the replacement ofrs andG, in the expression for
the annihilation time of a vortex-antivortex pair, by the
T-dependent generalizations, as follows. Letr1 andr2 be the
positions of the vortex and antivortex, andr5r22r1 be their
relative separation. The equations of motion forr1 andr2, at
T50, read

g~r !
dr1

dt
5

2prs

r
r̂ ,
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g~r !
dr2

dt
52

2prs

r
r̂ , ~36!

whereg(r ).(p/G)ln(r/a) is the vortex mobility. Subtract-
ing these gives the equation for the relative separationr :

g~r !
dr

dt
52

4prs

r
r̂ . ~37!

Notice that the force24prs /r corresponds to an effectiv
potentialVeff52V(r ), whereV(r )52prs ln(r/a) is the en-
ergy of a vortex-antivortex pair.

How do we generalize this equation toT.0? There are
two distinct effects. First as we have discussed, therm
induced bound vortex-antivortex pairs renormalize the lar
scale spin-wave stiffness and kinetic coefficient
temperature-dependent functionsrs(T) andG(T), with non-
zero valuesrs(TKT) and G(TKT) at the transition, i.e., the
spin-wave theory describes the large-distance, large-time
havior at and belowTKT . AboveTKT , the spin-wave theory
breaks down due to the thermal nucleation of free vorti
and antivortices.

If the renormalization ofrs andG were the only effects of
thermal fluctuations, we would conclude immediately th
deterministic annihilation of a single vortex-antivortex pa
would occur, as atT50, on a time scalet;r 0

2 ln(r0 /a),
wherer 0 is the initial separation. A second consequence
thermal noise, however, is diffusion of the vortex and an
vortex. This means we have to add Langevin noise term
Eq. ~36!. We anticipate that the strength of the noise will
proportional to Ag(r ) on account of the fluctuation
dissipation theorem~Einstein relation!. Therefore we write a
stochastic version of Eq.~37! in the form

g~r !
dr

dt
52“U1Ag~r !j~ t !, ~38!

where

^j i~ t !j j~ t8!&54Dd i j d~ t2t8!, ~39!

andU(r ) is a central potential which, it turns out, will diffe
by terms of orderD from the effective potentialVeff(r )
54prs ln r suggested by Eq.~37!. We will determineU(r )
from the condition that the stationary distributionQ(r ) de-
rived from Eq. ~38! satisfiesQ(r )}2pr exp@2Veff(r )/2D#.
The strength of the noise in Eq.~38! is 4D, rather than the
usual 2D ~where D5kBT), since the noise acting onr is
the sum of independent noises of strength 2D acting onr1
and r2.

The noise term in Eq.~38! is multiplicative noise in the
Stratonovich sense. To determine the stationary distribut
and hence infer the form ofU(r ), we first write Eq.~38! in
the canonical form

dr

dt
5A~r !1g~r !j~ t !, ~40!

where
ly
-

e-

s

t

f
-
to

n,

g5
1

Ag
, ~41!

A52
1

g
“U52g2

“U. ~42!

The corresponding Fokker-Planck equation is

]P

]t
5“•@2AP12Dg“~gP!#. ~43!

Noting that A(r ) is in the radial direction, i.e.,A(r )
52g2(r )(] rU) r̂ , this equation can be reduced to a on
dimensional equation for the angle-averaged radial distri
tion function, Q(r ,t)5r d21*dVP(r ,V,t), just as in Sec.
II A:

] tQ5] r@g2~] rW!Q12Dg] r~gQ!#, ~44!

where

W~r !5U~r !22D~d21!ln r . ~45!

Equation ~44! can be recast as the one-dimension
Langevin equation

dr

dt
52g2~r !

dW

dr
1g~r ! j~ t !, ~46!

with ^j(t)j(t8)&54Dd(t2t8), which in turn can be written
as a Langevin equation withadditivenoise, via the change o
variabledy5dr/g(r ):

dy

dt
52

dW

dy
1j~ t !. ~47!

We can now determine the potentialU(r ) that corre-
sponds to a ‘‘physical’’ potentialV(r ). Since the effective
potential for the dynamics ofy is W(y), the stationary dis-
tribution for y is Py(y)}exp@2W(y)/2D#, implying that the
radial distribution function,Q(r )5Py(y)(dy/dr), is given
by Q(r )}@g(r )#21 exp@2W(r)/2D# which, using Eq.~45!,
implies Q(r )}r d21 exp$2@U(r)22D ln g(r)#/2D%. The pref-
actor r d21 is just the phase-space factor for th
d-dimensional space: the required stationary distribut
function for motion in a potentialVeff(r ) @52V(r )# is
Q(r )}r d21 exp@2Veff(r )/2D#. Equating these two result
for Q(r ), and usingVeff(r )52V(r ), where V(r ) is the
vortex-antivortex potential energy, determinesU(r ):

U~r !52V~r !12D ln g~r !. ~48!

The final equation fory(t) becomes

dy

dt
5S 22

dV

dr
2

2D

g

dg

dr
1

2~d21!D

r D dr

dy
1j~ t !. ~49!

The final step is to apply this~rather general! result to the 2D
XY model. Insertingg(r )5g0 ln(r/a) and V(r )5a ln(r/a),
where g05p/G and a52prs , in Eq. ~49!, using dr/dy
5g(r )51/Ag(r ), and settingd52, gives
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dy

dt
5

2

Ag~r !
S D2a

r
2

D

g

dg

dr D1j~ t !. ~50!

Consider now the size of the second term in the la
bracket. Using Eq.~41! gives

2
1

g

dg

dr
5

1

2

d ln g

dr
5

1

2r ln~r /a!
!

1

r

for r→`. This means that this term can be dropped in
calculation of the large-distance behavior of the system. F
thermore, integrating the relationdy/dr5Ag(r ) gives, to
leading order for larger, y5rAg(r )5rAg0 ln(r/a), with
corrections which are again of relative order 1/ln(r/a). To
leading order, therefore, Eq.~50! reduces to~inserting a
52prs)

dy

dt
5

2D24prs

y
1j~ t !, ~51!

with ^j(t)j(t8)&54Dd(t2t8).
Apart from a doubling of the noise strength,D→2D, as-

sociated with the fact that we are dealing here with a tw
body problem, the result~51! is identical to Eq.~6! derived
in Sec. II A for a particle moving in a logarithmic potentia
except that the coordinatey corresponds torAg0 ln(r/a) in
the present context as a result of the scale-dependent m
ity. Vortex-antivortex annihilation can be deemed to ha
occurred whenr 5a, the vortex core size, which correspon
to y50, so our previous results on persistence in a logar
mic potential can be applied directly to the persistence pr
lem for a vortex-antivortex pair. In particular the parame
b, which controls the first-passage time distribution,P1(t),
and persistence probability,P0(t), according to Eqs.~14!
and ~15!, respectively, is obtained by settingA54prs , d
52 andD→2D52kBT in Eq. ~5! to give

b5
2prs~T!

kBT
21. ~52!

The ratio rs(T)/kBT is a decreasing function ofT, and
approaches the universal limit 2/p for T→TKT . It is related
to the exponenth(T)5kBT/2prs(T), i.e., b5(12h)/h. It
follows that b is a decreasing function ofT, diverging to
infinity for T→0, and approaching the limiting value 3 fo
T→TKT , whereh51/4. Recall that the persistence expone
is u5(11b)/2, sou varies continuously betweenu(0)5`
and u(TKT)52, where the infinite limiting value atT50
simply reflects the deterministic collapse in the absence
thermal noise. The persistence exponent for vort
antivortex annihilation is therefore nonuniversal, depend
continuously onT:

u5
prs~T!

kBT
5

1

2h~T!
, ~53!

for T<TKT . From Eq.~14! we see that the mean annihilatio
time is finite for allT<TKT ~sinceb>3), and the character
istic annihilation time scales ast;y0

2;r 0
2 ln(r0 /a) wherer 0

is the initial separation. We conclude that thermal fluctu
tions do not change the fundamental relation between len
e

e
r-

-

il-
e

-
-

r

t

of
-
g

-
th

scales and time scales deduced earlier from zero-temper
considerations, and that the coarsening growth law,j(t)
;(t/ ln t)1/2, holds for allT<TKT .

To end this section we briefly discuss the equilibration
the vortex density. We have argued~see also@20#! that for
the usual ‘‘downquench,’’ into the KT phase from the par
magnetic phase, the typical vortex separation increase
j(t);(t/ ln t)1/2, as free vortices and antivortices annihila
So the density,rV , of free vortices decreases asrV
;1/j(t)2;(ln t)/t, a result confirmed numerically by Yurk
et al. @20#. What about the corresponding upquench, fro
T50 to another temperature in the KT phase? In this case
free vortices appear, but one can still discuss@22# the time
scale for the equilibration of bound pairs with given sepa
tion. These pairs are created at the core scalea. Dimensional
analysis of Eq.~51! suggestst;y2;r 2 ln(r/a) as the relevant
timescale for pairs at scaler. As far as the vortices are con
cerned, therefore, both types of quench involve similar re
tions between time scales and length scales. The main p
is that bound pairs do not change qualitatively the lar
distance form of spin-correlation functions, whereas free v
tices do. The relaxation of any quantity expressible in ter
of spin correlations only, such as the Binder parameter~see
the following section!, will therefore be different for down-
quenches and upquenches.

D. Comparison with simulation data

Recent simulation data@17# support the conclusions of th
above analysis. Since the method and results have alre
been presented in a short paper@17#, we will just briefly
recall the salient features here. The nearest-neighbor la
HamiltonianH52(^ i , j & cos(ui2uj) was simulated on squar
lattices of sizeL3L, for 12<L<48. Both uniform~all spins
parallel! and disordered~randomly orientated spins! initial
conditions were employed. In both cases, the ‘‘tim
dependent Binder cumulant’’@23,24#

g~L,t !522
^@MW ~ t !2#2&

@^MW ~ t !2&#2
, ~54!

where MW (t) is the total magnetization at timet, was mea-
sured, and a finite-size scaling,g(L,t)5 f @j(t)/L#, at-
tempted, wherej(t) is a characteristic length scale at timet.

In @17#, all simulations were at the KT temperatureT
50.90@25#. In earlier work, Luoet al. @26# have additionally
studied some lower temperature within the KT phase.
uniform initial conditions, a good scaling collapse was o
tained using a characteristic length scalej(t);t1/z, with an
exponentz that tends to 2~from slightly smaller values! for
large L in accordance with the predictions of spin-wa
theory. This is entirely reasonable since the uniform init
conditions contain no free vortices and subsequent ther
fluctuations can only produce bound vortex-antivortex pa

For disordered initial conditions, a naive collapse usi
j(t);t1/z gives unreasonably large values ofz, in the range
2.3– 2.4, @26,17#, for all temperatures studied. Disordere
initial conditions seed the system with free vortices and
tivortices, so the analysis presented above suggests th
characteristic length scalej(t);(t/ ln t)1/2 is appropriate for
this case. This form indeed yields an excellent data collap
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In practice, the formj(t)5@ t/ ln(t/t0)#
1/2 is used, witht0 a

fitting parameter whose value is of order unity@17#.
The data can, however, be presented in another way.

logic of finite-size dynamical scaling requires that the scal
variable can be written ast/t(L), wheret(L) is the relax-
ation time of the finite-size system. For uniform initial co
ditions the spin-wave theory, which determines the rel
ation of spin correlations in the absence of free vortic
gives t(L);L2, equivalent to the previous scaling form
whereas for disordered initial conditionst(L) is given by the
time for the last free vortex-antivortex pair, which are typ
cally separated by a distance of orderL, to annihilate, i.e.,
t(L);L2 ln L. A scaling collapse usingt/@L2 ln(L/L0)# as
scaling variable is presented in Fig. 1, withL051.4 where

FIG. 1. Scaling plot for the time-dependent Binder parame
starting from a disordered initial condition, for system sizesL
512,16,24,32,48, andL051.4
v.

ys

y,

r,
,

.

ev
he
g

-
,

L0 is a short distance cutoff expected~and found! to be of
order unity. The scaling collapse is excellent. For lar
enoughL and t, this method of plotting the data and th
previous method, usingt/@L2 ln(t/t0)# as scaling variable,
will be indistinguishable. For finite times and sizes, howev
they differ slightly, and the new method gives an improv
collapse.

E. Discussion

The fact thatj(t) depends on the initial conditions i
surprising from the viewpoint of conventional nonequili
rium critical dynamics@12#, according to whichj(t);t1/z,
where z is the dynamical exponent for equilibrium critica
dynamics. An equivalent statement in the context of fini
size dynamical scaling is that the relaxation time grows w
L ast(L);Lz, independent of initial conditions. While thi
seems to be true for most phase transitions~e.g., the 2D Ising
model @27#! we have argued that it does not hold for sp
correlations in the 2DXY model, at and belowTKT , for
disordered initial conditions. We conjecture that the bre
down of the standard field-theoretic methods@12# in this case
is due to the key role played by vortex configurations whic
due to their non-perturbative character, are not accessib
perturbative methods based on a 42e expansion. The latter
involves perturbing around a Gaussian theory, which can
support topological defects. It would be interesting to inve
tigate whether similar results are obtained in other defe
driven phase transitions.
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