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Critical packing fraction of rectangular particles on the square lattice
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The random packing of identical and nonoverlapping rectangular particles ohsire (1<n,m=<10) is
studied numerically on the square lattice, and the corresponding packing frapti@m percolation prob-
abilities P, are determined. We find that for randomly oriented particles there is a critical packing fraction
pf=0.67+0.01, such that for all particles sizask m for which p;<p{ they do not percolate, i.eR..—0 for
L— 0, while whenp;>p{,P..—1 whenL—c and an infinite cluster exists. The value fofr is found to be
consistent with the continuum percolation threshple=0.67 for overlapping particles in two dimensions.

PACS numbes): 64.60.Ak, 81.05.Rm, 82.70.Kj

Is there any critical behavior underlying the maximum To speed up the simulations, two flags are associated with
random sequential packin@acking fraction of particles of  each site. One of the flags indicates if or if not it is possible
different size and shape on a lattice? In order to address thte deposit a horizontally oriented particle with its upper-right
general question we study the particular case of identicalgorner at the site; the second flag indicates the same for a
rectangular, and randomly orientated, sequentially and norvertically oriented particle. Each time a particle is deposited
overlappingly packed particles on the square lattice. Conon the lattice, the flags in the local surrounding located to the
cerning more basic quantities such as the packing fractioteft and above the particle are updated accordingly. The
itself, the special case of square particles has been studied @i¢Position is repeated until there are no more deposition sites
the pas{1]. It was found that for systems consisting of par- vailable. In this case, the deposition is considered to be
ticles of size 22 and 3«3 (in units of the lattice constant COomMpleted and the resulting fraction of occupied sites yields
a), clusters of particles in contact occur that span the wholdh€ Packing fractiop [ =p¢(n,m,L)]. Then, a connectivity
lattice and percolate in the limit of an infinite system analysis is performed to establish whether the particles

whereas for particles of sizexd4 and larger, only finite " percolate either horizontally or vertically. This yields the

clusters exist. These models are also interesting for unde ercolation probabilityP., [ =P..(n,m,L)], being just the

standing particle size effects on the conductivity of mixtures raction .Of conflgurgtlpns in which a percolatln‘gnflmte” )

. ! . . . S cluster is found within the total number of configurations
of insulating particles dispersed in a normal ionic CondUCtorconsiderecM]
[2,3]. '

In this paper we show that the behavior for square par-
ticles can be better appreciated by studying the more general
case of rectangular particles of siz& m. We find that there
is a critical packing fractiorpf=0.67+0.01 such that for
packing fractiong;<p§ only finite clusters exist, while for
ps>p§ a percolating cluster of particles in contact occurs.
Indeed, in the special cases of square particles onephas
=0.75 for size X2, ps=0.68 for size X3, andp;=0.65
for size 4x 4.

Let us start by briefly mentioning how the packing algo-
rithm is actually implemented. Initially all lattice sites are
available for occupation. For a rectangular particle, i.e., for
sizesn#m, we first determine at random the orientation that
the particle will take once deposited on the lattice. Thus, on
average, the packed rods will be distributed isotropically on
the lattice on length scale§>a maxXn,m}. Second, a lattice
site (denoted as deposition sités chosen at random, at
which the upper-right particle’s corner of a new particle can
be I_Ocate(.j' Th?n' 'a(':cordmg to the previously de_t?rm'r_‘ed FIG. 1. lllustrations of random packing configurations on the
particle orientation it is checked whether the deposition sitegqare lattice of linear size=100 for rectangular particles of sizes
as well as the additionah(<m)—1 lattice sites covered by (a) 3x4 (0.714), (b) 4x4 (0.649),(c) 4X5 (0.684), and(d)
the particle, are available for occupation. Ifalk m sites are  5x5 (0.630). The corresponding asymptotic packing fractions are
available the particle is deposited, the sites are marked agported in parentheses. The percolating clusters are shown in
occupied, and the number of remaining available depositiomlack, the remaining finite clusters in gray, and white indicates the
sites is reduced accordingly. Otherwise, the try is discardedinoccupied lattice sites.

1063-651X/2000/6@)/100(3)/$15.00 PRE 62 100 ©2000 The American Physical Society



PRE 62 BRIEF REPORTS 101

0.8 @mxo000000000000 0 o | 09L * © ' ' ' i
| o o 1
W00000 00 4 o ] 0.8F i ° 3
Pt 0.7_..mﬂﬂﬂnnnnn;;;;;;;_- Ds gi 0000000-
*
- H TR o7t Fglpgy o
_ A [J
- - *
0.6 (@) ] 0.6 * 1
1 -'@égg'gglgéo‘n'n'o'oo'o'&'o'-: 2 4 6 8 10
0.8E R, * ® 3 m
. .. * * 4 ]
P 06F ""::: R R R FIG. 3. Plot of the asymptotic packing fractiops for rectan-
> 04E “‘m‘“‘ s o ° 3 gular particles of sizeaXm versus the linear size, in the cases
' A 05000070 M n=1 (open circle§ n=2 (full diamonds, n=3 (open squargsn
02F 4 AR @ g E pet , pen sq S
B f 59;9555 * * x> b)Y =4 (full triangles, n=5 (open starg andn=6 (full circles). The
Op M. s horizontal line indicates the valugf=0.67, corresponding to our
estimate for the critical value of the packing fraction. Averages are
0.005 0.01 0.015 i for the critical ' | fth king fraction. A
1 / I performed over 1000 realizations each.

FIG. 2. Plot of(a) packing fractiong; and(b) percolation prob-  found in the case&) and(c), i.e., for sizes X4 and 4x5,
abilities P, for rectangular particles of sizes<m versus the in-  whereas as expected only finite clusters exist far44and
verse of the lattice size, in the casesn=1 (open circles m=2  5x5_ |t is interesting to notice that a small particle anisot-
(full diamonds, m=3 (open squargs m=4 (full triangles, m 41y (here llustrated for the casex® and 4x5) favors
=5 (open stars m=6 (full C'rCI.es)’ m=7 (open diamonds m percolation. To establish whether this behavior holds asymp-
=8 (full squares, m=9 (open trianglel andm=10 (full stars. totically, in the limit L—, we have studied larger system
Averages are performed over 1000 realizations each. . Y, 0 . 9 Y .

sizes, up td-=2000, and plotted the percolation probability

Additionally, one can either forbid or allow the particles P versus 1. WhenL—c, P, tends either to zeréonly
to be partially outside the lattice. In our quantitative analysisfinite clusters existor it tends to one(an infinite cluster
we have adopted the first criterion. By allowing the particleseXists.
to exceed the boundaries of the lattice, we have verified that The small 1L (largeL) behavior ofP.. is evident from
the asymptotic values obtained for bgbh and P, remain  the plots shown in Fig. 2, where the packing fractippsnd
unchanged. percolation probabilie$., are shown as a function of the

As an illustration, we show in Fig. 1 four typical configu- inverse lattice size L/, for particle sizes &m with 1<m
rations obtained for the lattice size= 100, and particle sizes =<10. While the packing fraction displays an almost linear
(@) 3% 4, (b) 4x4, (c) 4%x5, and(d) 5% 5. The black color dependence on [l the percolation probabilit?,, shows a
indicates a percolating cluster, i.e., a cluster of particles iess trivial behavior. In some cases, as fior4, 6, and 7,
contact that spans the whole system, connecting opposithe asymptotic limieither 0 or 1) is observed only for very
sides of the lattice. The remaining finite clusters are indidargeL values, indicating a rather large correlation length in
cated in light gray color. Surprisingly, a percolating cluster isthe system, reminiscent of a critical behavior.

TABLE I. Table of the asymptotic packing fractiops for rectangular particles of sizexm. The error
bars for the present values are estimated ta-le010 in all casegexcept for the trivial case®1).

m\n 1 2 3 4 5 6 7 8 9 10

1 1 0.910 0.848 0.811 0.786 0.770 0.758 0.746 0.739  0.735
2 0.910 0.748 0.771 0.732 0.720 0.704  0.692 0.685 0.675 0.670
3 0.848 0.771 0.679 0.714 0.702 0.683 0.678 0.672 0.664  0.660
4 0.811 0.732 0.714 0.649 0.684 0.683 0.669 0.660 0.658 0.652
5 0.786 0.720  0.702 0.684 0.630 0.664 0.667 0.666 0.657 0.644
6 0.770 0.704 0683 0.683 0.664 0.620 0.651 0.659 0.658 0.653
7 0.758 0.692 0.678 0.669 0.667 0.651  0.608 0.638 0.650 0.653
8 0.746 0.685 0.672 0.660 0.666 0.659  0.638 0.601 0.631 0.644
9 0.739 0.675 0.664 0.658 0.657 0.658 0.650 0.631 0.600 0.626

[EnY
o

0.735 0.670 0.660 0.652 0.644 0.653 0.653 0.644 0.626 0.589
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FIG. 4. Phase diagram for the asymptotic packing fractipns
and percolation probabilitieB,,, for rectangular particles of sizes
nxm. White indicates the cage;<p§ and P.,.=0, whereas black
indicates the casp;>pf andP,,=1.

To make this finding more quantitative and to elucidate
whether our system is characterized by a percolation thres

old pf, in the sense that an infinite cluster exists whgn
>p{ and no percolating cluster occurs whpp<py, inde-
pendentlyof both n and m, we have performed extensive
simulations forn and m in the range &n, m=<10. The re-
sults for the asymptotic packing fractiops, obtained by
linear fitting p; as a function of 1/ and taking 1L — 0, for
1=n=<10 and k==m=6 are displayed in Fig. 3. The numeri-
cal data forp; for particle sizes &n, m=<10 are shown in
Table I.

P, for a given pair of valuesr(;m) is found to be strongly
related to the respective quantity: In all cases where;
<0.67, we findP_,—0 asL—c, while whenp;=0.67 the
limit P,—1 is obtained forL—oc. Thus, we estimate the
packing fraction threshold to bgf=0.67+0.01. The behav-
ior of p; and P, can be summarized in a “phase diagram”
as shown in Fig. 4.

To conclude, we have shown that the packing fractien
of rectangular particles on a square lattice plays a similar role
as the occupation probabilityin standard percolation, in the
sense that there is a critical packing fractignsuch that for
ps<pf only finite clusters exist, while fop;>pf a percolat-
ing cluster spans the lattice. In contrast to the occupation
probability p in standard percolation, however, the quantity
ps cannot be chosen arbitrarily, but is a result of the packing
process and has to be determirgegbosteriori for a given
shape and particle size. We note that the obtained vajue
=0.67=0.01 is consistent with the critical concentration for
continuum percolation of overlapping objects.£0.6766,
as obtained for diskgb]) in two dimensions. Our finding of
a critical packing fraction for rectangular particles, which
does not depend on their size, is supported by the fact that in
two dimensions the continuum percolation threshpldis
believed to be independent of the form of the overlapping
(convex objects considered(cf. [6,7] and references
therein. Since the packing fraction itself is a much easier
quantity to determine than the percolation probability, our
result suggests a simple criterion to establish whether a sys-
tem of particles of arbitraryconvexy shape will percolate or
not. The possibility that the critical valyg=0.67, obtained
here for rectangular particles on the square lattice, holds also
for other particle shapes and lattice types remains to be in-
vestigated.

For the lattice sizes considered, one generally observes

that for any particle sizenXm in the range £n, m=<10,
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