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Generalizing the Debye-Hickel equation in terms of density functional integral
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We discuss the validity of generalized Debyéeeiel (GDH) equation proposed by Fishet al.[B. P. Lee
and M. E. Fisher, Phys. Rev. Leff6, 2906 (1996; Europhys. Lett.39, 611 (1997); M. N. Tamashiro, Y.
Levin, and M. C. Barbosa, Physica 268 24 (1999], from the functional integral point of view. The GDH
theory considers fluctuations around prescribed densities of positive and negative charges. Hence, we first
formulate a density functional integral expression for the canonical system of Coulomb gas, and also demon-
strate that this is a dual form to the sine-Gordon theory. Our formalism reveals the follgWifigre induced
charge distribution around supposed density favors not only the cancellation of additional electrostatic poten-
tial like the original DH theory, but also the countervailing of chemical potential difference between imposed
and equilibrium value(ii) As a consequence apparent charge, absent in the GDH equation, comes out in our
generalized equatiortiii ) That is, the GDH equation holds only in special cases.

PACS numbes): 61.20.Qg, 82.70.Dd, 61.20.Gy, 05.24.

Much attention in recent years has been paid to novelength ! is generalized to be spatially dependent on the
phenomena of ionic fluids and charged colloids, such as ursupposed densities ag=4lg[n_(r)+n_(r)].
expected behaviors of critical exponents in ionic flujd$ (i) There also appears, unlike the primary version, the
(micro)phase separation of charged collojdg, attraction second term on the right-hand side of Etj.representing an
between similarly charged objecf8], and so on. Of the effective “cavity source” term.
numerous theoretical attempts for explaining these, thidhe validity of these two generalizations are what we would
Rapid Communication will be particularly concerned with alike to investigate using the language of density functional
relevant tool for studying the ionic criticality: generalized integral.
Debye-Huwckel (GDH) theory proposed by Fishet al.[4,5].
Then let us first see what ggeneralized

One will find two extensions from the GDH equatiaiis
and(2) given below. Before doing so, however, the setting is
to be described: Consider here the restricted primitive mod
[6], consisting of two oppositely charged, but otherwise
identical, sets oN=N,=N_ hard spheres of diameter

For the convenience of a later discussion, let us further
detail the GDH theory4,5] exploiting the above equations
(1) and (2). According to this theory, the Helmholtz free

nergyF (in kgT units) as sum of the imposed and induced
ee energyF=Fnp,+Fing, is given in the following den-
sity functional form:

and charge per particte e, immersed in a medium of dielec- lg 1
tric constante. Also denote by¥ . (r;r;) the mean electro- Fimp:f drdr’=Q(r) - Q(r')+J' drnylinn,
static potential in thégT/e unit (the others being the same [r=r']
at a general point when the positive charge 1 is fixedrat +n_Inn_—n,—n_, 3)
and by W;,,(r) the imposed electrostatic potential deter-
mined from prescribed densities of positive and negative 1
charges, e, ni(r) and n_(r) as V2W¥;,(r) I:ind:U;r - drlng(rl)fo dAD,(roine), (4)
=—47lgQ(r) with putting that Ig=c?/ ekgT (Bjerrum '
length andQ=n,—n_. where® _(r{;\e) is the meannducedelectrostatic potential
Fisheret al.[4,5] advocate that the “local induced poten- at the site r; of a fixed ion defined as®,(r;;e)
tial” defined by W_ (r;r)=%¥_(r;r;)—¥inp(r) be to sat- Elimr_,rl[‘lf(,(r;rl)—alB/|r—r1|] (0=+,—-). The GDH
isfy the GDH equations as follows: theory especially imposes, (o= +,—) on such a simple
- undulation as
VAW, (r;ry)=—4mlg[a(r—r)—Q(n)], [r—ri|<a, —
(1) n,=n[1+A cogk-r+46,)]. (5)

Consequently the quadratic terms A&f in the free energy
difference,F({n,}) —F({n}), gives the Fourier transform of
|mp|y|ng modifications that are in order: various correlation functions by taklng either phaM
=|0,—60_|=0 or m, on a case-by-case basis. Thus this
(i) A remarkable difference from the original DH equation approach, in contrast to the original DH analysis, has suc-
[7] is seen in Eq.2) where the Debye-Hikel screening ceeded in yielding both charge-charge oscillatory correla-
tions at high densitieéwhereA 6= 7 is taken) and density-
density correlationgwhere A #=0) that exhibit a divergent
*Electronic address: furu@exp.t.u-tokyo.ac.jp correlation length at criticality.

V2, (r:r)= kA1) W, (r:ry), [r—rq|=a, 2
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Indeed, the validity of the GDH theory is strongly sug-
gested not only by the above usefulness of this method, but Z= _H f Dp, exr{ —Hz{p.}
also from satisfying both the Stillinger-Lovett sum r{ig5] e
and the exact low-density limiting-law for various correla-
tion lengthg 8]. In terms of functional integral, however, the - E f dreps
GDH equationg1) and(2) arenevertrivial, due to the irrel- 7
evance of the sine-Gordof68G) mapping[9]. The details (11
follow: With use of the chemical potentials, (o=+,—)
and the charge density operatq(r) defined asq=p.
—p_ by the number density operatops ==, 8[r—r"], _
the grand partition functio® reads 1 Fﬁ dn L IN= T, 001 _ 1 if dePa(X)=N

2i e

1. éd)\(r)\—l—[fopr”(x)].
21i 4

Since one finds from the Cauchy’s integral theorem

er N 0 otherwise,
A (6) (12

Eq. (12 is formally rewritten as

eM+N

o0
N=o N!I' =0

I

where

ama(r’) 2= 11 JDPoeXFf—Hz{m}]ﬁU drpg<r>—N},

sz d{rZN}ex;{—%Bf drdr’|—1, (7 (13

r—r’|
with putting thatd{r?}=II{,dr{" I} ;dr;" . In the conven- H,= I_BJ drdr’qmq“,) S drp, Inpy—p, .
tional SG mapping, Egs.(6) and (7) are Hubbard- 2 [r—r’|  o=+-
Stratonovich transformefil0] to the functional integral of (14
potential field not of density. Therefore, within the SG _ S
frame, it is impossible to evaluate fluctuations around im-We have thus established the framework of whiclpriori

posed number densitigsot around prescribed potentias ~ Use[12-14 has been made so far.
the GDH theory does. Before entering into the main question, let us also see that

To generalize the original Debye-ikel equation as the density functionql integrql formalism gives baqk th_e SG
Fisheret al.[4,5] propose, it is hence indispensable to trans-theory of the canonical version. To this end we first intro-
form expressiong6) and (7) to the density functional inte- duce electrostatic potential fielgl(r) via using _the equiva-
gral formalism. The former part in the remainder is thenle€nce between Eqg13) and(14) and the following form:
devoted to both its formulation and comparison with the SG
theory. In the final analysis, this formalism will reveal that sz D Dp.exd —H L
the GDH equation$1) and(2) hold only in special cases. l//u=1_+[,— poexil salp= /1]

Recently we have showji1] that a dual method to the
above Hubbard-Stratonovich way enables to transform the XS
configurational integral expressio(® and(7) to the follow-
ing density functional integral representation:

fdfpg(r)—N}, (15

1 2
HSG{Pi;'/f}EJ dr _ﬂ(vw) +(pr—p)¢

E= :1:[_ JDpanp(—HE{pi}), ®
+ ES J drpulnf%f_pa' (16
Ig a(rg(r’)
HE{pt}EEJ drdr Ir—r’| +U:+,_ fdrp(,ln Pe™ Po In these expressions, quadratic fluctuations of the density

field around the saddle-point pathsP} are negligible as has
“Polos ©) been shown elsewhef&1]. Therefore, Gaussian approxima-
tion to {p.} reduces to the substitution of the Boltzmann
where ngo_cﬂ{r}dpo, andq and p, are c-numbers of the distribution, pSP= pg exp(—o) (o=+,-), into Eq. (16),
corresponding operators.

What is required in Eqgs(3) and (4), however, is the yielding
Helmholtz free energy. We then move to the canonical par-
tition function Z, via performing the following contour inte- Z=f Dyexd —Hsg{p2; ¥}, 17
gral,
1
= SP. i — 2 Op—0y
2= 1 = $an,—, (10) Haclp=id) Jdr Bt VW, 2 e
U=+ﬁ—2WI AE+1 (1&

where\ ,=e*s is now a complex variable. Substituting Egs. where the total number invariance leads tpg
(8) and(9) into the integrand, we have =N/fdre”“”. The above transformation demonstrates that
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our formalism, Eqs(13) and(14), is a dual expression to the [ G{P+ S ,¢}

canonical SG theory, though there also exists a merit that the

Hamiltonian (14) has two argumentsnumber densities of (V@)Z _

positive and negative chargesnlike the SG theory. If dr—-3 I +[Lo(r—ry)—Q(r)]y(Ary)
We now return to the starting formula4,3) and(14), and

consider the effect of quadratic fluctuations around the pre-

scribed number densities.. on the electrostatic potential.

N, o~
- fdr7(0¢+a\lfimp+lnn,,)2

o=+,
Setting thatp,=p,—n, (c=+,—) andgq=p,—p_, and )
separating the imposed free enefgy,,, we have { f|x fdrn (0g+ oW, o+Inn,)
1 [oa imp o
+ —
-2 '
I _ . f drn,
Z=e Fimp fD’pUeHz{pi}é[f drp(,(r)},
o=+,—

(19 4

where the step functiory(Ar,) is 1 for Ar;<a and 0 oth-
erwise, and we defing'™(oc=+,—) as p*=[8(r—ry)
_ ,q( )q(r ) —n.(r)]y(Ar,) andp™=—n_(r)y(Ar,).
Z{p*} fd dr = fd Equations(23) and(24) imply that the saddle-point paths
satisfy the following relations:
+7)0(ax1fimp+|n n,), (20)
qsP=— Z on,(og+ oVimptInn,—ivP), (25
where fixing positive charge 1 af is taken into account by
changing the definition of the integral measure [B\SBU
ocH|rl,r|Zad7),,, following the treatment of Fisheet al. f'x+J d T
[4,5]. With use of expression$l9) and (20), however, oo My(0+ o WimptInn,)
Gaussian integration over, is not straightforward due to v ' '
the spatial dependence of the prescribed densitiego= J drn
+,—) other than conventional casgk2].
We then take a detour to introduce the induced potentialvhereq®P= pSp— P°P. We can easily check that these reduce

Y=y¢—V;,, similarly to Egs.(15) and (16): to q°P=—2ny andivSP=Inn in the conventional case of

nU=R Such reduction demonstrates that our formulation
correctly includes the original DH theorj/7], and that

and

(26)

Z=e*Fimpf DY f dv j DD e Hsdlp v i} iv3P(o=+,—) merely correspond to the chemical potentials
o=F, - 7 7 ' i, in equilibrium.,
(21) Thus expressioni25) with (26) provides the physical in-

sight into fluctuations around prescribed densities as follows:
in general the induced charge density distributiSAaround
supposed density favors not only the cancellation of addi-
tional electrostatic potential like the original DH theory,
but also the countervailing of the chemical potential differ-
ence between imposed and equilibrium value,

-~ o~ ~ 1 ~ o~ o~ e
HSG{P:;V:;'ﬂ}EJdr_FlB(V‘/f) +(pi—p-)¢

fdr +prr(o-\l,|mp+lnn(r)
g= + -
AM”Eo‘Pimerlnn(,—ivf,p. (27

—f drip,v,, (22) Finally let us write down the DH-like equations general-
ized via density functional integral formalism. Saddle-point
approximation to Eqs23) and(24) yields

where use has been made of the identit drp,(r =

Y ° , Y BRG] g2 ()=~ amlglar-r)-Q(D]. rrl<a,
= [dv,explv,fdrp,), and ['dr denotes the integration (29)
with omitting the regionAr,;=|r;—r|<a. In these expres-

sions Gaussian integration ovgy, and v,, becomes trivial, Vzﬁu(r;rl):K2(r)ﬁf+(r;r1)—4wl slap(r),  |r1—r[=a,
though the resulting form is somewhat complicated: (29)

where the saddle-point path e@f~p} is identified with \T&
A Fim ~ —FiedpSP P used in the GDH equationgl) and (2), and gqp
z=e pf Dye Tsel= ' (23 =-3,_, _on,Au, is the apparent charge arising from the
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chemical potential differencA ., given by Eq.(27). Note We thus conclude from the functional integral point of
also that Eq(29) corresponds to the equation tHat¥ , = view the following: The GDH equationd) and(2) proposed

—47150°%P with use of Eq.(25). Comparing our equations by Fisheret al.[4,5] are valid for the prescribed densities of
(28) and (29) with the GDH oneg1) and (2), one immedi- n_=n[1+A cosk-r)], i.e., A9=0, where the density-
ately finds that the former equations are different from thedensity correlation length has been extradi4H However,
latter, in that the apparent chargg, comes out on the right- i, the other case af :F[lJFUA cosk-N](o=+,-), i.e

hand side of Eq(29), though both the spatially dependent A 0=, where bothathe charge-charge correlation length and

screening lengthx ~*(r) and the cavity source terfdlgQ the Lebowitz length have been derivit|g], we have
in Eq. (28)] can be reproduced indeed.

Accordingly, the remaining problem is to investigate
when the apparent chargg,, in Eq. (29) disappears. A
trivial condition is the chemical equilibrium =0, where
the Boltzmann distributiom,=exp(u,—oW¥iy,) is satisfied.

Inot?al:ﬁihalczsrﬁsihtg(;igg,ci\gpe? IeS lIJr;]tFi)gr?sedallfeggt %‘ZE;;;SS bléltnd hence apparent charge is to be considered explicitly in
b ! g X y the calculation ofd', ; evaluating to what extent the addi-

16], are directly obtainable from the conventional SG theory,

not via our formalism; this is not the case with us. A relevanttlonal term changes the previous resy#sg] remains a fu-

case is to imposa,, on relation(5) with A =0 as the GDH ture problem.

Qap~2nWin,+ Q+ O[AZ], (30)

theory does, wher@d;,,,=0 and the apparent chargg, is We acknowledge financial support from the Ministry of
negligible under the constraint thai’= »°P. Education, Science, Culture, and Sports of Japan.
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