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Synchronized traffic flow from a modified Lighthill-Whitman model
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A simple macroscopic argument leading to a diffusively corrected form of the classical kinematic-wave
(Lighthill-whitham) model of the flow of vehicular traffic is described. An example of a diffusively corrected
kinematic-wave model displays a diffusion coefficient that is negative, for sufficiently large densities. It is
shown that such a diffusively corrected kinematic-wave model is capable of reproducing elements of the
synchronized flow reported by Kerner and Rehborn.

PACS numbgs): 47.20.Gv, 89.40tk, 05.10—a, 05.20.Dd

The author and Sopasakis have recepilyshown that: that if drivers intend to act so as to adjust their speed to the
(i) the zero-order Chapman-Enskog approximation to théocal density of vehicles at any given position and time, then
classical Prigogine-Hermdi2] kinetic equation of vehicular that intention inevitably is somewhat frustrated by the exis-
traffic is a Lighthill-Whitham model, which consists of the tence of someeaction timer, representing a delay in their
continuity equation, response to events. | assume that drivers compensate for this
delay by adjusting to the density seen at saanécipation
distance Lahead of their current position. In view of the
reaction time and the anticipation length, the aciuaéan
speed at positiow and timet will then be

dp dq
ot oax

and a classical traffic stream modgk Qq(p); (ii) the cor-

responding first-order Chapman-Enskog approximation, and v(X,t)=V(p(Xx+L—-Vr,t—17)),

therefore presumably the proper traffic-theoretic analog of

the Navier-Stokes equations of fluid dynamics, is a diffu-whereV(p) is the (mean desired speed at density

sively corrected Lighthill-Whitham model. Such a model If the right-hand side is expanded to first orderriandL,
consists of the continuity equation and a diffusively cor-and higher-order terms are ignored, then after a bit of algebra
rected traffic stream model, results are

9 P
Q(X.t)=Qo(p(X.t))—D(p(X,t))a—i(X,t)- ) Q==pv=Qo(p)+p{|—V'(p)+Tp[V’(p)]Z}a—i-

Lighthill and Whitham themselveE3] expressed consider- This has precisely the form of Eql), with the diffusion
able skepticism about the validity of classical traffic streamcoefficient given by
models. They further suggested an extension that contained a
diffusive term, which was considered as representing antici-
pation. Schochet4] showed that the entropy weak solutions D(p)=—LpV'(p)—7p*[V'(p)]> 2
of the Lighthill-Whitham model are the limits, as the con-
stant in a diffusive coefficient of the form consp ! tends This equation displays the diffusion coefficient as dlife
to zero, of the solutions of the corresponding diffusively cor-ferenceof two non-negative terms, a8 is nonpositive. One
rected Lighthill-Whitham model. would normally expecD to be non-negative, as this is nec-
If an additive diffusive correction to the traffic stream essary in order for the corresponding initial-value problem to
model improves on Lighthill-Whitham models, then it be well-posed(For the first-order Chapman-Enskog approxi-
should be possible to establish a simple phenomenologicahation to the Prigogine-Herman kinetic equation, which is
basis for such a correction. This would be analogous to thealid only up to some “critical” density, this result is proved
phenomenological basis for the Navier-Stokes equations, d@a [1].) Presumably this expectation is reflected in the ten-
asserted well before theur de forcefor atomistic theory  dency of drivers to anticipate so as to more than compensate
comprised by the demonstrations of Chapman and of Enskofgr the reaction time, so that the first term in E8) would
that the Navier-Stokes equations follow from the Boltzmannnormally be larger in magnitude than that associated with the
equation, complete with prescriptions for the diffusion coef-reaction time. However, it is certainly conceivable that there
ficient and viscosity, in terms of an intermolecular force law.are situations in which reaction delay dominates anticipation,
Toward establishing such a phenomenological basis, notso that the resulting diffusion coefficient is negative.
In order to explore this issue further, as well as to obtain
an order-of-magnitude estimate of the diffusion coefficient,
*Also affiliated with the Department of Nuclear Engineering and consider the Dick[5] modification of the traffic stream
the Department of Mathematics. model of Greenber{6],

1063-651X/2000/6(6)/60524)/$15.00 PRE 61 R6052 ©2000 The American Physical Society



RAPID COMMUNICATIONS

PRE 61 SYNCHRONIZED TRAFFIC FLOW FROM A MODIFIED. .. R6053

V(p)= min{v max,C In(Pmax/P)}!

with the freeflow speed,,,,= 70 miles per hour, the jam densiby,,,= 220 vehicles per lane-mile, and the “free” parameter
C=10e (miles per houyr. The corresponding value &f' is

0, p<ei7/epmax:=ﬁ%0-0763max

I miles? per hour,
—10e/p~—27.2p, p>€ "pnax=0.070nayx

V'(p)=

with densities in units of miles per hour. For purposes of arto individual lanes. Several such models exisig., [10]).
order-of-magnitude discussion | shall take the reaction timédowever, any realistic lane-specific model should reflect the
as7=2 sec=0.0005555.. . h, which is a typical time for natural desiréand ability of drivers in a slower moving lane
driver reaction(e.g.,[7]). Similarly, | shall take the anticipa- to transfer to a faster moving lane, and that effect should tend
tion length ad_=v?2/15 800, which is the distandén miles)  to equilibrate the speed across lanes, as suggestgtljn
required to decelerate to a full stop frammiles per hour, at Therefore, this aspect of synchronized flow does not seem so
a relatively comfortable deceleration of aboutd).The cor-  challenging theoretically. The further observation that “syn-
responding diffusion coefficient is plotted, as a function ofchronized traffic flow covered on the flux-density plane two-
density, in Fig. 1. dimensional regions” is rather a different matter, as elabo-

For this situation, the diffusion coefficient is positive for rated further below. However, that issue can be addressed
p<po=~124.6 vehicles per mile, but igslightly) negative  without lane-specific models, because it can be viewed as
for p> p,. Therefore, the corresponding diffusively correctedrelating to the behavior of traffiafter the equilibration of
Lighthill-whitham model may be mildly unstable for densi- speeds across lanes has been achieved, so that there is little
ties abovep,. We may expect this instability effect for even incentive for lane switching to occur.
smaller densities, and perhaps at a more severe level, if the In addition, Kerner and Rehbor®] describe typesi),
anticipation length were not be taken as large as assumdd), and (i) of synchronized traffic flow, and assert that
above. This might arise, for example, at roadway locations'each of these three types of states of synchronized traffic
providing limited sight distance ahead, or near entrancdlow covered on the flux-density plane two-dimensional re-
ramps, at which drivers ability to anticipate conditions aheadjions.” The diffusive correction to the flow permits this pos-
is reduced by the necessity to accommodate merging vesibility, in contrast to the kinematic-wave model itself, which
hicles. Negative diffusion coefficients are known to be assopredicts that all traffic states must lie along the curye
ciated with a number of interesting phenom¢@a =Qp(c) (i.e., the “static” traffic stream modeglin the

| now turn to the issue of the consistency of synchronizedlensity/flow plane. But can this possibility be realized in a
flow [9] with the diffusively corrected Lighthill-Whitham manner that is consistent with the other essential observed
model just described. For this purpose | understand “synproperties of synchronized flow, as embodied in their defin-
chronized flow” as traffic flow in which speeds are synchro-ing descriptions? An outline of an affirmative answer to this
nized across lanes, and those speeds are too low to be caguestion will now be provided analytically, for the case of
sidered free flow, but too high to be considered a traffic jamtype (ii) synchronized flow. A similar demonstration can be
In order to reproduce theoretically this aspect of traffic flow,provided for type(i) synchronized flow.
one needs some model that provides speeds that are specificType (i) synchronized flowlype (ii) synchronized flow

is described 9] as ‘“states, where the average speed was

10 . . . - nearly a stationary one during a relatively long time interval,
but the flux, i.e., the density, noticably changed during this
time interval.” Accordingly, | seek solutions of the diffu-
sively corrected Lighthill-Whitham model that further satisfy
g=wp, wherew is independent of botk andt. (The defin-
ing statement quoted above requires only thdte indepen-
dent of time; the literature seems silent on spatial homoge-
neity, although the terminology “homogeneous-in-speed”
[12] is strongly suggestive.With the continuity equation,
this requires solutions of typ@) have densities that satisfy
p(x,t)=c(x—wt), wherec is an arbitrary function. The dif-
fusively corrected ‘“dynamic” traffic stream model then
yields the equation

«©
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D(C)d—XO=Qo(C(Xo))—WC(Xo), ()

FIG. 1. Dependence of the diffusion coefficient upon density.
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wherex is the initial location of the “wave” moving along 9000 ' ' '
the characteristie=x,+wt (andw is the associated “wave s000l « o case ff‘z
speed’). X x + :: ;;:c
Equation(3) is an ordinary differential equation that can, ~ 7e00r <X x * caseid_
in principle, be solved for an initial-density profilg(xy,0) gem_ X% ‘;‘f;::::';f,el
=c(Xg), which will possibly evolve into a flow of typéi). g x
It is possible to give an exhaustive analysis of the behavior g s x
of the solutions of this equation. Here | shall only note a few & x
cases, in order to illustrate that even this subclass of iype ~ £*°*[

solutions occupies a significant two-dimensional region of
the density/flow plane.
Let p,, denote the root 0Q(p)=wp. 20001

3000

flow (vehi

i-a. If Qu(po)/po<W<vmax, then the solution corre- e
sponding to an initial valug(x,) such thatp<p(x;)<p,, % 50
approachep,,, asymptotically ax— . [This type of solu-
tion appears to correspond to the interior of what would be
seen as a shock in the Lighthill-Whitham theory. It joins  FIG. 2. The regions of the density/flow plane covered by the
smoothly to (stablé downstream flow at density,, and enumerated instances of ty(ig) synchronized flow.
speedw.]

ii-b. If Qu(po)/ po<W<vnax, then the solution corre- The most striking, and apparently unrealistic, feature of
sponding to an initial valug(x4) such thatp,,<p(X1)<po Fig. 2 is the rather large flows predicted for type ii-b syn-
approachep,,, asymptotically ax— <. (A solution of this  chronized flow. The largest flows occur whanis slightly
type appears to have some similarity to what is frequentlyless thanv ., and p is slightly less tharp,. It is hard to
termed “queue discharge.” As in the preceding case, thisonceive of how this situation could initially occur, but the
flow joins smoothly to a stable downstream flow at densitytheory predicts that if it did, and the speed weralong a
pw and speeav. density profile satisfying Eq.3), then that speed would be

ii-c. If w<Qg(po)/po, then the solution corresponding to maintained along that profile as it moves at spaeddow-
any initial valuep(x;) such thatpy<p(x,)<p,, approaches ever, along the density profile corresponding to a speed of
po in finite length.[This is our final solution that lies in the w=65 miles per hour, the density would drop from 120 ve-
region where the diffusion coefficient is negative. The facthicles per mile to approximately 33 vehicles per mile, within
that drivers are maintaining speed here means they are a length of about 0.1 miles. Therefore, the theory also pre-
reacting (by increasing their speedsoo slowly to the de- dicts that such flows are nonsustainable, and in fact unob-
creasing downstream density to maintain flow at thew  servable for all practical purposes. There are other practically
unstablg equilibrium corresponding to densipy, and speed nonexistent flows among the synchronized flows of tyfes
w. This flow ultimately must undergo a discontinuity at or and(ii) that are revealed by the approach demonstrated here.
before the poinp(x) = py, Where the second-order parabolic This fact notwithstanding, there remain sufficient of these
diffusively corrected Lighthill-Whitham model degeneratesflows (e.g., type ii-b flow corresponding to smaller values of
into a first-order hyperbolic equation, in order to provide athe speegto occupy a significant region of the density/flow
connection to any downstream flow. plane. The larger point is that not all instances of the types of

ii-d. If w<<Qq(po)/po, then the solution corresponding to synchronized flow shown here to result from the diffusively
any initial valuep(x,) such that magp,, ,po}<p(X)<pmax@p-  corrected kinematic-wave model are equally likely to be ob-
proache,ay in finite length.(This corresponds to flow in a served.
region that is controlled by a downstream jam; that is, this is Conclusions A diffusive correction to the Lighthill-
flow in a transition to a jam. In maintaining speeddrivers  Whitham kinematic-wave model is readily justified, on the
are going faster than predicted by the static traffic streanbasis of the familiar phenomena of driver anticipation and
model, and all the more faster than warranted by downstrearreaction time. Yet this simple extension of the Lighthill-
conditions. This reflects the fact that the diffusion coefficientWhitham model can provide significantly different predic-
is negative, because reaction dominates anticipation. tions of traffic flow, especially in regions of large gradients

in the concentration, or in which the diffusion coefficient

The regions of the density/flow plane that are covered byakes on a negative value. Here it has been shown that such
these four cases of tydé) synchronized flow are shown, in a diffusive correction can reproduce significant elements of
relation to the “static” traffic flow model, in Fig. 2. This the synchronized flow described by Kerner and Rehlp&tn
figure illustrates that these classes alone of tyie It would be most interesting to explore the extent to which
synchronized-flow solutions of the diffusively corrected a diffusively corrected kinematic-wave model is able to re-
Lighthill-whitham model cover a significant two- produce other observed traffic-flow patterns and phenomena,
dimensional region in the density/flow plane. Other suchincluding “wide traffic jams” [13], specific properties of
type (i) synchronized-flow solutions of the diffusively cor- phase transition§l4], the existence of a line dividing the
rected Lighthill-Whitham mode]i.e., other solutions of the density/flow into “stable” and “metastable” regions with
differential equation (3)] provide even further two- regard to perturbations leading to phase transit[d8$ and
dimensional coverage of the density/flow plane. the oscillations noted by Koshi, lwasaki and Ohk{if4].

100 150 200 250
density (vehicles per mile per lane)
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Such explorations are given further impetus by the recentf the observations of Kerneat al. could be attributed sim-
independent confirmation by Neubeittal. [16] of the three  ply to statistical fluctuations in the data. This now seems
phases of traffic flow suggested by Kermdral. This is im-  rather less likely, although perhaps it cannot yet be ruled out
portant, because Bank&7] had previously noted that some altogether.
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