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Phase separation and shape deformation of two-phase membranes
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Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying
shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori.
Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate
the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions
of differing curvature on a variety of vesicles.

PACS numbse(s): 87.16—b, 64.60.Cn, 11.10.Lm

Amphiphilic molecules assemble in aqueous media taation and shape changes. We estimate the degree of defor-
form bilayers, which close to form vesicles at low concen-mation from the coupling strength between the composition
trations. Bilayers and vesicles serve as models for memand curvature fields and the elastic rigidity.
branes and cells for studying simple physical properties such We represent a membrane as a surface embedded in three
as shape deformations, elasticity and transport. They sho@imensions parameterized y={q;,d.}, for its thickness is
an amazing variety of shapes, which have been described Bipually several orders of magnitude smaller than its size. Our
treating the membrane as a homogeneous elastic sheet wiproach is to study phase separation on a subset of surfaces
area and volume constrainfts,2]. However, recent experi- (orthogonal curvilinear manifoldsl2]) which have either an
mental observations have recognized that internal degrees 8kis of translation or rotation. For this special class of sur-
freedom can crucially influence the shapes. An example i§aces we have recently derived some simplifying analytical
the transition from a normal biconcave shapelistocyteso  results regarding phase separationrigid curved surfaces
a crenated shape @chinocyteof a human red blood cell. [13]. Here we apply the analysis to deformable surfaces.
Such transformations can be induced by an asymmetric ad- The total free energy of the membrane As=F;+F,
sorption of certain drugs, i.e., a local asymmetry in the com-t F3, with the bending elastic enerdg]:
position plays an important role in this crenated shicgle

As molecules are free to move in the plane of the mem- = :f dA

. . T 1
brane, lateral phase separation is constantly observed in lipid
membranes. A single component membrane under certain
conditions can exhibit regions rich in tilted and non-tilted WheredA=\/gd?q is the area element witklg the determi-
phases, respectively, while a two-component membrane caint of the metric tensay;; , his the mean curvature, arhg
exhibit phase separation of both different components antf the spontaneous mean curvature—the preferred curvature
tilted vs. non-tilted phasdd]. Phase separation plays a cen-of the relaxed vesicle. The mean curvaturéhish(qs,qy)
tral role in the stabilization of vesicles and in the fission of =h;+h,, whereh; andh, are the principal curvatures. For
small vesicles after buddinfp,6]. Although experimental an arbitrary surface embedded in three dimensiorg, &nd
studies that clearly relate phase separation to local shape d@ are orthogonal coordinates, the metric tensor ¢ras 0
formation[4] are scarce, a number of phenomenological andor i #j and \/§= V011922
numerical investigations have shown that a coupling of the We treat phase separation within the usual Ginzburg-
local curvature to the local composition of amphiphiles canLandau free energy framework:
result in shape deformatidir—9] and buddind 10].

The numerical studies have considered mainly a general P :f dA
fluctuating vesicle and therefore the central role of the cou- 2
pling between the phase separation and accompanying shape
deformation process has been difficult to decipher. Our worlkvhere ¢ is either the relative concentration of the two phase
is thus motivated by a desire to study, by analytical meansomponentsA and B of the membrane:¢p=(A—B)/(A
where possible, phase separation on the simplest of geom-B), or the concentration of a diffusing external chemical
etries such as cylinders, spheres and tori. While microtubuless in the case agchinocytosi®f red blood cell§3,14]. Here
are abundant in biology, deformable spherical and toroidat is the characteristic length, which determines interface
vesicles have also been obseryad]. We seek to provide a width; V(¢) is a double-well potential, whose details are not
systematic formal description of the equilibrium solution. important[15]. We use a simplg* potential to describe the
Our aim is to gain insight into the role played by curvaturekinetics of phase separation?(¢)=(a/4)¢*—(BI2)¢?
and to extract the salient ingredients that affect phase sepéa,53>0).

We use the bilinear form of coupling between the phase
density and local curvatufd 4], an interaction energy found
*Electronic address: jiang@lanl.gov on phenomenological grounds:

§<h—ho>2}, M
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F3=f dA A¢h, (3)

whereA is the strength of the coupling.
More realistic considerations should take into account
area and volume constraints for vesicle membranes. A
change in area would increase the surface energy and a
change in volume would increase the osmotic pressure.

Y. JIANG, T. LOOKMAN, AND A.

SAXENA PRE 61

p(r)=d+ —

__[(b=c)(a—d)
““NGa—omb-d

()

Hence an additional term

F —)xA+PV—fdA ()\+P|r|)
4= - a | (4)

3

where\ is the surface tension arfdl the osmotic pressure,
should be included in the free energy The second term in
the expression utilizes the divergence theorem in 3D. Th
surface tension is a constant and does not enter the varia
tional calculations. The relation between the local radiilis
and the mean curvatutecan be highly complicated depend-

ing on the geometry, which will render the free energy too

intractable for our purposes. Therefore, we consider éhly
=0 hereafter.

At equilibrium, the Euler-Lagrang€EL) equations for
¢ andh fields aresF/5¢=0 and 6F/5h=0, respectively.
The EL equations are nonlinear and usually do not hav

an exact closed-form solution. In order to obtain analytical

results, we consider special symmetries to reduce the pro
lem to a quasi-one dimensional one.df is the axis of
symmetry,|V ¢|=|d¢/dg,|. We then define a new variable
7 asdr=+0,,/011 dg,. With this variable, the Laplace-
Beltrami  operator VZgé=(1/7/g)(d/x)(g' Vgal ax}) ¢
=(1/gll)(d2/drf)¢ is simplified.

The equilibrium condition, derived from the EL equation
for his

A
h:hO_ ;(ﬁ! (5)

e

e

where dr=d7;\/g1;= V0,00, is the arc length variable;
a,b,c and d are real roots ofV,—Vy=0, i.e. V.—V
=0gu(al/d)(¢—a)(¢—b)(p—c)(¢—d) with a>b=¢>c
>d; Vo, 719 are two constants of integration{
=¢\J4la2/(a—c)(b—d) is the rescaled characteristic
length scalek is the modulus of the Jacobian elliptic func-
tion sn(r,k). The shape of the periodic solution depends on
the modulusk, which in turn depends on all the parameters
of the model and the initial energy,. The value ok ranges

between 0 and 1. Fok=0, the Jacobian elliptic function
reduces to a sinusoidal function. Hoe 1, sn(r,k) changes

to a kink solution, tanhf), which is no longer periodic and
thus is only allowed on an open geometry. For a closed ge-
ometry, a periodic solution is required and the number of
periods for a fixed perimetdr depends on the value df
[16]: the periods allowed should satisfy/ {=2mK where
K(k) is the complete elliptic integral of the first kind and

is an arbitrary integer. The initial enerdsy is related to the
mean concentration and the distribution of the two phases.
Nith the linear relationship betwees and h, Eq. (5), we
also obtain the expression for the mean curvah(rg = h,

= (A1) (7).

Transformingr to space coordinate, and exploiting the
fact thatq is the axis of symmetry, we obtain(q,,q,) and
h(g,,92). Fromh(qy,q,), we can then use the relationship
betweenh andr, to obtainr(q,,q,), the shape in real space
coordinates.

For illustration purposes, we now carry out this formula-
tion on a cylinder with rotational symmetny=r(z). The
metric tensor hagy,=r?, g,,=1+r’?, andg,,=0.

With 6 as the axis of symmetry, we define the new vari-

i.e., at equilibrium the local mean curvature of the membran&ble 7, as

is linearly proportional to the locap. This linear relation-

ship explains why phase separated regions have local curva-
ture (A/k) ¢, aresult that appeared in the numerical study of

Ref. [9]. Thus, we can eliminata from the free energy. It
follows that the EL equation for the free energy with respec
to ¢ becomes

d2
Ve((b)—afd):()- (6)
HereV, is the new effective potential:
a , A? )
Ve=01 7 &' 5| B+ —|#*+Ahod|,  (7)

which depends only ow. The coefficient of thep? term is

renormalized and the effective potential becomes an asym- &§¢(7y)

metric double-well due to the linear coupling.
Twice integrating Eq.6) we obtain a general periodic
domain-wall lattice solution:

1+r'2
drl=dzx/%:dle .
Joe r?

LI'he free energy for such a cylinder is then

2
F=J dr,dé %qﬁ,z_l-i-ve(qﬁ)

: €)

in which V.(¢) is the same as Ed7). Applying the EL
equation forh, we obtain the same linear relation betwden
and ¢ as in Eq.(5) in terms of r;. Replacingh in the free
energy,F becomes a function ap only and its EL equation
with respect tog is

2

oF +A
Bt

a¢3—

— g2 2
_g ¢T1’Tl_r

This equation yields the same solution féras Eq.(8) as a
function of the arc variable:



RAPID COMMUNICATIONS

PRE 61 PHASE SEPARATION AND SHAPE DEFORMATION B. . . R59
0.5
.| /\/\/’\/\/‘\
_0'50 0.2 04 0.6 0.8 1 1.2
55
= 5
4.5 y \
G 0 0.2 04 0.6 08 1 1.2
SaVaVavaval "
P B ‘V)
“V) (b)
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ric circular cylinder.(a) Cross sections of deformed cylinder with 3,

FIG. 1. Phase separation and deformation on a radially symmet‘!' 5 and 6 _modes, res.pective(ja) Equilibrium shape of a deformed
ric circular cylinder.(a) Plots of order paramete$, curvatureh and cylinder with mode 6; shades of gray correspond to the order pa-

radiusr as a function ofz. (b) Equilibrium shape of the deformed rametere.

cylinder; shades of gray correspond to the order-paramigter
inder, for whichr=1/H and thusD=[Hy— (A/x)c]/[H,

dr=rdmn, —(A/k)d], as a function ok andA. The value ofk can be
either obtained by using micropipette meth¢@s], or esti-
=dzy1+r'2, (100 mated from molecular dynamics simulatigil]. Although

and hence the solution ¢f(7) based on the linear relation-
ship betweenp andh.

In order to convert theb andh results to phase distribu-
tion and deformation on a cylinder, i.e., to obtaifz, ) and
r(z,6), we need to change the variabidack to the original
variablez as follows. We replace=r(z) by p(7), such that

pr=rzIN1+r7, prr:rzz/(1+r§)2-

The mean curvaturb(z) in terms ofp(7) is

h(r)=1p+p,./\1-p>. (12)

A numerical integration of this equation providgér) and
thUSZ=de\/1—p27, which in turn gives (z) = p(7(2)), the
deformation along the axis of a cylinder.

Figure Xa) shows a typical plot for the equilibriund, h
andr as a function of, obtained with the following param-
etersia=4, B=2, hy=5, £=0.2, xk=0.02, andA =0.03.
Figure 1b) is the correspondingxially deformed cylinder,

Deformation

Deformation
> [~

whose shades of gray correspond to the amplitude of the 161
order-parameter field. Applying the same formulation to a 14f
cylinder with an axial symmetry=r(6), we obtain a cylin- 12

der with deformation occurring only along the cross section.
Figure 2a) shows a series of deformed circles with periods 3

to 6. Aradially def(_)rmed cylinder, as §hown n Fllg(kﬂ, IS FIG. 3. Deformation of the axially symmetric cylinder as a func-
formed ,by translatlng the deformed circle of period ,6 al,ongtion of: (a) Elastic rigidity « for fixed A =0.02; circles are numeri-
the z axis. Figure 2b) uses the same parameters as in Fig. 1.5 gata and the solid line is a fit of quadratic form inc1inset
[17]. . i . shows the deformed cross sections of the cylinder, the inner-most

The degree of deformation, defined as the ratio of theyrve corresponding to the smallesvalue. (b) Coupling constant
maximum to the minimum radiiD =ry4,/rmin, IS @ quan- A for fixed x=0.01; circles are numerical data and the solid line is
tity that can be measured by reflection interference contragf fit of quadratic form inA. Inset shows the deformed cross sec-
microscopy[18] or atomic force microscopyl9]. We esti-  tions with fixed perimeter, the inner-most curve corresponds to the
mate the degree of deformation of an axially symmetric cylHargestA value.
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constant, the deformations are virtually identical to those in
Fig. 3 (not shown.

We also applied this framework to other deformable ge-
ometries and symmetries, e.g. a sphere and a torus with ap-
propriateg;; . Figure 4 shows results for spheres and tori
with axial and azimuthal symmetry. The parameters used are
the same as in Fig. 1. We observe preferential phase separa-
tion similar to the case of cylinders.

To summarize, we have developed a theoretical frame-
work in which we obtained exact analytical solutions for the
equilibrium phase distributions and membrane shapes, for a
series of geometries including cylinders, spheres, and tori.
This framework allows for an estimate of the degree of de-
formation from the coupling strength and the elastic rigidity
of the membrane. Since fluid properties are essential for
modeling cells and membranes, our model augmented with a

FIG. 4. Phase separation and deformation on spheres and toeoupling to hydrodynamics will enable the study of realistic

(a) Axially symmetric sphere(b) Azimuthally symmetric sphere.
(c) Axially symmetric torus.(d) Azimuthally symmetric torus.

Shades of gray correspond to different magnitudes of the ordeg

parameterp.

difficult to measure directly in experiments, may be de-

biological cells. If the membranes do not exchange mol-
ecules with their environments, the order parameter is con-
erved. We conjecture that when the membrane is free from
external forces, the mean curvature is also consef2&d
Then the dynamics of phase separation and deformation of
the membrane will follow those of two coupled-conserved

rived from first principles molecular dynamics simulations asfields [23].

in [21] by using Eq.(5). Figure 3a shows that the deforma-

tion D has a quadratic form in &/ Figure 3b) indicates

The order-parameter field considered above need not be a
scalar density or relative concentration field. If we choose

again a quadratic form dependence of the deformation on thenagnetization(M) or polarization (P) instead of ¢, we
coupling constant\. This can be understood by expanding would then expect periodic stripes of magnetic and polariza-

D in the small deformation limit, wheA <«. In this limit,
c—d andcd remain approximately independent &fand «,
thusDoc, +c,A/k+c3A? k? with ¢q,¢, andcy constants.
Indeed, if we vary bothA and x such thatA/«x remains

tion domains in regions of different curvature.
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