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Velocity and shape selection of dendritic crystals in a forced flow
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The phase-field method is used to simulate the two-dimensional growth of a dendritic crystal in a forced
flow. The selection of the velocity and shape of the dendrite tip is investigated as a function of flow rate,
growth direction relative to the flow, as well as anisotropy strength, and the results for the upstream growing
tips are compared to existing theoretical predictions.

PACS numbse(s): 68.70+w, 81.30.Fb

Dendritic growth is a well-known pattern formation prob- more efficient and to investigate the limit of vanishing inter-
lem of both fundamental and practical interest. By now, theface kinetics(i.e., local equilibrium at the solid-liquid inter-
subtle role of crystalline anisotropy in the selection of theface.
dendrite tip size and velocity has been successfully explained Let us first summarize the basic equations of our model.
by microscopic solvability theorl]. Moreover, this theory ~We use the anisotropic form of the phase-field equatse®
has been recently validated by phase-field simulations ifRef.[4] and earlier references thergigiven by
both two[2,3] and three dimensiong}] that focused on a

o -
purely diffusive regime. On earth, however, dendritic growth 7(N)dp=V-[WH)Vy]—3d,F(¢.Au)

is almost unavoidably influenced by natural convection in + [ |V ¢|2W(R)d, W(R)]
the melt at low supercoolings], and the effect of fluid flow X
on the tip selection has remained somewhat unclear. On the +<9y[|Vz//|2W(ﬁ)<9¢yW(ﬁ)], (1)

theoretical side, models have been developed to predict how

heat transport away from the tip is modified by flow in vari- where s denotes the phase-field that varies smoothly from 1
ous situationg6—11]. In addition, Ben Amar and Pomeau in the solid to—1 in the liquid across a diffuse interface
[12] have proposed scaling laws to characterize the tip operegion, andu=(T—T)/(L/C,) is the dimensionless tem-
ating state in different regimes, and Bouissou and Pdlte  perature field, wherd ,, is the melting point and. and Cp
have extended the linearized solvability theory, which asare the latent and specific heat, respectively. The function
sumes a parabolic tip shape, to make quantitative predictiorls(,Au)=Tf(#)+\ug(y) is a phenomenological free en-
of velocity selection for the case of a uniform axial flow in ergy, wheref ()= —¢?/2+¢*/4 is a double-well function
two dimensions. On the experimental side, quantitative studand g(#) = ¢—24°/3+ ¢°/5 is an odd function that pre-

ies of flow effects on the tip selection have produced differ-serves the minima of at +1 and —1 whenu is different
ent results[13—16, such that there is still a clear lack of from zero. The interface thickness is a function of the inter-

CONSENSLUS. face normaln: W(n)/Wy=A4(n), with Ay(n)=(1-3¢)

In this Rapid Communication, we use a recently devel-+4e(#y+y)/|Vy|*, whereys andyy are first derivatives
oped phase-field approa¢h7] to simulate directly the fun- with respect toc and_y ande is the anisotropy streng.th.of the
damental equations of solidification with flow. This allows Surface energy. Using the results of R¢@4], the limit of
us to investigate rigorously the effect of flow on the tip op- Vanishing |r21terfa}ce kinetics is achieved by choosnr(g;)
erating state for different anisotropy strengths and flow ori-= 7olAs(N) 1= with  A=a;W,/dy and 7o=a;a,(Wo)“/
entations relative to the growth direction, and thus to criti-(do D), whered, is the capillary length an® is the thermal
cally test quantitatively existing transport and solvability diffusivity, and wherea,=0.8839 anda,=0.6267 for the
theories. Our approach is based on a methodology developddnctional forms off(y) andg(#) given above. Therefore
by Beckermanret al.[17] that incorporates melt convection Wo iS the only free parameter that has to be properly chosen
phenomenologically in the phase-field model. In particular 0 Obtain converged solutions. Next, the energy equation,
the usual no-slip condition at a sharp solid-liquid interface igncluding the advective flux, can be written ds/]
enforced in this approach through a varying interfacial stress -
term in the diffuse interface region. In addition, the results of du+(1—¢)V-Vu=DV?u+4,¢, 2
the asymptotic analysis of Karma and Rap[gH] for the
purely diffusive phase-field model, which extend to the con-Where we have defined the solid fractigs-(1+¢)/2<[0,1]
vective casg17], are exploited to render our computations andV is the flow velocity. The conservation equations for

mass and momentum take the following forp§], respec-
tively,
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(1= )V]+(1— $)V-VV
= —(1-$)Vplp+V-[1vV(1- H)V]+M?,
(4)

wherep, p [in Eq. (4) only], andv are the pressure, density,
and kinematic viscosity, respectively. The terj is the
dissipative interfacial stress and is modeled &&

= —2h¢?(1— ¢) vV/W3, in which the constartt is found to
be 2.757 by an asymptotic analysis of plane flow past the
diffuse interfacg[17]. This term serves as a distributed mo-
mentum sink in the diffuse interface region that forces the
liquid velocity to zero as¢p—1 and vanishes in the bulk
liquid (¢=0). An important property of this interfacial stress
term is that the velocity profile near the diffuse interface FIG. 1. Evolution of phase-field contours fak=0.55 and
smoothly approaches the profile for a sharp interface a&=0.01, 0.03, and 0.06rom left to righ) without convectiontop
¢=0.5 (or =0), regardless of the diffuse interface thick- panel$ and with convectior(bottom panelsfor a flow velocity of
ness. These and other details can be found in R&]. By Ud,/D=0.07 and a Prandtl number of P23.1 (320x640 CVs
rescaling length and time bW, and 7o, respectively, we With a uniform spacing oA x/W,=0.4).
obtain a dimensionless version of the above equations. Then,
all dimensional variables are cast into dimensionless formgoundary layer thickness. The tip that grows in the horizon-
as: Vrg/Wo—V, Dro/(Wp)?—D, vrg/(Wp)2—v, tal direction normal to the flow also reaches an approximate
(p!p) (7o/Wo)?— (p/p), while W, and 7, are set equal to steady state with a velocity that is about the same as the
unity. diffusion value. This is in qualitative agreement with the
Computations are performed in a square domain with a&xperiments of Bouissou, Perrin, and Tabelifi$] who
circular seed, initially ati=0, placed in the center. The melt, found thato* does not depend on the transverse component
at uj,=—A, enters from the top boundary with a uniform of the flow. Note that in the presence of flow the horizontal
inlet velocity U, and leaves through the bottom boundary.tips grow slightly upwards due to the asymmetry of the heat
Symmetry boundary conditions are appliedxat0 and the fluxes on the sides of the horizontal arms. The evolution of
side boundary of the domain. The phase-field and energihe downstream arm in the wake of the crystal is retarded
equations are solved using an explicit Euler schddg relative to the diffusion case, because of advection of heat
while the mass and momentum equations are integrated uffom the upstream portion of the crystal. Moreover, the
ing an adapted version of the implicit multigrid code of downstream tip does not reach a complete steady state due to
Lilek, Muzaferija, and Peri¢18]. The tip radii are evaluated the ever-increasing size of crystal.
from the computed phase-field contours using the method The accuracy of the phase-field simulations with flow
detailed in Ref[4]. may be established by examining their convergence behavior
For a fixed supercooling of 0.55, Fig. 1 shows the com-in the thin-interface limit. Table | shows simulated steady-
puted evolution of dendritic crystals for three different an-state upstream tip velocities and radii for decreasing values
isotropy strengths without flowtop panelg and with flow  of the diffuse interface thicknegse., decreasing dimension-
(bottom panels It can be seen that for all anisotropy less diffusivity D in the limit of vanishing interface kinetics
strengths the shape of the crystals is significantly influencef,4]) and different grid sizes. For each of the anisotropy
by the flow. The upstream tip eventually reaches a steadgtrengths, converged results have been obtained.
state with a velocity that is much higher than the diffusive Let us now compare our results to the predictions of the
value, because the impinging flow reduces the thermatheory of Bouissou and Pé€l¢&1], which applies to the up-

TABLE I. Convergence study with flow: steady-state upstream tip velocity and radius for different grids
and diffuse interface thickness@s=0.55, Pr=23.1, andAx/Wy=0.4). T¢py denotes the CPU time in hours
on a HP-C200 workstatiorlyl, andN, are the number of grid points in theandy directions, respectively.

e Ud,/D D do /W Ny N, Vd,/D pldo Tepu
0.03 0.135 3 0.185 640 1280 0.0288 16.8 45
0.03 0.135 2 0.277 640 1280 0.0296 15.5 60
0.03 0.135 2 0.277 1024 2048 0.0286 14.9 120
0.03 0.135 1 0.554 1024 2048 0.0303 14.7 150
0.05 0.035 4 0.139 160 320 0.0265 8.10 3
0.05 0.035 4 0.139 288 576 0.0240 7.51 8
0.05 0.035 4 0.139 576 1152 0.0244 7.46 31
0.05 0.035 3 0.185 320 640 0.0248 7.48 17
0.05 0.035 2 0.277 512 1024 0.0247 7.61 70
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stream tip in the present simulations. The main result of the 0.5 T
transport of their theory is a supercoolingeRe number re- Pe P,
lationship ° .
04 F
a A
* [
A=Pecexp(Pe;—Pa)J {—Pecn+Pq i e =
1

X 2+f1"g(§)/@dé—n (5)

]/ﬁdn,

derived by assuming an isothermal parabolic tip growing in a
low Reynolds number Oseen type flow in two dimensions. In

growth Peclet number, Pe

€
0.01
0.03
0.05

Pe, (Oseen-Ivantsov)

Eqg. (5), Pe=Vp/(2D) is thegrowth Pelet number, where A=0.55 Pr=23.1
the subscript serves to distinguish it from the growth éet ] . . : ]
number obtained from simulations, {2eUp/(2D) is the 0'00 T o e s

flow Peclet number, and

9(¢) ={ ¢ erfqRe/2) + \2/(= Re)[exp( — Re/2

flow Peclet number, Pe;

FIG. 2. Variation of the growth Riet number with the flow

—exp —Rel/2) ]} erfd VRe/2 (6)

Peclet number, and comparison with the two-dimensional Oseen-

Ivantsov solutior(solid line) [11]. Both the growth and flow Réet
is a function that depends on the Reynolds number, Raumbers are evaluated using the actual tip ragider the open

=Up/v=2 Pg/Pr. Equationg5) and(6) reduce to the well-
known (two-dimensional Ivantsov relation in the absence of fit for the solid symbo
flow (Pe=0). The main result of the linear solvability part
of this theory is that the ratioof*)y/o* of the selection

Is.

symbols and dashed lines, and the ragigbased on the parabolic

steady-state growth equations for an isothermal interface

parameters without and with flowhere o* is defined by Within_ the Oseen approximation. Consequentl_y, _in order to
p?V=2d,D/o*) is a function of a dimensionless parametermeaningfully compare our results to the predictions of the

x=a(Re)doU/(B%*V), where B=15% and a(Re)

Oseen-lvantsov relation and the linearized solvability theory,

= /2 Relm exp(— Re/2)/erfc(/Rel2). This function is such Which are both based on a parabolic shape, we muspjyise
that for y> ., wherey, is a critical threshold value much instead of the actual tip radiys when calculating the tip
larger than unity[11], this ratio has the asymptotic form Peclet number and the selection parameter for our simula-

(0*)olo* =1+by***whereb is a constant, whereas fgr

tions. For this purpose, we extracted the “parabolic” tip ra-

much smaller than unity, as is the case in the present simiius, pp, by measuring the slope afversusx” in the region
lations, this ratio should be independent of flow velocity, i.e.,0f the simulated interfaces behind the tip where this plot
(0*)o/o* =1. We verified and refined the latter prediction Pecomes a straight line. Note thg{ is likely to be the ex-
by evaluating numerically the complex solvability integral Perimentally measured tip radius since a parabolic fit of the

derived in Ref.[11] and found that ¢*)y/0* increases

tip shape has been traditionally used to extract this param-

our simulations. \

The tip Pelet numbers(Pe extracted from simulations A o *' .
are compared to the predicted values JHeom the Oseen- . 055 ;mc ‘,’,/G (c: P
Ivantsov relation[Egs. (5) and (6)] in Fig. 2 for A=0.55, % sl 003 &4 s P23l ]
Pr=23.1, flow Pelet numbers (P¢ ranging from 0 to 1 % 03 & -
(Re<0.1), and three different anisotropy strengtlas=0.01, § ez 00l m ]
0.03, and 0.05 While all the Pelet numbers increase with §; ir 00 =t 29 ]
increasing flow velocity, the ones from simulations are sig- £ e 4N .
nificantly below the prediction of the Oseen-lvantsov rela- 3 . °.“’§:°._ "y .
tion, with the gap between simulation and theory increasing é Hmsolva,,ﬂity/
with . This gap has been observed previously in a purely

diffusive regime(e.g., see Ref4]) and is due to the fact that 0
the interface shape deviates from a parabola close to the tip,
with this deviation increasing steeply with anisotropy

0.1

02

dimensionless flow parameter, ¥,

strength. By evaluating the local curvature of the simulated £ 3. variation of the ratio of the selection parameters without

interfaces as a function of the distanegalong the growth

and with flow as a function of the dimensionless flow paramgter

axis from the tip, we found that the deviation from a para-and comparison with the linear solvability theory for a parabolic tip
bolic shape is limited to a distance no larger than about ongi 1] (the theoretical lines for all three anisotropy strengths coin-
tip radius. Further away from the tip, the interface shape igide). Both the ratio of the selection parameters and the flow pa-

accurately fitted by a parabola= X2/2pp (wherex is the
coordinate perpendicular to the growth axim agreement
with the fact that a parabola is an exact solution of thesymbols.

rameter are evaluated using the actual tip ragiu®r the open
symbols and the radius, based on the parabolic fit for the solid
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radius. Usingp,, and the tip velocity/ from our simulations, earized theory is already present without flow. In this case,
we calculated a parabolic Blet number, Pg=p,V/2D, and the theory predicts reaspnably_ well the tip velocity over a
a selection parametear,’g =2Dd0/(p,2)V). As opposed to Pe, comparable range of anisotrogiyn two and even three di-

Pe, is in good agreement with Peredicted from Eqs(5) mensic_ms[lg]) despitethe presence of a tip distortion al-
and (6) for all flow and anisotropy strengths, as shown inready induced by anisotropic surface tension alone. Our re-

. - . ; * sults therefore lead to the interesting conclusion that the
Eg. 2. Inbaltjdltloln, It:'lg. 3 showst ok t?ﬁ rit'oggol‘{ﬁ fcl)f . shape deviation from a parabola on a short distance scale
€ parabolic selection parameters without and With Tow 15, , 1o tip of a fraction ofp, which is controlled by both

netir%'end?ggzsggtogftﬂz\“{.;ifr.fog dajslz?c;?)zl'ltn ?ﬁ(r:(z)er:ment anisotropy and flow, does not significantly influence the se-
Wi predict ! Iz vabiity Y- lection of “measurable quantities” such as the tip velocity

X ; "
| Ifn contrast, tF'g' :EShOdWS thtz:atthel {at'oz)ola qf S%’ and the tip shape on a larger scale of ten tip radii. Simula-
ection parameters based on ualtip radius vares by yi4ng at lower supercoolings, higher flow velocities, and in

_about_a factor of up to 2 over the range of flow Veloc't'esthree dimensions remain an important challenge for the fu-
investigated, even though is small. This result shows that ture

the flow distorts the interface shapend thus influencep)

within a distance of less than onefrom the tip. The tip We thank Professor Milovan Peric, Universitéamburg,
velocity, however, which is fixed by the transport relation Germany, for providing the multigricsiMPLE code. This
and o}, remains reasonably well predicted by the linearizedwork was supported by the National Science Foundation
solvability theory for not too large an anisotropy. This may (NSF) under Grant No. CTS-9501389 and NASA under
seem surprising since this theory assumes a purely parabol@ontract No. NCC8-94. The research of A.K. was also sup-
tip. We note, however, that this nontrivial feature of the lin- ported by U.S. DOE Grant No. DE-FG02-92ER45471.
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