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Velocity and shape selection of dendritic crystals in a forced flow
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The phase-field method is used to simulate the two-dimensional growth of a dendritic crystal in a forced
flow. The selection of the velocity and shape of the dendrite tip is investigated as a function of flow rate,
growth direction relative to the flow, as well as anisotropy strength, and the results for the upstream growing
tips are compared to existing theoretical predictions.

PACS number~s!: 68.70.1w, 81.30.Fb
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Dendritic growth is a well-known pattern formation pro
lem of both fundamental and practical interest. By now,
subtle role of crystalline anisotropy in the selection of t
dendrite tip size and velocity has been successfully expla
by microscopic solvability theory@1#. Moreover, this theory
has been recently validated by phase-field simulations
both two @2,3# and three dimensions@4# that focused on a
purely diffusive regime. On earth, however, dendritic grow
is almost unavoidably influenced by natural convection
the melt at low supercoolings@5#, and the effect of fluid flow
on the tip selection has remained somewhat unclear. On
theoretical side, models have been developed to predict
heat transport away from the tip is modified by flow in va
ous situations@6–11#. In addition, Ben Amar and Pomea
@12# have proposed scaling laws to characterize the tip o
ating state in different regimes, and Bouissou and Pelce´ @11#
have extended the linearized solvability theory, which
sumes a parabolic tip shape, to make quantitative predict
of velocity selection for the case of a uniform axial flow
two dimensions. On the experimental side, quantitative s
ies of flow effects on the tip selection have produced diff
ent results@13–16#, such that there is still a clear lack o
consensus.

In this Rapid Communication, we use a recently dev
oped phase-field approach@17# to simulate directly the fun-
damental equations of solidification with flow. This allow
us to investigate rigorously the effect of flow on the tip o
erating state for different anisotropy strengths and flow o
entations relative to the growth direction, and thus to cr
cally test quantitatively existing transport and solvabil
theories. Our approach is based on a methodology develo
by Beckermannet al. @17# that incorporates melt convectio
phenomenologically in the phase-field model. In particu
the usual no-slip condition at a sharp solid-liquid interface
enforced in this approach through a varying interfacial str
term in the diffuse interface region. In addition, the results
the asymptotic analysis of Karma and Rappel@2,4# for the
purely diffusive phase-field model, which extend to the co
vective case@17#, are exploited to render our computatio
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more efficient and to investigate the limit of vanishing inte
face kinetics~i.e., local equilibrium at the solid-liquid inter
face!.

Let us first summarize the basic equations of our mod
We use the anisotropic form of the phase-field equation~see
Ref. @4# and earlier references therein! given by

t~nW !] tc5¹•@W2~nW !¹c#2]cF~c,lu!

1]x@ u¹cu2W~nW !]cx
W~nW !#

1]y@ u¹cu2W~nW !]cy
W~nW !#, ~1!

wherec denotes the phase-field that varies smoothly from
in the solid to21 in the liquid across a diffuse interfac
region, andu5(T2Tm)/(L/Cp) is the dimensionless tem
perature field, whereTm is the melting point andL and Cp
are the latent and specific heat, respectively. The func
F(c,lu)5 f (c)1lug(c) is a phenomenological free en
ergy, wheref (c)52c2/21c4/4 is a double-well function
and g(c)5c22c3/31c5/5 is an odd function that pre
serves the minima ofc at 11 and21 whenu is different
from zero. The interface thickness is a function of the int
face normalnW : W(nW )/W05As(nW ), with As(nW )5(123«)
14«(cx

41cy
4)/u¹cu4, wherecx andcy are first derivatives

with respect tox andy and« is the anisotropy strength of th
surface energy. Using the results of Refs.@2,4#, the limit of
vanishing interface kinetics is achieved by choosingt(nW )
5t0@As(nW )#2 with l5a1W0 /d0 and t05a1a2(W0)3/
(d0 D), whered0 is the capillary length andD is the thermal
diffusivity, and wherea150.8839 anda250.6267 for the
functional forms off (c) and g(c) given above. Therefore
W0 is the only free parameter that has to be properly cho
to obtain converged solutions. Next, the energy equat
including the advective flux, can be written as@17#

] tu1~12f!VW •¹u5D¹2u1] tf, ~2!

where we have defined the solid fractionf5~11c!/2P@0,1#
and VW is the flow velocity. The conservation equations f
mass and momentum take the following forms@17#, respec-
tively,

¹•@~12f!VW #50, ~3!
:

du
R49 ©2000 The American Physical Society
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] t@~12f!VW #1~12f!VW •¹VW

52~12f!¹p/r1¹•@n¹~12f!VW #1MW l
d ,

~4!

wherep, r @in Eq. ~4! only#, andn are the pressure, densit
and kinematic viscosity, respectively. The termMW l

d is the
dissipative interfacial stress and is modeled asMW l

d

522hf2(12f)nVW /W0
2, in which the constanth is found to

be 2.757 by an asymptotic analysis of plane flow past
diffuse interface@17#. This term serves as a distributed m
mentum sink in the diffuse interface region that forces
liquid velocity to zero asf→1 and vanishes in the bul
liquid ~f50!. An important property of this interfacial stres
term is that the velocity profile near the diffuse interfa
smoothly approaches the profile for a sharp interface
f50.5 ~or c50!, regardless of the diffuse interface thic
ness. These and other details can be found in Ref.@17#. By
rescaling length and time byW0 and t0 , respectively, we
obtain a dimensionless version of the above equations. T
all dimensional variables are cast into dimensionless fo
as: Vt0 /W0→V, Dt0/(W0)2→D, nt0 /(W0)2→n,
(p/r)(t0 /W0)2→(p/r), while W0 and t0 are set equal to
unity.

Computations are performed in a square domain wit
circular seed, initially atu50, placed in the center. The mel
at uin52D, enters from the top boundary with a unifor
inlet velocity U, and leaves through the bottom bounda
Symmetry boundary conditions are applied atx50 and the
side boundary of the domain. The phase-field and ene
equations are solved using an explicit Euler scheme@4#,
while the mass and momentum equations are integrated
ing an adapted version of the implicit multigrid code
Lilek, Muzaferija, and Peric@18#. The tip radii are evaluated
from the computed phase-field contours using the met
detailed in Ref.@4#.

For a fixed supercooling of 0.55, Fig. 1 shows the co
puted evolution of dendritic crystals for three different a
isotropy strengths without flow~top panels!, and with flow
~bottom panels!. It can be seen that for all anisotrop
strengths the shape of the crystals is significantly influen
by the flow. The upstream tip eventually reaches a ste
state with a velocity that is much higher than the diffusi
value, because the impinging flow reduces the ther
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boundary layer thickness. The tip that grows in the horizo
tal direction normal to the flow also reaches an approxim
steady state with a velocity that is about the same as
diffusion value. This is in qualitative agreement with th
experiments of Bouissou, Perrin, and Tabeling@13# who
found thats* does not depend on the transverse compon
of the flow. Note that in the presence of flow the horizon
tips grow slightly upwards due to the asymmetry of the h
fluxes on the sides of the horizontal arms. The evolution
the downstream arm in the wake of the crystal is retard
relative to the diffusion case, because of advection of h
from the upstream portion of the crystal. Moreover, t
downstream tip does not reach a complete steady state d
the ever-increasing size of crystal.

The accuracy of the phase-field simulations with flo
may be established by examining their convergence beha
in the thin-interface limit. Table I shows simulated stead
state upstream tip velocities and radii for decreasing val
of the diffuse interface thickness~i.e., decreasing dimension
less diffusivityD in the limit of vanishing interface kinetics
@2,4#! and different grid sizes. For each of the anisotro
strengths, converged results have been obtained.

Let us now compare our results to the predictions of
theory of Bouissou and Pelce´ @11#, which applies to the up-

FIG. 1. Evolution of phase-field contours forD50.55 and
«50.01, 0.03, and 0.05~from left to right! without convection~top
panels! and with convection~bottom panels! for a flow velocity of
Ud0 /D50.07 and a Prandtl number of Pr523.1 ~3203640 CVs
with a uniform spacing ofDx/W050.4).
grids
s

TABLE I. Convergence study with flow: steady-state upstream tip velocity and radius for different
and diffuse interface thicknesses~D50.55, Pr523.1, andDx/W050.4). TCPU denotes the CPU time in hour
on a HP-C200 workstation;Nx andNy are the number of grid points in thex andy directions, respectively.

« Ud0 /D D d0 /W0 Nx Ny Vd0 /D r/d0 TCPU

0.03 0.135 3 0.185 640 1280 0.0288 16.8 45
0.03 0.135 2 0.277 640 1280 0.0296 15.5 60
0.03 0.135 2 0.277 1024 2048 0.0286 14.9 120
0.03 0.135 1 0.554 1024 2048 0.0303 14.7 150
0.05 0.035 4 0.139 160 320 0.0265 8.10 3
0.05 0.035 4 0.139 288 576 0.0240 7.51 8
0.05 0.035 4 0.139 576 1152 0.0244 7.46 31
0.05 0.035 3 0.185 320 640 0.0248 7.48 17
0.05 0.035 2 0.277 512 1024 0.0247 7.61 70
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stream tip in the present simulations. The main result of
transport of their theory is a supercooling-Pe´clet number re-
lationship

D5Pec exp~Pec2Pef !E
1

` H 2Pech1Pef

3F21E
1

h
g~z!/Azdz2hG J /Ahdh, ~5!

derived by assuming an isothermal parabolic tip growing i
low Reynolds number Oseen type flow in two dimensions
Eq. ~5!, Pec[Vr/(2D) is thegrowth Péclet number, where
the subscriptc serves to distinguish it from the growth Pe´clet
number obtained from simulations, Pef[Ur/(2D) is the
flow Péclet number, and

g~z!5$Az erfc~ARez/2!1A2/~p Re!@exp~2Re/2!

2exp~2Rez/2!#%/erfc~ARe/2! ~6!

is a function that depends on the Reynolds number,
[Ur/n52 Pef /Pr. Equations~5! and~6! reduce to the well-
known ~two-dimensional! Ivantsov relation in the absence o
flow (Pef50). The main result of the linear solvability pa
of this theory is that the ratio (s* )0 /s* of the selection
parameters without and with flow~wheres* is defined by
r2V[2d0D/s* ) is a function of a dimensionless parame
x5a(Re)d0U/(b3/4rV), where b515« and a(Re)
5A2 Re/p exp(2Re/2)/erfc(ARe/2). This function is such
that for x.xc , wherexc is a critical threshold value muc
larger than unity@11#, this ratio has the asymptotic form
(s* )0 /s* >11bx11/14 whereb is a constant, whereas forx
much smaller than unity, as is the case in the present si
lations, this ratio should be independent of flow velocity, i.
(s* )0 /s* >1. We verified and refined the latter predictio
by evaluating numerically the complex solvability integr
derived in Ref. @11# and found that (s* )0 /s* increases
about 1% over the range of 0,x,0.2 that corresponds to
our simulations.

The tip Péclet numbers~Pe! extracted from simulations
are compared to the predicted values (Pec) from the Oseen-
Ivantsov relation@Eqs. ~5! and ~6!# in Fig. 2 for D50.55,
Pr523.1, flow Pe´clet numbers (Pef) ranging from 0 to 1
~Re,0.1!, and three different anisotropy strengths~«50.01,
0.03, and 0.05!. While all the Pe´clet numbers increase wit
increasing flow velocity, the ones from simulations are s
nificantly below the prediction of the Oseen-Ivantsov re
tion, with the gap between simulation and theory increas
with «. This gap has been observed previously in a pur
diffusive regime~e.g., see Ref.@4#! and is due to the fact tha
the interface shape deviates from a parabola close to the
with this deviation increasing steeply with anisotro
strength. By evaluating the local curvature of the simula
interfaces as a function of the distance,z, along the growth
axis from the tip, we found that the deviation from a pa
bolic shape is limited to a distance no larger than about
tip radius. Further away from the tip, the interface shape
accurately fitted by a parabola,z5x2/2rp ~where x is the
coordinate perpendicular to the growth axis!, in agreement
with the fact that a parabola is an exact solution of
e
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steady-state growth equations for an isothermal interf
within the Oseen approximation. Consequently, in order
meaningfully compare our results to the predictions of
Oseen-Ivantsov relation and the linearized solvability theo
which are both based on a parabolic shape, we must usrp
instead of the actual tip radiusr when calculating the tip
Péclet number and the selection parameter for our simu
tions. For this purpose, we extracted the ‘‘parabolic’’ tip r
dius,rp , by measuring the slope ofz versusx2 in the region
of the simulated interfaces behind the tip where this p
becomes a straight line. Note thatrp is likely to be the ex-
perimentally measured tip radius since a parabolic fit of
tip shape has been traditionally used to extract this par
eter, even though it does not correspond to the actual

FIG. 2. Variation of the growth Pe´clet number with the flow
Péclet number, and comparison with the two-dimensional Ose
Ivantsov solution~solid line! @11#. Both the growth and flow Pe´clet
numbers are evaluated using the actual tip radiusr for the open
symbols and dashed lines, and the radiusrp based on the parabolic
fit for the solid symbols.

FIG. 3. Variation of the ratio of the selection parameters witho
and with flow as a function of the dimensionless flow parametex,
and comparison with the linear solvability theory for a parabolic
@11# ~the theoretical lines for all three anisotropy strengths co
cide!. Both the ratio of the selection parameters and the flow
rameter are evaluated using the actual tip radiusr for the open
symbols and the radiusrp based on the parabolic fit for the soli
symbols.
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radius. Usingrp and the tip velocityV from our simulations,
we calculated a parabolic Pe´clet number, Pep5rpV/2D, and
a selection parameter,sp* 52Dd0 /(rp

2V). As opposed to Pe
Pep is in good agreement with Pec predicted from Eqs.~5!
and ~6! for all flow and anisotropy strengths, as shown
Fig. 2. In addition, Fig. 3 shows that the ratio (sp* )0 /sp* of
the parabolic selection parameters without and with flow
nearly independent of flow rate for all« andD, in agreement
with the prediction of the linearized solvability theory.

In contrast, Fig. 3 shows that the ratio (s* )0 /s* of se-
lection parameters based on theactual tip radius varies by
about a factor of up to 2 over the range of flow velociti
investigated, even thoughx is small. This result shows tha
the flow distorts the interface shape~and thus influencesr!
within a distance of less than oner from the tip. The tip
velocity, however, which is fixed by the transport relati
andsp* remains reasonably well predicted by the lineariz
solvability theory for not too large an anisotropy. This m
seem surprising since this theory assumes a purely para
tip. We note, however, that this nontrivial feature of the li
.

et
s

d

lic

earized theory is already present without flow. In this ca
the theory predicts reasonably well the tip velocity over
comparable range of anisotropy~in two and even three di-
mensions@19#! despitethe presence of a tip distortion a
ready induced by anisotropic surface tension alone. Our
sults therefore lead to the interesting conclusion that
shape deviation from a parabola on a short distance s
from the tip of a fraction ofr, which is controlled by both
anisotropy and flow, does not significantly influence the
lection of ‘‘measurable quantities’’ such as the tip veloc
and the tip shape on a larger scale of ten tip radii. Simu
tions at lower supercoolings, higher flow velocities, and
three dimensions remain an important challenge for the
ture.
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