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Genuine saddle point and nucleation potential for binary systems
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A generalized nucleation potential is constructed for binary systems. The potential consists of the reversible
work of cluster formation plus additional terms arising from various kinetic effects. We show that the major
nucleation flux passes through the saddle p@armed the genuine saddle pgiof this generalized nucleation
potential. The generalized nucleation potential reduces to the kinetic potential of a unary system when one
component vanishes. The genuine saddle point concept provides a convenient way to identify systems and
conditions for which the ridge crossing phenomenon occurs. Our theory agrees approximately with exact
numerical results.

PACS numbes): 64.60.Qb, 05.20.Dd, 82.20.Db

The problem of determining nucleation flux trajectories inwhich physical systems ridge crossing is likely to occur; nor
systems with multiple order parameters is quite old and goeis it simple to find the location of the major nucleation flux
back, at least, to the early work of Re[dd on binary nucle- Wwhen it does occur.
ation. He proposed the idea that the major nucleation flux Nucleation is fundamentally a kinetic process in which an
passes through a saddle point\W?, the surface of revers- energetic barrier, the nucleation barrier, must be surmounted.

ible work for cluster formation. He then equated the rate Of-(le—rqgrnuciLe?:tclJor:\]/ebna:irgr?;Ipcl:a)ésrn?c;(ljllfir?gt?é?r égrtrlﬁaarcméitc':?g
nucleation of the new phase with the size of this flux. Sub 9y . Y

“ation, the relevant nucleation barrier is the kinetic potential
sequently, Langef2,3] developed a very general treatment \y< that consists of the reversible work of cluster formation

of nucleation rates in terms of the phase space probabilitynq the so-called kinetic terf@2,23. It has been shown that
flux flowing across a saddle point on the multidimensionalthe kinetic term plays a very important role in predicting the
energy surface of the system. This flux represents the rate gtansient nucleation kinetics for the case of a low thermody-
which metastable systems pass into a state of greater stabilamic barrier[24]. For binary systems, there should also
ity. The applicability of the saddle point concept has beerexist a relevant potential with a saddle point through which
demonstrated to be of great value in a wide variety of physithe major nucleation flux passes. The identification of this
cal and chemical systenisee, e.g., Ref4] and references Potential is of both practical and theoretical interest in binary
therein. Recently, the problem of the saddle point locationnucleation theory. Once the saddle point is located, the path-
was discussed in connection with the nucleation kinetics dur’®Y of the major nucleation flux can also be determined, and

ing a martensitic transformatidb] and also in the context of we can use the saddle point approximation to get the nucle-

o . . ation rate. Obviously, this potential will, in general, not co-
the kinetic pathway problem in the segregation prog6sd.  jncide with the reversible work, because the latter depends

However, at present our ability to relate the pathways of thq)my on thermodynamic parameters. However, it was found
nucleation flux to the saddle point location in a specific mul-recenﬂy that the relevant potential is not equivalent to the
ticomponent system is still incomplete. In this Rapid Com-kjnetic potentialWX either, since the major nucleation flux
munication we offer an answer to this question for the casgypasses the saddle point W in some casef25]. Thus,
of binary nucleation. the simple extension of the kinetic potential from a unary
In his pioneering study of the kinetics of binary nucle- system to a binary one is ineffective. Recently etial. [26]
ation, Reisg1] assumed that the major nucleation flux fol- proposed a generalized kinetic potential that governs the
lows the path of steepest descent through the saddle point afagnitude of the nucleation flux. Although the generalized
W€ [We call it the thermodynamic saddle poiiiSP) to  kinetic potential contains sufficient information to determine
distinguish it from saddle points on other surfa¢@his as- the pathway of the major nucleation flux, it does not give an
sumption was followed by other authd&-11], but Stauffer  explicit nucleation barrier, for technical reasons that are ex-
[12] provided an important clarification by showing that the plained below, and it is also difficult to work with. Here, we
flux direction at the TSP depends on the monomer impingepropose a potential for the nucleation barrier that determines
ment rates and, in general, does not follow the path of steeghe nucleation pathway for binary systems.
est descent. Following the initial suggestions of Stauffer and We consider the process of homogeneous nucleation of
Kiang [13] and Stauffe[12] that in certain cases the major liquid clusters in a metastable binary vapor of condensible
nucleation fluxbypassedhe TSP, Trinkau$14]| developed speciesA andB at a temperatur&. The basic equation gov-
an extensive theory for this phenomenon, which is referreerning the time dependent cluster concentratiims, ,ng ,t)
to as ridge crossing of th&/¢’. Recent numerical results may be written a$l]
have demonstrated quite clearly that ridge crossing can occur
[15-17. Although this subject has continued to receive at- df(Na.N, 1) - 9Ia(Na.Ng 1) _ 9Js(Na N 1) (1)
tention[18-21], at present it is still not easy to determine in gt INp dng ’
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wheren; (i=A,B) denotes the number éfmolecules in a  kinetic potentialWCK consists of a force teriv,, a kinetic
cluster. The component$y(na,ng,t) andJg(na,ng,t) of  termW,, a scaling termiV,, an anisotropy terniV,, and the

the nucleation fluxJ=(J,,Jg) are given by[1] reversible workw'ev:
\]A(nA,nB,t):_F(nA,nB)KX(nA,nB) WGK:WreU+Wo+W1+W2+W3, (11)
9 [f(na,ng, 1) @ Wy=kTInV,, (12
ana\ F(np,ng) /)’
W, =—KTInK, (na,ng)/Kx(nk ,ng), (13
Jg(Na,Ng,t)=—F(na,Ng)Kz (Na,N
(Na N )=~ F (s, Ne)KE (g ) WoeKTinh, ”
d f(nAvnB7t)
e\ E(nang) | ©) W3 = (kT/2)In(coS ¢p+r 2 sir? ¢b). (15)

Note that the kinetic termiV, defined here is different from
that used in other papel24-264. This new definition makes
the units in Eq.(10) consistent without changing the previ-
ous conclusion$24-24. It should also be noted that Egs.
(8)—(15) are exact results; they are valid for the whole size

F(na,ng)=Fo(Na,ng)exd —We(na,ng)/kT],  (4) space and for tra_nsient nucleation._ _ o _
Since nucleation involves barrier crossing kinetics, it

where Fo(n,,ng) denotes a prefactor that may depend onshould be possible to describe it in terms of an appropriate
the cluster composition, temperature, or other molecular paPotential, which we will call the generalized nucleation po-
rameters[27]. Equation(1) represents the conservation of tential WeN. The generalized nucleation potential is sup-
total cluster number density, and it holds when cluster coaP0osed to satisfy the following requirements} it includes
lescence is negligible. This will usually be the case for thePoth thermodynamic and kinetic effects) it reduces to the
nucleation stage before the growth stage starts. kinetic potential of the unary system when one of the com-

We employ the force vector field =(V,,Vg) derived ~ Pponents vanishes, i.e., when-0 or o«; and (iii) it has a
from the potentiatb = f/F asV=—V®. The direction ofV saddle point through which the major nucleation flux passes.
in the size space is denoted by an anglwith respect to the He_reafter, we refer to this sadd_le point as the genuine saddle
na axis, and it is related to the directiaf of the nucleation ~ Point (GSP as suggested by Nishiok&1].

whereF (n4,ng) denotes the metastable equilibrium concen
tration of clusters specified by, and ng and K;" is the
impingement rate for specid@s The functionF(n,,ng) is
given by

flux by [26] Obviously, the reversible workV"®” is not this general-
ized nucleation potential, and neither is the kinetic potential
tanf(na,ng,t)=tan¢(na,ng,t)/r, (5)  WK=W'+W,, since it does not always satisfy condition
(i) [25]. The generalized kinetic potenti&¥/®¥ includes
wherer=Kg3 /K, is a constant. enough information to determine the pathway of the major

Further we introduce time-dependent orthogonal curvilin-nucleation flux, but it does not satisfy conditi@i, since the
ear coordinateg and », in which & denotes the lines of flow force termW, and the scaling terriV, do not vanish when
of the vector fieldV and » the contour lines of constadp r—0 or . This feature becomes more visible if we rewrite
(referred to elsewherf28,29 as @ lines). The coordinate the unary nucleation flux as
transformation can be expressed[a6]

Ju(na, D) =F oK} (n*)exp( —WEK/KT), (16)
onp=h,6& cosf—h,67sin6, (6)
where the subscript (" denotes the values for the unary
Sng=h, 8¢ sin6+h,87 cosé, (7)  system, andV; is given by
where 6X (X=¢,7,n,5,ng) denotes an infinitesimal differ- K_ \prev _ i(i
ence along axis, andch; andh, denote the scale factors. By WS WA W, —kTln INp\F /)’ (17

employing Eqs(6) and(7), we obtain[26]
Comparing Egs(11) and(17), we can see that when—0,

Ja(Na,Ng,t)=(1/h;)VoFK, cosé, (8) the Wy and W, terms together reduce te kT In(dd/dny),
which represents the contribution of the gradient terms. At
Js(Na,Nng,t)= (1) VoFK sing, (9)  steady stateW®" = const, so that there is no extremum on it.

When the gradient term is remove?/°" reduces to the
whereVy=—d®(&,t)/d€. The magnitude of the nucleation kinetic potential WX, and the extremum appears. Similarly,
flux can be expressed as in the case of binary nucleatiow K is unlikely to possess a

saddle point, since the major nucleation flux decreases

J(na,ng,t)=FoKA (N} ,n§)exp(—WEK/KT), (100  monotonically along its flow patksee the figures of nucle-
ation flux in Ref.[17]), so condition(iii) is also violated.
where K, (n} ,n}) is the value ofK, at the TSP, whose Based on the above considerations, we omit the “gradient
location is denoted byn(} ,n%), andWCX is the generalized terms” (W, andW,) in Eq. (11) and suggest that the gen-
kinetic potential. As shown by Lét al. [26], the generalized eralized nucleation potential has the form
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WGN:WreU+W1+W3. (18) 40:|_....||||-||:|||...

. . L . --- W=244.5KT TsP
The generalized nucleation potential given by E®) obvi- — W47 6 KT W™'244.5 KT
ously satisfies conditiorti). The thermodynamic effect is [ ... log,gd

given by the reversible workV'® and the kinetic effect by
the termsW,; andW;. The attachment kinetics gives rise to
W,, and W; reflects any discrepancy in the impingement &
rates of the two species. It should also be noted that the&
anisotropy termW,; has been shown to be a major cause of &
ridge crossing[26]. Equation(18) is also consistent with
condition (ii). From Eqg.(15) we see that wher)=0, W,
=0. Asr—0, all the nucleation fluxes will lie along the,
axis with ¢—0 faster tharr, so thatW;=0. Our WCN is
also consistent with conditiofiii ). The pathway of the major
nucleation flux corresponds to the valley of the surface of the
generalized kinetic potential, and it can be approximately
determined by the equatidi26]

Vo [ng=22.7 ng=21.1
(Unit of J: m?s™ '
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As seen from Eq(lZ), the force temWo is a function that is (a) Ethanol molecules per cluster
independent of, so thatdW,/d»=0. The partial derivative
W, /dn may also be neglected, since Wyslouzil and Wilem- AXVLERRRA A RARARRARRARARRRALE REERAMARRA RRAAL:
ski [28,29 numerically found that theé lines were parallel TSP e Wo47.4 KT
for the systems that they examined. These numerical result 40 \ W'=47.4 kT —_— WON_40.7 KT
imply that h, is approximately constant along ea¢hline, na=7.7 ng=30.1 - logygd

hencedW,/dn=~0. Thus, Eq.(19) may be approximately

. (Unit of J: m>s™)
rewritten as

30
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dWCN/ 9p=0. (20)
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Consequently, ifWCN possesses a saddle point, the major
nucleation flux determined by E¢20) will pass through it.
Thus, the generalized nucleation potentéf" satisfies the
conditions(i)—(iii) if the ® lines for a particular binary sys-
tem are parallel. It should be noted that if the variatioMof
along a® line cannot be neglected, it may be necessary to§ 10

5
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mponent B molecules per cluster
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add toW®N a term corresponding to this variation. In the GSP |
present paper, we consider only the case that the variation c wo"=49.7 kT |
W, along a® line can be neglected. na=28.5 ng=21.9 /’
If the variation ofé is negligibly small in a local regior§ 0] SN ST PR RN T FUNT FERTE FENTE N0 F
can be determined in the whole size spacd 38} 10 20 30 40
(b) Component A molecules per cluster

tang=[s+(s*+r)¥?/r, (21
FIG. 1. Locations of the TSP and GSP in the size space. Super-
where imposed are the countour lines of lgd that roughly encompass the
region of major nucleation flux(@ Ideal ethanol-hexanol system
(ag=1.5a4=09). (b) PD2 system §,=2.25az=14). The physi-

K _ K 2\ K
S=— 1 Waa—"'Weg K _ "W cal properties of these two systems are listed in REf].
- 2 K 1 AA 2
Wyg Ny
(22 louzil and Wilemski[17,28,29. We solve the governing ki-
oK K netics equations at steady state using the technique of inver-
W "W i it ;
K K _ sion by partition [33] with the reverse rate constants

AB onpdng’ BB (mé ' determined by detailed balance and the self-consistent re-
versible work[29]. Figure 1 shows the locations of the GSP

Thus, the generalized nucleation poten#iN can be evalu- and TSP for a particular set of conditions for each system.
ated using Eq(18) with the help of Egs(21) and(22). For the ideal ethanol-hexanol system, the respective ethanol

Let us consider two examples that demonstrate the valugnd hexanol gas phase activities age=1.5 anday=9 (r is
of the genuine saddle point concept. The first one is the ideabout 1/56. Figure 1a) shows the locations of the GSP and
ethanol-hexanol system; the other is a model vapor-liquidiSP for this case as the intersections of the bold contour
system(PD2) that exhibits positive deviations from ideality. lines. We also superimpose the contour lines of,ddghat
Both of these systems have been studied in detail by Wysroughly encompass the region of the major nucleation flux.
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The location of the GSPn(,=21.8,ng=20.5) is very close TSP [17]. The latter example is particularly important be-
to the TSP (,=22.7,ng=21.1), and the major nucleation cause it illustrates the power of the GSP concept as a simple
flux passes through both of them. Figur@)lshows the re- Means of establishing when ridge crossing is occurring.

sults for the PD2 system for which the gas phase activities j_s| . and I.L.M. express their gratitude to the late Pro-
area,=2.25 andag = 14, respectively, and=1/54. We find  fessor Kazumi Nishioka of University of Tokushima. This
that the GSP1{,=28.5,ng=21.9) is located far away from work was supported by the Engineering Research Program
the TSP (4=7.7,ng=30.1). In this case, the major nucle- of the Office of Basic Energy Sciences, U. S. Department of
ation flux passes through the GSP, evidently bypassing thEnergy.
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