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Genuine saddle point and nucleation potential for binary systems
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A generalized nucleation potential is constructed for binary systems. The potential consists of the reversible
work of cluster formation plus additional terms arising from various kinetic effects. We show that the major
nucleation flux passes through the saddle point~termed the genuine saddle point! of this generalized nucleation
potential. The generalized nucleation potential reduces to the kinetic potential of a unary system when one
component vanishes. The genuine saddle point concept provides a convenient way to identify systems and
conditions for which the ridge crossing phenomenon occurs. Our theory agrees approximately with exact
numerical results.

PACS number~s!: 64.60.Qb, 05.20.Dd, 82.20.Db
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The problem of determining nucleation flux trajectories
systems with multiple order parameters is quite old and g
back, at least, to the early work of Reiss@1# on binary nucle-
ation. He proposed the idea that the major nucleation
passes through a saddle point onWrev, the surface of revers
ible work for cluster formation. He then equated the rate
nucleation of the new phase with the size of this flux. Su
sequently, Langer@2,3# developed a very general treatme
of nucleation rates in terms of the phase space probab
flux flowing across a saddle point on the multidimensio
energy surface of the system. This flux represents the ra
which metastable systems pass into a state of greater s
ity. The applicability of the saddle point concept has be
demonstrated to be of great value in a wide variety of phy
cal and chemical systems~see, e.g., Ref.@4# and references
therein!. Recently, the problem of the saddle point locati
was discussed in connection with the nucleation kinetics d
ing a martensitic transformation@5# and also in the context o
the kinetic pathway problem in the segregation process@6,7#.
However, at present our ability to relate the pathways of
nucleation flux to the saddle point location in a specific m
ticomponent system is still incomplete. In this Rapid Co
munication we offer an answer to this question for the c
of binary nucleation.

In his pioneering study of the kinetics of binary nucl
ation, Reiss@1# assumed that the major nucleation flux fo
lows the path of steepest descent through the saddle poi
Wrev. @We call it the thermodynamic saddle point~TSP! to
distinguish it from saddle points on other surfaces.# This as-
sumption was followed by other authors@8–11#, but Stauffer
@12# provided an important clarification by showing that t
flux direction at the TSP depends on the monomer impin
ment rates and, in general, does not follow the path of ste
est descent. Following the initial suggestions of Stauffer a
Kiang @13# and Stauffer@12# that in certain cases the majo
nucleation fluxbypassesthe TSP, Trinkaus@14# developed
an extensive theory for this phenomenon, which is refer
to as ridge crossing of theWrev. Recent numerical result
have demonstrated quite clearly that ridge crossing can o
@15–17#. Although this subject has continued to receive
tention@18–21#, at present it is still not easy to determine
PRE 611063-651X/2000/61~5!/4710~4!/$15.00
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which physical systems ridge crossing is likely to occur; n
is it simple to find the location of the major nucleation flu
when it does occur.

Nucleation is fundamentally a kinetic process in which
energetic barrier, the nucleation barrier, must be surmoun
The nucleation barrier plays a role similar to the activati
energy in conventional chemical kinetics. For unary nuc
ation, the relevant nucleation barrier is the kinetic poten
WK that consists of the reversible work of cluster formati
and the so-called kinetic term@22,23#. It has been shown tha
the kinetic term plays a very important role in predicting t
transient nucleation kinetics for the case of a low thermo
namic barrier@24#. For binary systems, there should al
exist a relevant potential with a saddle point through wh
the major nucleation flux passes. The identification of t
potential is of both practical and theoretical interest in bina
nucleation theory. Once the saddle point is located, the p
way of the major nucleation flux can also be determined, a
we can use the saddle point approximation to get the nu
ation rate. Obviously, this potential will, in general, not c
incide with the reversible work, because the latter depe
only on thermodynamic parameters. However, it was fou
recently that the relevant potential is not equivalent to
kinetic potentialWK either, since the major nucleation flu
bypasses the saddle point ofWK in some cases@25#. Thus,
the simple extension of the kinetic potential from a una
system to a binary one is ineffective. Recently, Liet al. @26#
proposed a generalized kinetic potential that governs
magnitude of the nucleation flux. Although the generaliz
kinetic potential contains sufficient information to determi
the pathway of the major nucleation flux, it does not give
explicit nucleation barrier, for technical reasons that are
plained below, and it is also difficult to work with. Here, w
propose a potential for the nucleation barrier that determi
the nucleation pathway for binary systems.

We consider the process of homogeneous nucleation
liquid clusters in a metastable binary vapor of condensi
speciesA andB at a temperatureT. The basic equation gov
erning the time dependent cluster concentrationsf (nA ,nB ,t)
may be written as@1#

] f ~nA ,nB ,t !

]t
52

]JA~nA ,nB ,t !

]nA
2

]JB~nA ,nB ,t !

]nB
, ~1!
R4710 ©2000 The American Physical Society
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whereni ( i 5A,B) denotes the number ofi molecules in a
cluster. The componentsJA(nA ,nB ,t) and JB(nA ,nB ,t) of
the nucleation fluxJ5(JA ,JB) are given by@1#

JA~nA ,nB ,t !52F~nA ,nB!KA
1~nA ,nB!

3
]

]nA
S f ~nA ,nB ,t !

F~nA ,nB! D , ~2!

JB~nA ,nB ,t !52F~nA ,nB!KB
1~nA ,nB!

3
]

]nB
S f ~nA ,nB ,t !

F~nA ,nB! D , ~3!

whereF(nA ,nB) denotes the metastable equilibrium conce
tration of clusters specified bynA and nB and Ki

1 is the
impingement rate for speciesi. The functionF(nA ,nB) is
given by

F~nA ,nB!5F0~nA ,nB!exp@2Wrev~nA ,nB!/kT#, ~4!

where F0(nA ,nB) denotes a prefactor that may depend
the cluster composition, temperature, or other molecular
rameters@27#. Equation~1! represents the conservation
total cluster number density, and it holds when cluster c
lescence is negligible. This will usually be the case for
nucleation stage before the growth stage starts.

We employ the force vector fieldV5(VA ,VB) derived
from the potentialF5 f /F asV52¹F. The direction ofV
in the size space is denoted by an angleu with respect to the
nA axis, and it is related to the directionf of the nucleation
flux by @26#

tanu~nA ,nB ,t !5tanf~nA ,nB ,t !/r , ~5!

wherer[KB
1/KA

1 is a constant.
Further we introduce time-dependent orthogonal curvi

ear coordinatesj andh, in which j denotes the lines of flow
of the vector fieldV andh the contour lines of constantF
~referred to elsewhere@28,29# as F lines!. The coordinate
transformation can be expressed as@30#

dnA5h1dj cosu2h2dh sinu, ~6!

dnB5h1dj sinu1h2dh cosu, ~7!

wheredX (X5j,h,nA ,nB) denotes an infinitesimal differ
ence alongX axis, andh1 andh2 denote the scale factors. B
employing Eqs.~6! and ~7!, we obtain@26#

JA~nA ,nB ,t !5~1/h1!V0FKA
1 cosu, ~8!

JB~nA ,nB ,t !5~1/h1!V0FKB
1 sinu, ~9!

whereV052]F(j,t)/]j. The magnitude of the nucleatio
flux can be expressed as

J~nA ,nB ,t !5F0KA
1~nA* ,nB* !exp~2WGK/kT!, ~10!

where KA
1(nA* ,nB* ) is the value ofKA

1 at the TSP, whose
location is denoted by (nA* ,nB* ), andWGK is the generalized
kinetic potential. As shown by Liet al. @26#, the generalized
-

a-

-
e

-

kinetic potentialWGK consists of a force termW0, a kinetic
termW1, a scaling termW2, an anisotropy termW3, and the
reversible workWrev:

WGK5Wrev1W01W11W21W3 , ~11!

W05kT ln V0 , ~12!

W152kT ln KA
1~nA ,nB!/KA

1~nA* ,nB* !, ~13!

W25kT ln h1 , ~14!

W35~kT/2!ln~cos2 f1r 22 sin2 f!. ~15!

Note that the kinetic termW1 defined here is different from
that used in other papers@24–26#. This new definition makes
the units in Eq.~10! consistent without changing the prev
ous conclusions@24–26#. It should also be noted that Eq
~8!–~15! are exact results; they are valid for the whole s
space and for transient nucleation.

Since nucleation involves barrier crossing kinetics,
should be possible to describe it in terms of an appropr
potential, which we will call the generalized nucleation p
tential WGN. The generalized nucleation potential is su
posed to satisfy the following requirements:~i! it includes
both thermodynamic and kinetic effects;~ii ! it reduces to the
kinetic potential of the unary system when one of the co
ponents vanishes, i.e., whenr→0 or `; and ~iii ! it has a
saddle point through which the major nucleation flux pass
Hereafter, we refer to this saddle point as the genuine sa
point ~GSP! as suggested by Nishioka@31#.

Obviously, the reversible workWrev is not this general-
ized nucleation potential, and neither is the kinetic poten
WK5Wrev1W1, since it does not always satisfy conditio
~iii ! @25#. The generalized kinetic potentialWGK includes
enough information to determine the pathway of the ma
nucleation flux, but it does not satisfy condition~ii !, since the
force termW0 and the scaling termW2 do not vanish when
r→0 or `. This feature becomes more visible if we rewri
the unary nucleation flux as

Ju~nA ,t !5F0Ku
1~n* !exp~2Wu

GK/kT!, ~16!

where the subscript ‘‘u’’ denotes the values for the unar
system, andWu

GK is given by

Wu
GK5Wrev1W12kT ln

]

]nA
S f

F D . ~17!

Comparing Eqs.~11! and ~17!, we can see that whenr→0,
the W0 and W2 terms together reduce to2kT ln(]F/]nA),
which represents the contribution of the gradient terms.
steady state,Wu

GK5const, so that there is no extremum on
When the gradient term is removed,Wu

GK reduces to the
kinetic potentialWK, and the extremum appears. Similarl
in the case of binary nucleation,WGK is unlikely to possess a
saddle point, since the major nucleation flux decrea
monotonically along its flow path~see the figures of nucle
ation flux in Ref.@17#!, so condition~iii ! is also violated.

Based on the above considerations, we omit the ‘‘gradi
terms’’ (W0 and W2) in Eq. ~11! and suggest that the gen
eralized nucleation potential has the form
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WGN5Wrev1W11W3 . ~18!

The generalized nucleation potential given by Eq.~18! obvi-
ously satisfies condition~i!. The thermodynamic effect is
given by the reversible workWrev and the kinetic effect by
the termsW1 andW3. The attachment kinetics gives rise
W1, and W3 reflects any discrepancy in the impingeme
rates of the two species. It should also be noted that
anisotropy termW3 has been shown to be a major cause
ridge crossing@26#. Equation ~18! is also consistent with
condition ~ii !. From Eq.~15! we see that whenf50, W3
50. As r→0, all the nucleation fluxes will lie along thenA
axis with f→0 faster thanr, so thatW350. Our WGN is
also consistent with condition~iii !. The pathway of the majo
nucleation flux corresponds to the valley of the surface of
generalized kinetic potential, and it can be approximat
determined by the equation@26#

]WGK/]h50. ~19!

As seen from Eq.~12!, the force termW0 is a function that is
independent ofh, so that]W0 /]h50. The partial derivative
]W2 /]h may also be neglected, since Wyslouzil and Wile
ski @28,29# numerically found that theF lines were parallel
for the systems that they examined. These numerical res
imply that h1 is approximately constant along eachF line,
hence]W2 /]h'0. Thus, Eq.~19! may be approximately
rewritten as

]WGN/]h50. ~20!

Consequently, ifWGN possesses a saddle point, the ma
nucleation flux determined by Eq.~20! will pass through it.
Thus, the generalized nucleation potentialWGN satisfies the
conditions~i!–~iii ! if the F lines for a particular binary sys
tem are parallel. It should be noted that if the variation ofW2
along aF line cannot be neglected, it may be necessary
add to WGN a term corresponding to this variation. In th
present paper, we consider only the case that the variatio
W2 along aF line can be neglected.

If the variation ofu is negligibly small in a local region,u
can be determined in the whole size space by@32#

tanu5@s1~s21r !1/2#/r , ~21!

where

s52
1

2

WAA
K 2rWBB

K

WAB
K

, WAA
K 5

]2WK

]nA
2

,

~22!

WAB
K 5

]2WK

]nA]nB
, WBB

K 5
]2WK

]nB
2

.

Thus, the generalized nucleation potentialWGN can be evalu-
ated using Eq.~18! with the help of Eqs.~21! and ~22!.

Let us consider two examples that demonstrate the v
of the genuine saddle point concept. The first one is the id
ethanol-hexanol system; the other is a model vapor-liq
system~PD2! that exhibits positive deviations from ideality
Both of these systems have been studied in detail by W
t
e
f

e
y
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lts
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louzil and Wilemski@17,28,29#. We solve the governing ki-
netics equations at steady state using the technique of in
sion by partition @33# with the reverse rate constan
determined by detailed balance and the self-consistent
versible work@29#. Figure 1 shows the locations of the GS
and TSP for a particular set of conditions for each syste
For the ideal ethanol-hexanol system, the respective eth
and hexanol gas phase activities areaE51.5 andaH59 (r is
about 1/56!. Figure 1~a! shows the locations of the GSP an
TSP for this case as the intersections of the bold cont
lines. We also superimpose the contour lines of log10J that
roughly encompass the region of the major nucleation fl

FIG. 1. Locations of the TSP and GSP in the size space. Su
imposed are the countour lines of log10J that roughly encompass th
region of major nucleation flux.~a! Ideal ethanol-hexanol system
(aE51.5,aH59). ~b! PD2 system (aA52.25,aB514). The physi-
cal properties of these two systems are listed in Ref.@17#.
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The location of the GSP (nA521.8,nB520.5) is very close
to the TSP (nA522.7,nB521.1), and the major nucleatio
flux passes through both of them. Figure 1~b! shows the re-
sults for the PD2 system for which the gas phase activi
areaA52.25 andaB514, respectively, andr .1/54. We find
that the GSP (nA528.5,nB521.9) is located far away from
the TSP (nA57.7, nB530.1). In this case, the major nucle
ation flux passes through the GSP, evidently bypassing
A

an

r-
s

he

TSP @17#. The latter example is particularly important b
cause it illustrates the power of the GSP concept as a sim
means of establishing when ridge crossing is occurring.
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