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Experimental observation of localization in the spatial frequency domain
of a kicked optical system
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An experimental realization of an optical ‘‘kicked’’ system is presented. It exhibits localization analogous to
that of the quantum ‘‘kicked-rotor.’’ In the experiment, free space propagating light is periodically kicked by
thin sinusoidal phase gratings, which produce high order diffractions and tend to increase the spatial frequency
band. The wave property suppresses this diffusive spread. The localization is realized in a regime near anti-
resonance of the system, which is also studied theoretically. The behavior in this regime is similar to that of
electronic motion in incommensurate potentials. A crucial part of the experimental system is the grating
in-phase positioning, which is done by using the Talbot effect.

PACS number~s!: 05.45.Mt, 42.25.Hz, 71.23.An
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The investigation of dynamical localization is part of th
field of ‘‘Quantum Chaos,’’ where the quantal behavior
systems which are chaotic in the classical limit is stud
@1–3#. The classical dynamics of chaotic systems resem
random motion, although it is generated by determinis
equations, and if the phase space is unbounded the ran
like motion leads to diffusion in this space. In the quantu
case, however, it is suppressed by quantum interference
ing to dynamical localization@4#, which is similar to Ander-
son localization in disordered solids@5#. So far, only one
type of direct experimental observation of localization f
the quantum kicked-rotor, which is the standard system
the exploration of the quantal suppression of classical ch
has been published using laser cooled Na and Cs atoms
magneto-optic trap@6#.

Since localization is actually a wave phenomenon it
expected to occur also for ‘‘classical’’ electromagne
waves@7,8#. In this work we present an experimental rea
ization of an optical ‘‘kicked’’ system. We examine the lo
calization properties in a specific regime near ‘‘antires
nances’’ of the system. Resonances and antiresonanc
our optical system are shown to be related to the Ta
effect, and were used by us to adjust critical parameter
the experimental system.

In the experimental system, schematically described
Fig. 1, a free space propagating light beam along thez axis is
successively ‘‘kicked’’ by identical thin sinusoidal phas
gratings. The gratings are parallel and have an identical s
ing z0 between them and aligned phases. In the process
successive kicks produce high order diffractions which te
to increase the beam’s spatial frequency band. Neverthe
as we see below, localization in the spatial frequency
main, with a characteristic exponential confinement, occ
after several kicks. In the ‘‘classical’’ regime, the diffractio
leads to nonlocalized diffusive behavior. This correspond
the case where the light intensities, instead of the elec
field amplitudes, are added up. In our experiment, a reg
of similar behavior is obtained when the grating phases
randomly positioned in the system, resulting in a destruc
interference that behaves as the destruction of wave co
ence.
PRE 611063-651X/2000/61~5!/4694~4!/$15.00
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The transverse (x coordinate! dependence of the ligh
electric field envelopec, is given, in the slowly varying
amplitude ~paraxial! approximation, by the following
Schrödinger-like propagation equation@9#,

i
]c

]z
52

l

4p

]2c

]x2
1k cos~kgx!(

N
d~z2Nz0!c. ~1!

It includes the ‘‘kick’’ d functions potential, resulting from
the sinusoidal phase gratings with a wave vectorkg and an
amplitudek, wherel is the light wavelength. Here the co
ordinatez along the direction of propagation plays the role
time for the kicked rotor. The light intensity is proportion
to ucu2.

Unlike the quantum kicked-rotor, our optical system lac
inherent discrete ‘‘energy’’ levels, in the light transverse sp
tial frequency domain. However, when the input light is
plane wave or a broad Gaussian beam, the sinusoidal gra
kicks confine the dynamics to discrete spatial frequen
modes of the gratings diffraction ordersn ~corresponding to
the angular momentum of the kicked-rotor!, which are
coupled between themselves. In the present work the in
mode isn50, and therefore only modes with integern are
involved. In this process, the repeated kicks tend to incre
the number of the diffraction orders. The propagation b
tween the kicks adds extra phases,gn2 quadratically depen-

FIG. 1. Schematic description of the free space ‘‘kicked’’ op
cal system with the array of phase gratings having an ident
spacing between them. Some of the light paths are shown.
R4694 ©2000 The American Physical Society



o

-

lo

on

ity
uc
-
ar
at
s
s

ra
de
cifi
-
al
f

in

ur
a

hi
t

s
lla
an
a

g
th

st
f

t-
th
an
a
Fi
f
, i
.

ca

i-
It

ial
me

ce

al

s

at-

e-

RAPID COMMUNICATIONS

PRE 61 R4695EXPERIMENTAL OBSERVATION OF LOCALIZATION IN . . .
dent on the diffraction ordern, where g5plz0 /lg
2 , and

lg52p/kg is the grating period. For largen, this factor be-
haves as a random number. The resulting one period ev

tion operator is Û5exp(2 ign̂2) exp@2 ik cos(kgx)#,

where n̂52 i @]/](kgx)#. As a result of the effective ran
domness of the factors exp(2 ign2), it turns out that the
overall contribution is weakened, resulting in exponential
calization@4,5,1#. Consequently, lown are mostly composed
of former low order diffractions~spatial frequencies!, which

add constructively. It is crucial that the propagatorÛ is iden-
tical for all kicks. Although exp(2 ign2) behave as random
numbers, these are identical for all intervals of free moti
As described below, our experiment was carried out in
special regime of the kicked optical system. It is the vicin
of antiresonance of which description and properties to
the two-sided kicked-rotor@10#. There, the localization be
havior can be approximated by the exactly solvable ‘‘line
kicked-rotor’’ ~shown to be equivalent to an incommensur
potential of a tight-binding model for electrons in solid!
@11#, with a linear, rather than quadratic,n dependent phase
in the free space propagation term exp(2 i tn).

In the experimental setup, the exact locations of the g
ings with aligned phases is critical. For that matter, we
veloped a special technique which brought us to a spe
regime of localization. This is the vicinity of ‘‘antireso
nances’’ of our optical system, which are related to half T
bot distances. The Talbot effect@12# is the occurrence o
optical self-imaging of periodic images along propagation
free space, at multiple distances of the Talbot length,zT

52lg
2/l (g52p). Thus, when the gratings spacing in o

system equals the Talbot length, it is equivalent to the c
where the free space propagation phase shrinks to zero~mod
2p), and the effect of all gratings is coherently added. T
corresponds to a resonancelike state. The system with gra
locations at half Talbot distances~odd multiples ofzT/2),
corresponds to antiresonance, where any two succes
~aligned! gratings cancel each other. This effect of cance
tion served us to accurately adjust the grating locations
align their phases. The alignment was done in a reverse w
from the last~output! grating towards the first, by checkin
that each added grating cancelled the diffractions due
former grating. After the alignment wascompleted, we
changedthe laser wavelength,l, to move awayof the trivial
antiresonance state. In the experiment, we aligned the sy
with the Argon-ion laser linel5501 nm, with a spacing o
z05(3/2)zT53.832 cm (g53p) for lg580 mm, and
made the measurement atl5496 nm, whereg52.97p.
The strength of the kick by the grating wask55.94. These
parameters are used in the numerical calculations~unless
stated otherwise!. It was important in our experimentto stay
near antiresonancebecause of the limited number of gra
ings, which was 9, due to absorption and finite sizes of
apertures and the optical elements’ cross section. Near
resonance, the transition from the diffusion regime to loc
ization can occur after a few kicks, as can be seen from
2, wheres[A^(n2^n&)2& is plotted. A large number o
kicks, which is experimentally inaccessible in our system
required to observe localization away from antiresonance
the calculations of Fig. 2, as well as in all other numeri
lu-
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calculations, the initial state isn50, corresponding to the
experiment, resulting in̂n&50.

The ‘‘long term’’ localized spectrum calculated numer
cally from Eq.~1! near antiresonance is presented in Fig. 3
has a ‘‘fir-tree’’ shape with a slightly faster than exponent
decay, as the analysis gives for localization in this regi
which corresponds to the linear-kicked-rotor@11# ~see dis-
cussion below and in@13#!. The ‘‘plateaus’’ have a more
moderate exponential decay.

The results for the spreading near antiresonance~pre-
sented in Fig. 3! can be understood from the corresponden
with the linear kicked rotor. Near antiresonanceg5(2M
11)p1dp, whereM is an integer (M51 in the present
experiment! and d!1. For n!n0 the local approximation
1
2 d(n01n)2'dn0n1C can be made when12 dn2!1, where
the constantC5 1

2 dn0
2. Using the fact that exp@2 ip(2M

FIG. 2. Numerical simulation of the evolution of the spati
frequency widths as a function of the number of kicksN, for a
‘‘classical’’ system~without interference! that exhibits diffusive be-
havior is shown in curvea, and for phase disordered grating
~where we added for each gratingN a random phase,wN , such that
gn21wNn, in curveb. A similar diffusive behavior was obtained
for randomg. Confinement behavior is obtained for ordered gr
ings, far from resonance or antiresonance in curvec ~with g
50.74p), and near antiresonance in curved ~with g52.97p, or
d520.03). For all graphs we usedk55.94, which matches the
experiment.

FIG. 3. Typical numerically calculated confined spatial fr
quency spectrumucu2 near antiresonance, withg52.97p ~or d5
20.03), afterN5200 kicks, having a ‘‘fir-tree’’ shape.
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11)n2#5exp(2 ipn), the free propagation part ofÛ can be
written approximately as exp@2 ig(n01n)2#'exp$2 i @(p
1t)n1const#%, wheret52pdn0. Because of the smallnes
of d, the parametert varies slowly with the center of the
expansionn0 and will be assumed constant. The resulti
local model can be defined by the one step evolution op
tor

Û5e2 ik cos(kgx)e2 i (t1p)n̂. ~2!

The ‘‘quasienergy’’ states of this evolution operator, whi
were obtained in@13# following @11#, are

cn~n!5ei (t/2)(n2n)~2 i ! un2nuJun2nuS k

2 sin@~t1p!/2# D ,

~3!

wheren is the center of localization andJn are Bessel func-
tions. If the Bessel functions decay rapidly, as is the c
when the index is much larger than the argument in mag
tude, the linear approximation holds sincet can be consid-
ered constant in a range where the Bessel function va
considerably. Therefore the approximation is expected to
where this argument is large, i.e., at the points wh
sin@(t1p)/2#50 or n0

( l )5(2l 21)/2d, wherel is an integer.
In the regions that are far from then0

( l ) the eigenfunctions fall
off locally as Bessel functions resulting in the rapid fall o
of intensity in Fig. 3. The ‘‘plateaus’’ in Fig. 3 are foun
starting from n0

( l )517,50,83 . . . (n0
( l ) is the point on the

‘‘plateau’’ that is the closest to the origin!, corresponding to
l 51,2,3 . . . for d523(5/501)'20.03. The width of the
‘‘plateaus,’’ Dn0 can be estimated from the requirement f
the linear approximation to hold for some distances~some-
what larger thanDn0) from n0

( l ) leading toDn0'aA(k/d)
wherea is a numerical constant@13#. This relation was tested
numerically and the valuea5A3/p was obtained@13#.

What is the form of the eigenfunctions of the model~1!
predicted by the linear approximation~2!? For smalld the
linear approximation holds for mostn, since the distance
between the regions where it fails grows like 1/d, while their
width is Dn0;A1/d. In the regions where the linear approx
mation holds the eigenfunctions of model~1! are superposi-
tions of few eigenfunctions of model~2! centered in regions
where the approximation fails@the values ofn of Eq. ~3! are
in such regions#. The reason for this form is that the rate
decay is determined by the local properties of the equat
while the position of the center and the value of the quas
ergy are determined by the normalization condition, and
matching between the regions where the linear approxi
tion with different t holds. The local approximation of th
eigenfunctions of Eq.~1! by functions of the form~3! was
tested in@13#.

The experimental data in Fig. 4 show the confinem
after the eighth and ninth gratings for the ordered grat
system, and also the spread spectrum without localization
a disordered system, where the gratings phases were
aligned. The difference between the results in the orde
and disordered systems demonstrates that an effect of i
ference was observed here. Note that the experimental r
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presented in Fig. 4 corresponds to a narrow range in
center of Fig. 3. The straight line fit shows an exponen
behavior. This was repeatedly seen in our other measurm
we made, which are not given here, with slightly differe
experimental parameters and for the various kick numb
The experimental profiles are confined with a localizati
width of s'324. The spatial frequency width found in th
experiment after each of the nine kicks is compared with
theoretical predictions in Fig. 5. It shows a good agreeme
even in the oscillating behavior, characteristic of the vicin
of the antiresonance. Exacly at antiresonance, where e
even grating cancels the spreading due to its former
grating, the oscillation of the width as a function of the gra
ing number has a period of 2 ~with values
sa ,0,sa ,0,sa ,0 . . . ) presenting a trivial confinement. Of
antiresonance, but still in its vicinity, there is a more co
plex variation ofs, as can be seen in the example of Fig.

FIG. 4. Experimental confined spatial frequency spectrum int
sity after the eigth and ninth gratings for the ordered~closed circles!
and disordered~open triangles! gratings. The initial state~direction!
is n50, within experimental accuracy.

FIG. 5. Experimental spatial frequency intensity widths after
each of the nine gratings~closed circles! compared with the theo-
retical results of Eq.~1! near antiresonance~1!, with g52.97p,
and away from antiresonance~–!, whereg5A521. The results of
the linear model~2!, marked by squares, are presented as well.
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and in curved of Fig. 2. We also checked in the experime
the possible influence of thefinite sizesof the input light and
the gratings, that are idealized in the theory, and found
significant effect on our data. More details of this aspect w
be given elsewhere@13#.

In conclusion, we have presented an experimental rea
tion of an optical ‘‘kicked’’ system exhibiting localization in
spatial frequency mode space. Free space propagating lig
periodically kicked by thin sinusoidal phase gratings. T
study concentrated on the near antiresonance regime, w
s
ed

ho

d

e
n

s
e
n

o
ll

a-

t is
e
ere

various theoretical properties and experimental observat
were discovered. This behavior differs from localiza-tion f
from antiresonance and in random systems and is simila
localization found for incommensurate potentials.
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