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Experimental observation of localization in the spatial frequency domain
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An experimental realization of an optical “kicked” system is presented. It exhibits localization analogous to
that of the quantum “kicked-rotor.” In the experiment, free space propagating light is periodically kicked by
thin sinusoidal phase gratings, which produce high order diffractions and tend to increase the spatial frequency
band. The wave property suppresses this diffusive spread. The localization is realized in a regime near anti-
resonance of the system, which is also studied theoretically. The behavior in this regime is similar to that of
electronic motion in incommensurate potentials. A crucial part of the experimental system is the grating
in-phase positioning, which is done by using the Talbot effect.

PACS numbgs): 05.45.Mt, 42.25.Hz, 71.23.An

The investigation of dynamical localization is part of the  The transverse X coordinat¢ dependence of the light
field of “Quantum Chaos,” where the quantal behavior of electric field envelopey, is given, in the slowly varying
systems which are chaotic in the classical limit is studiedamplitude (paraxia) approximation, by the following
[1-3]. The classical dynamics of chaotic systems resembleSchralinger-like propagation equatids],
random motion, although it is generated by deterministic
equations, and if the phase space is unbounded the random- gy N PPy
like motion leads to diffusion in this space. In the quantum =i EJFKCOS(ng)% o(z=Nzy)¢. (1)
case, however, it is suppressed by quantum interference lead-
ing to dynamical localizatiof4], which is similar to Ander-

son localization in disordered solid§]. So far, only one . . . i
. . . 2 the sinusoidal phase gratings with a wave ve#ipand an
type of direct experimental observation of localization for . . ‘
amplitudex, where\ is the light wavelength. Here the co-

the quantum kicked-rotor, which is the standard system foE)rdinatez along the direction of propagation plays the role of
the exploration of the quantal suppression of classical chao 9 bropag play

has been published using laser cooled Na and Cs atoms infg}?mffr the kicked rotor. The light intensity is proportional
magneto-optic trap6]. ; . .

Since localization is actually a wave phenomenon it isinhgrélrlfte dtir;?:rzltj:‘r‘];rgrklC’l'(ﬁg/_é?stoirﬁ ?#é ﬁpﬁtcf‘r:]fvtggézcﬁ
expected to occur also for “classical” electromagnetic,[ialI frequency domain g|3—/|owever, when 3}9 inout liaht ispa
waves|7,8]. In this work we present an experimental real- | q y b d.G . ,b the si P dg | arati
ization of an optical “kicked” system. We examine the lo- E_alrge Wa"f? or ah roda aussian d_eam, € sm_uslof| al grating
calization properties in a specific regime near “antireso- icks confine the dynamics to discrete spatial frequency

nances” of the system. Resonances and antiresonances gd?;] Oljlg;e r?wgarggg‘fu?%ﬁrgf“t%g Ol:?cingdc-?;gfvf/)r?igﬁlngréo
our optical system are shown to be related to the Talbo& 9 -
oupled between themselves. In the present work the initial

effect, and were used by us to adjust critical parameters i o o
the experimental system. mode isn=0, and therefore only modes with integeare

In the experimental system, schematically described i'nvolved. In this process, the repeated kicks tend to i_ncrease
Fig. 1, a free space propagating light beam alongthes is he number_ of the diffraction ordegs. The propagatlon be-
successively “kicked” by identical thin sinusoidal phase tween the kicks adds extra phasgs;” quadratically depen-
gratings. The gratings are parallel and have an identical spac-
ing zy between them and aligned phases. In the process, the
successive kicks produce high order diffractions which tend
to increase the beam’s spatial frequency band. Nevertheless,
as we see below, localization in the spatial frequency do-
main, with a characteristic exponential confinement, occurs
after several kicks. In the “classical” regime, the diffraction
leads to nonlocalized diffusive behavior. This corresponds to X
the case where the light intensities, instead of the electric “‘

z

It includes the “kick” & functions potential, resulting from

—>
—
—>
—>

field amplitudes, are added up. In our experiment, a regime

of similar behavior is obtained when the grating phases are

randomly positioned in the system, resulting in a destructive FIG. 1. Schematic description of the free space “kicked” opti-
interference that behaves as the destruction of wave cohetal system with the array of phase gratings having an identical
ence. spacing between them. Some of the light paths are shown.

1063-651X/2000/6(6)/46944)/$15.00 PRE 61 R4694 ©2000 The American Physical Society



RAPID COMMUNICATIONS

PRE 61 EXPERIMENTAL OBSERVATION OF LOCALIZATION IN . .. R4695
dent on the diffraction orden, where y= w)\zol)\é, and 50

Ag=2m/Kq is the grating period. For Iarge: this factqr be- 40 b

haves as a random number. The resulting one period evolu-

tion operator is U=exp(—iyn?) exg—ixcoskyx)], 30- a
wheren=—i[d/d(kgx)]. As a result of the effective ran- © c

domness of the factors exp(yn?), it turns out that the 20+

overall contribution is weakened, resulting in exponential lo- 10

calization[4,5,1]. Consequently, lomn are mostly composed | p

of former low order diffractiongspatial frequencigswhich o [T R A
add constructively. It is crucial that the propagdibis iden- 0 so 100 150

tical for all kicks. Although exp€iyn?) behave as random
numbers, these are identical for all intervals of free motion. FIG. 2. Numerical simulation of the evolution of the spatial
As described below, our experiment was carried out in g'€auency widtho as a function of the number of kickd, for a

special regime of the kicked optical system. It is the vicinity h‘;;zsr'ci:' s?;ifl?]mi(xv'gl?\‘j;ntzggr?:fbsu:‘igxz:g';f d(ciaIIfeL:JIS“g/]?attﬁ-gs
of antiresonance of which description and properties toucte '

. . N where we added for each gratifba random phasegy , such that
the two-sided kicked-rotof10]. There, the localization be- yn%+ @un, in curveb. A similar diffusive behavior was obtained

havior can be approximated by the exactly solvable “linear-o randomy. Confinement behavior is obtained for ordered grat-
kicked-rotor” (ShOWﬂ to be equiValent to an incommensurate‘ings’ far from resonance or antiresonance in CUCVéW":h 0%
potential of a tight-binding model for electrons in solids =0.747), and near antiresonance in curdtgwith y=2.97x7, or
[11], with a linear, rather than quadratitdependent phases &=-0.03). For all graphs we used=5.94, which matches the
in the free space propagation term expgn). experiment.

In the experimental setup, the exact locations of the grat-
ings with aligned phases is critical. For that matter, we de<calculations, the initial state is=0, corresponding to the
veloped a special technique which brought us to a specifiexperiment, resulting iKin)=0.
regime of localization. This is the vicinity of “antireso- The “long term” localized spectrum calculated numeri-
nances” of our optical system, which are related to half Tal-cally from Eq.(1) near antiresonance is presented in Fig. 3 It
bot distances. The Talbot effeft2] is the occurrence of has a “fir-tree” shape with a slightly faster than exponential
optical self-imaging of periodic images along propagation indecay, as the analysis gives for localization in this regime
free space, at multiple distances of the Talbot length, Which corresponds to the linear-kicked-rofdr] (see dis-
:2)\5/)\ (y=2). Thus, when the gratings spacing in our CUSSion below and if13]). The “plateaus” have a more

system equals the Talbot length, it is equivalent to the casB10derate exponential decay.

where the free space propagation phase shrinks to(revd The _resylts for the spreading near antiresonafye-
21), and the effect of all gratings is coherently added Thiss’(?nteOI n F'g' BC‘?” be understood from the correspondence
' ' ith the linear kicked rotor. Near antiresonange= (2M

corresponds to a resonancelike state. The system with gratin ) ; L
locations at half Talbot distancésdd multiples ofz;/2), \fél)wf dmr, whereM is an integer =1 in the present
é(perlmenl and §<1. Forn<ng the local approximation

corresponds to antiresonance, where any two successi\z 2 2.
(aligned gratings cancel each other. This effect of cancella-? 8(no+n)*~dngh+C can be made whehon<1, where

tion served us to accurately adjust the grating locations aane constantC =3 no. Using the fact that eXp-im(2M
align their phases. The alignment was done in a reverse way,

from the last(outpud grating towards the first, by checking 0

that each added grating cancelled the diffractions due the

former grating. After the alignment wasompleted we 101

changedhe laser wavelength,, to move awayf the trivial

antiresonance state. In the experiment, we aligned the system -201

with the Argon-ion laser line =501 nm, with a spacing of

2o=(3/2)z;=3.832 cm (=3m) for A\y=80 um, and o 307

made the measurement at=496 nm, wherey=2.97r. >al

The strength of the kick by the grating was=5.94. These £ 407

parameters are used in the numerical calculationmdess

stated otherwise It was important in our experimei stay -501

near antiresonancdédecause of the limited number of grat-

ings, which was 9, due to absorption and finite sizes of the -601

apertures and the optical elements’ cross section. Near anti-

resonance, the transition from the diffusion regime to local- -70 100 80 & 50 100
ization can occur after a few kicks, as can be seen from Fig.

2, whereo=\((n—(n))?) is plotted. A large number of :

kicks, which is experimentally inaccessible in our system, is FIG. 3. Typical numerically calculated confined spatial fre-
required to observe localization away from antiresonance. liquency spectrunhy|?> near antiresonance, with=2.97r (or 5=
the calculations of Fig. 2, as well as in all other numerical—0.03), afterN=200 kicks, having a “fir-tree” shape.
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+1)n?]=exp(—imn), the free propagation part of can be 0
written approximately as ekp-iy(no+n)?]~exp{—i[( N=8
+ 7)n+consi}, wherer=2mdn,. Because of the smallness 21 *.
of 6, the parameter varies slowly with the center of the NI YUY S SO I O
expansionny and will be assumed constant. The resulting %-4<
local model can be defined by the one step evolution opera- =
tor 64
0 = g~ ix coskgn) g=i(r+m)n. ?) -0 5 0 5 10
0
N=9
The *“quasienergy” states of this evolution operator, which -2
were obtained if13] following [11], are o laas
24 »
<
W (n):ei(T/Z)(n—V)(_i)\n—V\J ; 6
v = 2 sif (r+m)/2]) , , , , ,
©) -10 -5 0 5 10

wherev is the center of localization antj, are Bessel func-
tions. If the Bessel functions decay rapidly, as is the case FIG. 4. Experimental confined spatial frequency spectrum inten-
when the index is much larger than the argument in magnisity after the eigth and ninth gratings for the ordefeldsed circles
tude, the linear approximation holds sineecan be consid- gnd dlsord_erga:bpen t_rlangle)sgratlngs. The initial stat&direction
ered constant in a range where the Bessel function varig§ "=0. within experimental accuracy.
considerably. Therefore the approximation is expected to fail
where this argument is large, i.e., at the points whergresented in Fig. 4 corresponds to a narrow range in the
sif (7+ 7)/2]=0 orn{’= (21— 1)/25, wherel is an integer. center of Fig. 3. The straight line fit shows an exponential
In the regions that are far from thl%') the eigenfunctions fall behavior. This was repeatedly seen in our other measurments
off locally as Bessel functions resulting in the rapid fall off we made, which are not given here, with slightly different
of intensity in Fig. 3. The “plateaus” in Fig. 3 are found experimental parameters and for the various kick numbers.
starting fromn{’=17,50,8... (n{’ is the point on the The experimental profiles are confined with a localization
“plateau” that is the closest to the origincorresponding to  width of ~3—4. The spatial frequency width found in the
1=1,23... for §=—3(5/501)—0.03. The width of the experiment after each of the nine kicks is compared with the
“plateaus,” An, can be estimated from the requirement for theoretical predictions in Fig. 5. It shows a good agreement,
the linear approximation to hold for some distan¢gsme-  even in the oscillating behavior, characteristic of the vicinity
what larger thamng) from ng) leading toAng=a+/(«/6) of the antiresonance. Exacly at antiresonance, where each
wherea is a numerical constafi 3]. This relation was tested even grating cancels the spreading due to its former odd
numerically and the valua= \/3/7 was obtained13]. grating, the oscillation of the width as a function of the grat-
What is the form of the eigenfunctions of the mod&l ing number has a period of 2(with values
predicted by the linear approximatid@)? For smallé the  ¢4,0,04,0,0,,0...) presenting a trivial confinement. Off
linear approximation holds for most, since the distance antiresonance, but still in its vicinity, there is a more com-
between the regions where it fails grows likes1ivhile their  plex variation ofo, as can be seen in the example of Fig. 5,
width is Anyg~ \/1/5. In the regions where the linear approxi-

mation holds the eigenfunctions of modé&) are superposi- 12
tions of few eigenfunctions of mod€2) centered in regions T - N
where the approximation failshe values ofv of Eq. (3) are 104

in such regionk The reason for this form is that the rate of -
decay is determined by the local properties of the equation, -
while the position of the center and the value of the quasien- 64 -

ergy are determined by the normalization condition, and the © ° .
matching between the regions where the linear approxima- 419 o N
tion with different = holds. The local approximation of the o4 .+ + ;
eigenfunctions of Eq(1) by functions of the form3) was o

tested in[13]. O

The experimental data in Fig. 4 show the confinement
after the eighth and ninth gratings for the ordered grating
system, and also the spread spectrum without localization for F|G. 5. Experimental spatial frequency intensity widthafter
a disordered system, where the gratings phases were n@ich of the nine grating&losed circles compared with the theo-
aligned. The difference between the results in the orderegktical results of Eq(1) near antiresonancet), with y=2.97x,
and disordered systems demonstrates that an effect of inteind away from antiresonan¢e), wherey=\6—1. The results of
ference was observed here. Note that the experimental range linear model2), marked by squares, are presented as well.



RAPID COMMUNICATIONS

PRE 61 EXPERIMENTAL OBSERVATION OF LOCALIZATION IN . .. R4697

and in curved of Fig. 2. We also checked in the experiment various theoretical properties and experimental observations
the possible influence of tHenite sizeof the input light and  were discovered. This behavior differs from localiza-tion far
the gratings, that are idealized in the theory, and found nérom antiresonance and in random systems and is similar to
significant effect on our data. More details of this aspect willlocalization found for incommensurate potentials.

be given elsewhergl3]. . . .

In conclusion, we have presented an experimental realiza- 1S work was partially supported by the Division for
tion of an optical “kicked” system exhibiting localization in Research Funds of the Israel Ministry of Science, by the
spatial frequency mode space. Free space propagating light #S-Israel Binational Science FoundatiBSF), by the Min-
periodically kicked by thin sinusoidal phase gratings. Theerva Center for Nonlinear Physics of Complex Systems, and
study concentrated on the near antiresonance regime, whe¥ the Fund for Promotion of Research at the Technion.
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