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Calculating response functions in time domain with nonorthonormal basis sets
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We extend the recently proposed orderlgorithms for calculating linear- and nonlinear-response functions
in time domain to the systems described by nonorthonormal basis sets.
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[. INTRODUCTION Then the inverse matrix is defined as a matrix with super-
scripts that satisfies

As the first-principles calculations become more and more
important in various fields such as physics, chemistry, mate- 2 (s 1)abs, — 60
rials science, and recently geology and biology, the demand z By~ Ty
for calculation of larger and larger systems is growing rap-
idly. One of the answers to this demand is the so-calledyheres® is Kroneker's delta. Then théual basis set ¢?| is
orderN methods, which compute the electronic band strucyefined by
ture, the total energy, and other quantities with computa-
tional time and storage proportional k& the number of the
atoms in the system. For very large systems, these methods le®) =2 legh (S HPe, (€)
are much faster than the conventional diagonalization meth- P
ods, which require computational efforts proportionaNth

2

which is used only in formal description, but not in real

ThTr;.e ?rderN .m.et.hodtsa mta3t/ Ibe cIasstledbltnt.o ttr\:vo Stepsd'numerical calculations. These two basis setshaoethogo-
e first is minimizing the total energy to obtain the ground _, andbicomplete

state of the self-consistent one-particle Hamiltonian. The sec-

ond is extracting dynamic properties such as linear and

nonlinear-response functions from the Hamiltonian. While <(p“|qoﬁ>=2 (S‘l)“VSyB: 3, (4)

the first step has been extensively studiée-8] and also Y

comprehensive reviews are availap®10], the second step

has been studied by only a few papgt&—15, including the 2 lo )@= (5)

particle source methodl16,17] and theprojection method = |Pa/\® '

[18-21], which use the numerical solution of the time-

dependent Schainger equatioi22], andprojected random  wherel is the identity operator.

vectors[23]. An arbitrary state¢) can be expressed in original or dual
The purpose of this Rapid Communication is to extendbasis set,

the formalism of the projection method to nonorthonormal

basis setd24-28, on which many ordeN total energy

minimization methods are built, so that the fab initio |¢>:§ ¢a|¢a>:;8 ¢a|‘PB>SBa:§ bgle?), (6
calculation from the total energy minimization to the re- '
sponse function is possible. where ¢¢ and ¢, are the components in each basis set,

which are related to each other by

Il. NONORTHONORMAL BASIS SET

o _ o $p=2>. Spad™. (7)
In this section, let us review the description of a system B
with a Hilbert space spanned by finite numbers of linearly
independent nonorthonormal badés,)}. We distinguish a ~ The components df¢) are represented by a column vector
vector in the Hilbert space from its components by using thep=[#",#* ... ,¢"]' wheret indicates the transpose of a
braket notation for a vector in the Hilbert space and the tenvector or matrix, and its dugl¢| is represented by a row
sor notatior{24] and the matrix notatiof26] for its compo-  vector p=[ ¢ ,d5 ,...,. 5]

nents. o _ N o The lower-indexed components of an operator, the Hamil-
The overlap matrix is defined as a Hermitian matrix with tonjanH, for example, are defined in the original basis set by
subscripts,
Ha,B:<QDa|H|QDB>' (8)
Sas=(?al ¢5)=Sha- (1) Then the mixed-indexed components are defined by
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IlI. RANDOM VECTORS

HY= (e H|@g) =2 (STH*H,,. 9
b (e |(PB> Ey (57 i © Let us definerandom state$29,30 by

The manipulation of state vectors and operators is most con-
veniently pexpressed in the mixed repfesentation. For ex- |®>E§ |9"B>q’ﬁ' (22
ample,| ) =H|¢) becomesy®=X ;H*;¢”. Therefore, we
can introduce the matrix notation=H ¢ where the bar ~ ~
over the matrix symbol indicates the raise of the first index <®|EZ“ ® (e, (23
H={H"g}. Then Eq.(9) is rewritten as

where{|¢z)} and{(¢“|} are the basis set used in the com-

H= S 1H, (10 putation and its dual basis set, respectively. Their compo-
o nents
whereH is the matrix{H ,z}. Now H is not Hermitian ma- -
trix anymore, since Pe=dr=¢, (24)
ﬁT:(s*lH)T: Hf(s™Ht (11)  are the pseudorandom numbers that satisfy the statistical re-
lation
=HS 1=SHS '#H. 12
S TsHS A (12 (£ ER)= g, (25

Note that the full calculation of *, which costsO(N°) where ((-)) indicates the statistical average. Note that the
CPU time, is not necessary to obtain a good approximant ofnsformation of the random vector to its dual does not con-
H from a sparseéd [25,26]. One of the advantages Bf over  tain the overlap matri in Eq. (24), unlike the general rule

H is that power ofH is easily calculated without explicitly for usual vectors in Eq(7).

multiplying S™* [26], These random states may be also expressed by the eigen-
states ofH by substituting Eq(21) into Egs.(22) and (23),
HY¢)=23 Hepdf =2 3 |ea)(HN"5¢f (13 y
g “ P [©)=2 [Ep)(Egles),=3) [Eghs  (26)
Y

= @) (H"$). (14) B - -
« <<I>|=§$ f§<<p5|Ea><Eal=§ OB, (@D

The matrix form of the eigenvalue problem

where
> HepP=Eg® (15 ~
I (=2 (Edle)é,, (28
Y
becomes
o w=2 E5(@°E,). 29
H¢(EB):EB¢(E[3) (16) ga 25 §§<(ID | > ( )
and the dual of Eq(16) becomes Although we do not know the actual value &f , £4, (Egl,
~ — ~ or |E,), we can derive the statistical relation of the random
HERH=Ezd(Ep). (17 variables{ ; as follows:

The eigenvectors, Eq$l6) and(17), define the eigenstates ~
<<§§§ﬁ>>=§y) 25 (P ENEle ) ((E5E,))
[Eg) =2 [¢a)#*(Ep), (18 _ 3

= 21/: <EB|¢y><(Py|Ea>:<EB|Ea>: 5aB .

<Eﬁl=§ ba(Ep) (e, (19 (30)

. _ _ _ . This relation is very important, as we will see later.
which satisfy the biorthonormality and the bicompleteness ~ One of the useful features of random states is that the

~ expectation value of an operatrin terms of the random
(EolEp)=3up, (200 states gives trace of the operator,

2 |E)(Edl=1. (21) WRIXIP)=2, (€€ (e XIep) =2 X;
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which is identical to the trace calculated with an orthonormal V. TIME EVOLUTION

basis sefn) because The time-dependent Schitimger equations corresponding

to the eigenvalue equatioli$6) and(17) become

(X)=t[X]= 2 (nle)X(efiny @Y .
i g =Ha(1), (44
=aEB (eFlea)Xp=2 X;. (32) ; B
| i (D)= (OH. (45

IV. PROJECTED RANDOM VECTORS ) ) ]
The formal solutions of the time-dependent equations be-

Then the projected random vectors are defined by

come

®e = §(E—H)®= 2 Couthiy, (33 p(t)=e Mip(t=0), (46)
m
_ B(t)=p(t=0)e" ™M, (47
(DEf:(I)a(Ef_ H)=§ Cmtbin. 34 For numerically calculating the time evolution of the coeffi-

cients, we use the leap frog meth@®],
wherec,, are the coefficients for the Chebyshev polynomial

expansion of the step functidi2,31] B(t+At)=—2i AtH(1) + (t—Ab), (48)
[0 (x<0) D(t+At) =+ 2i Atp(t)H+ d(t—At), (49)
71 (x>0). (39

whereAt is the time step.
The random vectors multiplied by the Chebyshev polynomial
Tm(H) VI. LINEAR RESPONSE FUNCTION

When an impulse of perturbatio@nﬁ(t) is applied to the

Y= Tm(H)P, (36) , o _ )
system described by the Hamiltoni&h the time evolution

:ﬁ —PT (,_T) (37) of the wave function is described by the time-dependent
" me Schralinger equation in the matrix form
are calculated by using the recursion formulas d
— i— ®(t)={H+AS(t)}D(1), (50

Um+1= 2H Y= -1, (38) dt

T d - o

Y11= 29mH = Ym-1. (39 ~i 5 BO=BO{H+ASD), (51)

These coefficient vectors define the projected random o A

states whereA=S"A is the matrix ofA in the mixed representa-

tion. Note that the impulsé\d(t) contains all frequency
componentAe'“t, Assuming that the system was in a pro-
jected random stat@®=d¢_before the perturbation, the

wave function after the perturbation>0) becomes

[Pe)=2 lea)(@e)*= 2 [Egs, (4O
a <E¢

(Pe|=2 (De)ofel= Z (5(EJ @D

=3 ®(1)=DO(t) + 5P(1), (52
One of the useful features of projected random states is that D(t) = DO(t) + 5D(1), (53)
the expectation value of an opera®rwith them gives the

trace of the operator over the Fermi occupied states, where

L R ®O(t)=e iy (54)
WPeX|e)=_ 2 (ZELp))(EXIER) f’
a'=p =Ef — _ —
(42) s(H)=(—i)e M g (H-EpAde, (55
= > X2, (43) and
E,<Ef

PO (1) =g et 1M, (56)

where the statistical relation E¢30) is used.
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limit the integration time to a finite valu€= —In & », with §
being the relative numerical accuracy of E@9). Here
indicates the statistical average.

(57)

are the time evolution of unperturbed and perturbed vectors<.< 0

The linear response of an observaBlérom all electrons
is calculated as

B(t)=(+1)®e, AO(H—EqetHt

VIl. SUMMARY

SB(t)=2 Re{s &)Ef(t)gtl)fzof)(t)}, (58) We presented a generalized version of the projection

o method for linear and nonlinear response functions devel-
whereB=S"1B is the matrix ofB in the mixed representa- oped by litaka and othefd8-21. The method can now be
tion. In Egs.(55) and (57), projection operator$(H—E;) used with nonorthonormal basis sets, such as local basis sets
have been introduced to ensure that the excited states af@ orderN total energy calculations. As a result, it became

higher than the Fermi energy. Then the Fourier transformaP0SSible to calculate the response functions of very large
tion of 8B(t) gives the linear response of the noninteractingSyStéms by applying the projection method to the optimized

many-electron system to the perturbati@a‘i‘"t, Hamiltonian with a local nonorthonormal basis set.

T . )
XBA(w+in)=<<fodte+'<w+”f>t5|3(t)>>, (59

where the imaginary part of frequenay is introduced to
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