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Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior
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High-resolution numerical simulations of stationary inverse energy cascade in two-dimensional turbulence
are presented. Deviations from Gaussian behavior of velocity differences statistics are quantitatively investi-
gated. The level of statistical convergence is pushed enough to permit reliable measurement of the asymmetries
in the probability distribution functions of longitudinal increments and odd-order moments, which bring the
signature of the inverse energy flux. No measurable intermittency corrections could be found in their scaling
laws. The seventh order skewness increases by almost two orders of magnitude with respect to the third, thus
becoming of order unity.

PACS numbds): 47.10+g, 05.40-a, 47.27-i

The inverse energy cascade in two-dimensional Naviers.v=v(r)—v(0) at variousr’s in a nonlocal way. Closures
Stokes turbulence is one of the most important phenomena ion velocity increments-pressure gradients correlations have
fluid dynamics. In agreement with the remarkable predictiorbeen proposed by invoking the quasi-Gaussian behavior of
by Kraichnan in 19671], the coupled constraints of energy the statistics and quantitative predictions have been derived
and enstrophy conservation make the energy injected into tha this way[17]. The issue of quasi-Gaussian behavior is,
system flow toward the large scales. This is a basic differhowever, moot, as deviations are intrinsically entangled to
ence with respect to 3D turbulence, where energy flows tothe dynamical process of inverse energy cascade. Standard
ward small scales in a direct cascade. The dynamical processlculations(see, e.g.[18]) indeed permit one to derive the
of structuring and organization of the large scales by the3/2 Kolmogorov law for 2D turbulence: S(L3)(r)
inverse cascade is also of great interest for geophysical fluid ([ 5,y .113)=3/2er, wherer=r/r. The energy flux is de-

dynamics. First numerical and experimental observations ofoted bye and the fact that it goes upscale reflects into the
the inverse cascade and the ensuing Kolmogorov energyqsitive sign of the moment. Precise quantitative informa-
spectrum were obtained {i2—9]. The important point fore- {ions on the deviations from Gaussian behavior are, however,
seen in(4]is that the smallness of the skewness suggests th@tticult to obtain. Odd-order structure functions involve for
intermittency might be weak. This conjecture was later supgyample strong cancellations between negative and positive
ported by numerical simulationgl0,11] and experiments contributions and the 3/2 law itself could not be observed in
[12]: scaling laws are compatible with dimensional predic-previous studies, due to lack of resolution and/or statistical
tions and both transversal and longitudinal velocity prObab”'convergence. It is our purpose here to present the results of
ity distribution functions(PDF's) look not far from Gauss-  pigh-resolution numerical simulations aimed at quantita-

ian. The evidence stemming from experiments andjyely analyzing deviations from Gaussian behavior in the
simulations is that the inverse transfer takes place via clusyyerse energy cascade.

tering of small-scale equal sign vortices. Strong deviations  gpecifically, the 2D Navier-Stokes equation for the vor-
fr_om Gau55|ar_1|ty appear if the system has a finite size angcity w(r)=—Ay(rt) is

friction extracting the energy from the large scales is small

(or absent A pile-up of energy akin to the Bose-Einstein dio+Iw,y)=vAw—aw—Af, (eh]
condensation then takes place in the gravest nidfjdarge

scale vortices are formed and energy spectra steeper than th@ere ¢ is the stream function, the velocity =V*y
Kolmogorov one are observdd3]. Here we shall not con- =(Vy#,—V,#), andJ denotes the Jacobian. The friction
sider the condensation phase, concentrating instead on tligear term—aw extracts energy from the system at scales
inverse cascade statistics. Theoretically, inverse cascade egPmparable to the friction scalg,~ €2« %2 assuming a
joys a great advantage with respect to the direct one: thKolmogorov scaling law for the velocity. To avoid Bose-
limit of molecular viscosityy— 0 can be taken without any Einstein condensation in the gravest mode we chaose
harm in the equations of motion for velocity structure func-make 7y sufficiently smaller than the box size. The other
tions. At variance of 3D turbulence, the energy dissipatiorrelevant length in the problem is the small-scale forcing cor-
»{(Vv)?) is indeed vanishing whem—0. The absence of relation length¢, bounding the inertial range for the inverse
dissipative anomalies is the clue for the analytical solution ofascade ak<r <7y . We use a Gaussian forcing with cor-
inverse cascades in passive scalar advedtiénlél. Inter-  relation function (f(r,t) f(0,t"))=48(t—t") F(r/ls). The
mittency was found to be absent, even though the statistic§-correlation in time ensures the exact control of the energy
might be strongly differing from Gaussian. For 2D Navier- injection rate. The forcing space correlation should decay
Stokes inverse cascade, dissipative terms can again be digpidly for r>I; and we chooseF(x)=Fl?exp(—x¥2),
carded but the situation is complicated by pressure gradientsthereFg is the energy input. The numerical integration of
They couple indeed the statistics of velocity differencesEq. (1) is performed by a standard 2/3-dealiased pseudospec-
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FIG. 1. Compensated third order longitudinal structure function  FIG. 3. Structure functions of order(fower line) and 7(upper
S)(r)/(er). The dotted line is the value 3/2. Note the linear ver- line). The compensated curv&§™(r)/(C(?e?¥23)52 (lower line)
tical scale. The labels and 7y, indicate the forcing and the friction and S{")(r)/(C{? €% %372 (upper ling are shown in the inset.
length scales, respectively.

hypodissipative terms- ap(—Vz)‘pw replace friction, as in
tral method on a doubly periodic square domain df  Ref.[13].
=204& grid points. The viscous term in E¢l) has the role We also have performed simulations with several hypo-
of removing enstrophy at scales smaller thaand, as cus- Viscosity terms, which show that the magnitude of the hump
tomary, it is numerically more convenient to substitute it byin the compensated spectrum increases with the qudfr
a hyperviscous terrtof order eight in our simulationsTime  the large-scale dissipation. This effect is related to the pres-
evolution is obtained by a standard second-order Adamsence of large-scale vortical structures, which do not appear if
Bashforth scheme. After the system has reached stationaritihe order of hypodissipation is taken small enough, or if
analysis is performed over eighty snapshots of the velocitglamping is properly parametrizgd4]. The Kolmogorov

field equally spaced by one large-eddy turnover time. constant in
Let us now discuss the results. In Fig. 1 we present the
third-order longitudinal structure functio§(*)(r) compen- E(k)=C e¥3k 53 )

sated by the factor 1é¢), showing a neat plateau at the
value 3/2(in agreement with the Kolmogorov lavover a
range of almost one decade of scales. In Eig. 2 the ener
spectrumE(k) is presented, which displays Kolmogorov
scalingk™ %%, and the energy fluXI(k). Although at small
wave numbers it is visible the effect of large-scale friction on
the energy flux, nevertheledd(k)=e for almost one de-
cade. A careful inspection of the spectrgsee upper inset of
Fig. 2 shows that at low wave numbers there is a slight
deviation from the Kolmogorov slope. This can be recog- SV(r)=([&v-rM=CM(er)", 3
nized as a bottleneck effe¢see Ref[19] in the context of
the direct energy cascadavhich can be very marked when

is found to beC=6.0=0.4. Previous numerical simulations
Bnd experiments report values of the Kolmogorov constant
ranging from 5.8 to 7.06,8—13. The structure function con-
stants corresponding to Eq(2) are C®¥=3c?/5
=[\/37/2°°r(4/3)?]C=12.9+0.8, where the first two
equalities follow from isotropy and incompressibility and

For transverse momentsjs substituted in Eq3) by r, ,
perpendicular to it, an@, by C+. It is of interest to remark
that longitudinal and transverse velocity increments are un-

10? ' o0 - correlated, i.e.,g[(&rvf)(érv-ﬂ)])zo. The relatively
C large value ofC{?) implies a small skewness of the longitu-
o | 10¢ 7 dinal velocity differences (3/2)G(2))¥2=0.03. Albeit the
1 m longitudinal PDF looks close to Gaussian and quite symmet-

0.1 ric, nevertheless on a more quantitative ground asymmetries

z 107 110" 10 10% turn out to be quite strong as shown by the two curves of
w 0.2 — S®)(r) andS{”)(r) in Fig. 3. First, we can observe that their
104 | 01 LTIk ¥ scaling behavior is in agreement with Kolmogorov predic-

0 tions. The existence of fluctuations do not permit one to fully

0.1 ¢ ] rule out nonvanishing intermittency corrections, but they are

10 [0-2 : bounded to be minute and within the error bars with the

' present statistics. Second, the constantsGfré=130 and

1 10 100 1000 Cc{(P=14000, giving for the hyperskewne&{®/(C{%)5?

=0.22 andC{"/(C{¥)"?=1.8. The error bars can be esti-
FIG. 2. Energy spectruriE(k). In the lower inset the energy Mmated from rms fluctuations of compensated plots and for

flux I1(k) is shown. In the upper inset is the compensated spectrurthe seventh ordefwhich is of course the most delicatiney

e 3SRE(K). amount to 20%.
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FIG. 4. Antisymmetric structure function8™(r) of order n . . .
—46 In the )i/nset SE(r)/(CD) 23 232 (Iovse)r line and FIG. 6. Left: symmetric part of the longitudinal velocity differ-
S(B),(r.)/(C(LZ)eZ’SrZB)S (upI)er Iine.L ence PDF. Right: PDF of transverse velocity differences. The forc-

ing is restricted to a band of wave numbers. Gaussian distributions

_ . . are shown as solid lines.
Another striking evidence for the importance of the lon-

gitudinal PDF asymmetries is provided in Fig. 4. We con-

sentbyg2my@nt1in - \which are guaranteed to give
sider here the antisymmetric part of the PGSV (r)) - (577 d g

S oL smaller numerical values far=2,3. We prefer then to di-
—P(=6v(r)) (shown in Fig. 3 and Cal%’)latew antisym- - yectly compare in the inset of Fig. 5 the tails of the antisym-
metric  structure functions” such asS™’=[qu"(PA(U)  metric and the symmetric part of the POiffe latter being
—P(—u)) du. Both the fourth and the sixth moment show ayery close to Gaussian, see Fig. &he figure unambigu-
scaling compatible with Kolmogorov predictio8™(r)  ously shows that the antisymmetric part, although much
=C™(er)"3, with C™/(C{*)?~0.08 and C®/(C{*)*®  smaller than the symmetric one for moderate fluctuations,
=0.6. This indicates that the non-Gaussian antisymmetrigends to become comparable to(iemaining of course al-
part, although visually small, has imprinted all the relevantways below ij for large fluctuations. The predictions|[ih7],
scaling informations on the inverse cascade. although based on a closure explictly invoking small devia-
The increase of the skewness by almost two orders ofions from Gaussian behavior, turn out to be compatible with
magnitude from the third to the seventh order is particularlythe numerical results. This indicates that the closure is likely
informative. Indeed, whereaypebfiatness necessarily in- to be more robust and “nonperturbative” than its derivation
creases with the ordeia consequence of Hter inequali-  might suggest.
ties), (hypepskewness migha priori reduce. Our main mo- To address the issue of the expected universality of the
tivation was precisely to find out whether the skewness wagresent results with respect to the type of forcing we also
decreasing or increasing with the order and the answer to thiserformed numerical simulations with an injection rate char-
question shows that hyperskewness is definitely not a “smalhcterized by the spectral  correlation  function
parameter” to be used in perturbative schemes for the statigf (k,t) f(k’,t"))=8(t—t") S(k+k’) 5(1—kl;) [6]. At vari-
tical properties of the inverse energy cascade. Different adiance with the former choice, this forcing is limited to a nar-
mensionalizations might of course be considered, as, e.grow bandwidth in Fourier space but its spatial correlations
decay rather slowly. Averages have been taken over 20 snap-

o 00005 . — - - shots of the velocity field.

= ol b Odd-order structure functions and the antisymmetric part
= 0.0005 ; of the PDF do not show any visible dependence on the de-
«? e R tails of the energy input. Conversely, the symmetric part of
g 0001 Y K the PDF of velocity differences and even order moments are
1 _0.0015 | % F more sensitive. For the forcing limited to a shell of wave-
g % # numbers, both thésymmetrizedl longitudinal and the trans-

= -0.002 | . & : o .

B, ¢z verse pdfs are visually indistinguishable from Gaussian, as
S 00025 g | shown in Fig. 6.
g -0.003 | 1-,?’ el N 1 Deviations of kurtosis and hyperkurtosis from their
A, prxd 10 ) : ) )
e N~ 1234567 . Gaussian values are small and compatible with those pre
v ' Y sented in[12]. For the forcing localized in physical space,

©0.004 - ] . 5 4 . 5 the far tails of the PDF at scal€1;) tend to be(symmetri-
Sv/<iva 2 cally) broader. This tendency is due to the formation of small
L

vortices of size comparable 1@, which generate large ve-
FIG. 5. Antisymmetric part of the longitudinal velocity incre- 10City d'fferences(esF’eC'a”Y transverse oneacross a dis-
ments PDF, at three separations ranging from0.05 tor=0.1,  tance of the order of their size. The effect becomes, of
within the inertial range of scales. In the inset, the antisymmetriccourse, negligible at scales larger tHarbut it might affect
part of the PDF at=0.1 (lower point$ compared with the sym- the quality and the extension of the scaling region for even
metric part(upper points order structure functions. No coherent structure of size larger
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thanl; has ever been detected in our simulations. This conhave been shown to be important and should therefore be
firms that the inverse cascade does not proceed by vortdrcorporated and treated systematically in theoretical models
merging, as also observed in experimditg]. Note that the for the inverse energy cascade.
vortices formed at the forcing scaler smallej do not affect
odd-order structure functiodg0]. We are grateful to A. Babiano, G. Falkovich, K.
In conclusion, we have presented quantitative evidenceSawgzki, A. Mazzino, A. Pouquet, P. Tabeling, and V. Ya-
for deviations from Gaussian behavior of the velocity incre-khot for useful discussions. Support from the ESF-TAO pro-
ment statistics in the inverse energy cascade. Odd-ordgram (A.C.), from the network “Intermittency in Turbulent
structure functions display a power-law scaling compatibleSystems” under Contract No. FMRX-CT98-0175, and from
with classical Kolmogorov predictions. Numerical prefactorsINFM “PRA TURBO” (A.C. and G.B), is gratefully ac-
in adimensionalized structure functions are expected to bknowledged. Numerical simulations were performed at
universal with respect to the forcing statistics and have beetDRIS under Contract No. 991226, and at CINECA within
measured up to the seventh order. Despite the small value tiie project “Lagrangian and Eulerian statistics in fully de-
the skewness, asymmetries in longitudinal velocity statisticseloped turbulence.”
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