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Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior
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High-resolution numerical simulations of stationary inverse energy cascade in two-dimensional turbulence
are presented. Deviations from Gaussian behavior of velocity differences statistics are quantitatively investi-
gated. The level of statistical convergence is pushed enough to permit reliable measurement of the asymmetries
in the probability distribution functions of longitudinal increments and odd-order moments, which bring the
signature of the inverse energy flux. No measurable intermittency corrections could be found in their scaling
laws. The seventh order skewness increases by almost two orders of magnitude with respect to the third, thus
becoming of order unity.

PACS number~s!: 47.10.1g, 05.40.2a, 47.27.2i
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The inverse energy cascade in two-dimensional Nav
Stokes turbulence is one of the most important phenomen
fluid dynamics. In agreement with the remarkable predict
by Kraichnan in 1967@1#, the coupled constraints of energ
and enstrophy conservation make the energy injected into
system flow toward the large scales. This is a basic dif
ence with respect to 3D turbulence, where energy flows
ward small scales in a direct cascade. The dynamical pro
of structuring and organization of the large scales by
inverse cascade is also of great interest for geophysical
dynamics. First numerical and experimental observation
the inverse cascade and the ensuing Kolmogorov en
spectrum were obtained in@2–9#. The important point fore-
seen in@4# is that the smallness of the skewness suggests
intermittency might be weak. This conjecture was later s
ported by numerical simulations@10,11# and experiments
@12#: scaling laws are compatible with dimensional pred
tions and both transversal and longitudinal velocity proba
ity distribution functions~PDF’s! look not far from Gauss-
ian. The evidence stemming from experiments a
simulations is that the inverse transfer takes place via c
tering of small-scale equal sign vortices. Strong deviatio
from Gaussianity appear if the system has a finite size
friction extracting the energy from the large scales is sm
~or absent!. A pile-up of energy akin to the Bose-Einste
condensation then takes place in the gravest mode@1#, large
scale vortices are formed and energy spectra steeper tha
Kolmogorov one are observed@13#. Here we shall not con-
sider the condensation phase, concentrating instead on
inverse cascade statistics. Theoretically, inverse cascad
joys a great advantage with respect to the direct one:
limit of molecular viscosityn→0 can be taken without an
harm in the equations of motion for velocity structure fun
tions. At variance of 3D turbulence, the energy dissipat
n^(¹v)2& is indeed vanishing whenn→0. The absence o
dissipative anomalies is the clue for the analytical solution
inverse cascades in passive scalar advection@15,16#. Inter-
mittency was found to be absent, even though the statis
might be strongly differing from Gaussian. For 2D Navie
Stokes inverse cascade, dissipative terms can again be
carded but the situation is complicated by pressure gradie
They couple indeed the statistics of velocity differenc
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d rv[v(r)2v(0) at variousr’s in a nonlocal way. Closures
on velocity increments-pressure gradients correlations h
been proposed by invoking the quasi-Gaussian behavio
the statistics and quantitative predictions have been der
in this way @17#. The issue of quasi-Gaussian behavior
however, moot, as deviations are intrinsically entangled
the dynamical process of inverse energy cascade. Stan
calculations~see, e.g.,@18#! indeed permit one to derive th
3/2 Kolmogorov law for 2D turbulence: SL

(3)(r )

5^@d rv• r̂#3&53/2er , where r̂5r/r . The energy flux is de-
noted bye and the fact that it goes upscale reflects into
positive sign of the moment. Precise quantitative inform
tions on the deviations from Gaussian behavior are, howe
difficult to obtain. Odd-order structure functions involve fo
example strong cancellations between negative and pos
contributions and the 3/2 law itself could not be observed
previous studies, due to lack of resolution and/or statist
convergence. It is our purpose here to present the resul
high-resolution numerical simulations aimed at quanti
tively analyzing deviations from Gaussian behavior in t
inverse energy cascade.

Specifically, the 2D Navier-Stokes equation for the vo
ticity v(r,t)52Dc(r,t) is

] tv1J~v,c!5nDv2av2D f , ~1!

where c is the stream function, the velocityv5¹'c
5(¹yc,2¹xc), and J denotes the Jacobian. The frictio
linear term2av extracts energy from the system at sca
comparable to the friction scaleh fr;e1/2a23/2, assuming a
Kolmogorov scaling law for the velocity. To avoid Bose
Einstein condensation in the gravest mode we choosea to
make h fr sufficiently smaller than the box size. The oth
relevant length in the problem is the small-scale forcing c
relation lengthl f , bounding the inertial range for the invers
cascade asl f!r !h fr . We use a Gaussian forcing with co
relation function ^ f (r,t) f (0,t8)&5d(t2t8) F(r / l f). The
d-correlation in time ensures the exact control of the ene
injection rate. The forcing space correlation should dec
rapidly for r @ l f and we chooseF(x)5F0l f

2exp(2x2/2),
whereF0 is the energy input. The numerical integration
Eq. ~1! is performed by a standard 2/3-dealiased pseudos
R29 ©2000 The American Physical Society
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tral method on a doubly periodic square domain ofN2

520482 grid points. The viscous term in Eq.~1! has the role
of removing enstrophy at scales smaller thanl f and, as cus-
tomary, it is numerically more convenient to substitute it
a hyperviscous term~of order eight in our simulations!. Time
evolution is obtained by a standard second-order Ada
Bashforth scheme. After the system has reached stationa
analysis is performed over eighty snapshots of the velo
field equally spaced by one large-eddy turnover time.

Let us now discuss the results. In Fig. 1 we present
third-order longitudinal structure functionSL

(3)(r ) compen-
sated by the factor 1/(er ), showing a neat plateau at th
value 3/2~in agreement with the Kolmogorov law! over a
range of almost one decade of scales. In Fig. 2 the en
spectrumE(k) is presented, which displays Kolmogoro
scalingk25/3, and the energy fluxP(k). Although at small
wave numbers it is visible the effect of large-scale friction
the energy flux, neverthelessP(k).e for almost one de-
cade. A careful inspection of the spectrum~see upper inset o
Fig. 2! shows that at low wave numbers there is a slig
deviation from the Kolmogorov slope. This can be reco
nized as a bottleneck effect~see Ref.@19# in the context of
the direct energy cascade!, which can be very marked whe

FIG. 1. Compensated third order longitudinal structure funct
SL

(3)(r )/(er ). The dotted line is the value 3/2. Note the linear ve
tical scale. The labelsl f andh f r indicate the forcing and the friction
length scales, respectively.

FIG. 2. Energy spectrumE(k). In the lower inset the energy
flux P(k) is shown. In the upper inset is the compensated spect
e22/3k5/3E(k).
s-
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ty

e
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hypodissipative terms2ap(2¹2)2pv replace friction, as in
Ref. @13#.

We also have performed simulations with several hyp
viscosity terms, which show that the magnitude of the hu
in the compensated spectrum increases with the orderp of
the large-scale dissipation. This effect is related to the p
ence of large-scale vortical structures, which do not appe
the order of hypodissipation is taken small enough, or
damping is properly parametrized@14#. The Kolmogorov
constant in

E~k!5C e2/3k25/3, ~2!

is found to beC56.060.4. Previous numerical simulation
and experiments report values of the Kolmogorov constanC
ranging from 5.8 to 7.0@6,8–13#. The structure function con
stants corresponding to Eq.~2! are CL

(2)53CT
(2)/5

5@A3p/25/3G(4/3)2#C512.960.8, where the first two
equalities follow from isotropy and incompressibility and

SL
(n)~r !5^@d rv• r̂#n&5CL

(n)~e r !n/3. ~3!

For transverse moments,r̂ is substituted in Eq.~3! by r̂' ,
perpendicular to it, andCL by CT . It is of interest to remark
that longitudinal and transverse velocity increments are
correlated, i.e., ^@(d rv• r̂)(d rv• r̂')#&50. The relatively
large value ofCL

(2) implies a small skewness of the longitu
dinal velocity differences (3/2)/(CL

(2))3/250.03. Albeit the
longitudinal PDF looks close to Gaussian and quite symm
ric, nevertheless on a more quantitative ground asymme
turn out to be quite strong as shown by the two curves
SL

(5)(r ) andSL
(7)(r ) in Fig. 3. First, we can observe that the

scaling behavior is in agreement with Kolmogorov pred
tions. The existence of fluctuations do not permit one to fu
rule out nonvanishing intermittency corrections, but they
bounded to be minute and within the error bars with t
present statistics. Second, the constants areCL

(5).130 and
CL

(7).14 000, giving for the hyperskewnessCL
(5)/(CL

(2))5/2

.0.22 andCL
(7)/(CL

(2))7/2.1.8. The error bars can be est
mated from rms fluctuations of compensated plots and
the seventh order~which is of course the most delicate! they
amount to 20%.

n

m

FIG. 3. Structure functions of order 5~lower line! and 7~upper
line!. The compensated curvesSL

(5)(r )/(CL
(2)e2/3r 2/3)5/2 ~lower line!

andSL
(7)(r )/(CL

(2)e2/3r 2/3)7/2 ~upper line! are shown in the inset.
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Another striking evidence for the importance of the lo
gitudinal PDF asymmetries is provided in Fig. 4. We co
sider here the antisymmetric part of the PDFP„dvL(r )…
2P„2dvL(r )… ~shown in Fig. 5! and calculate ‘‘antisym-
metric structure functions’’ such asS2

(4)5*0
`u4

„P(u)
2P(2u)… du. Both the fourth and the sixth moment show
scaling compatible with Kolmogorov predictionS2

(n)(r )
5C2

(n)(er )n/3, with C2
(4)/(CL

(2))2.0.08 and C2
(6)/(CL

(2))3

.0.6. This indicates that the non-Gaussian antisymme
part, although visually small, has imprinted all the releva
scaling informations on the inverse cascade.

The increase of the skewness by almost two orders
magnitude from the third to the seventh order is particula
informative. Indeed, whereas~hyper!flatness necessarily in
creases with the order~a consequence of Ho¨lder inequali-
ties!, ~hyper!skewness mighta priori reduce. Our main mo-
tivation was precisely to find out whether the skewness w
decreasing or increasing with the order and the answer to
question shows that hyperskewness is definitely not a ‘‘sm
parameter’’ to be used in perturbative schemes for the st
tical properties of the inverse energy cascade. Different
mensionalizations might of course be considered, as,

FIG. 4. Antisymmetric structure functionsS2
(n)(r ) of order n

54,6. In the inset S2
(4)(r )/(CL

(2)e2/3r 2/3)2 ~lower line! and
S2

(6)(r )/(CL
(2)e2/3r 2/3)3 ~upper line!.

FIG. 5. Antisymmetric part of the longitudinal velocity incre
ments PDF, at three separations ranging fromr 50.05 to r 50.1,
within the inertial range of scales. In the inset, the antisymme
part of the PDF atr 50.1 ~lower points! compared with the sym-
metric part~upper points!.
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SL
(2n11)/(SL

(2n)) (2n11)/2n, which are guaranteed to giv
smaller numerical values forn52,3. We prefer then to di-
rectly compare in the inset of Fig. 5 the tails of the antisy
metric and the symmetric part of the PDF~the latter being
very close to Gaussian, see Fig. 6!. The figure unambigu-
ously shows that the antisymmetric part, although mu
smaller than the symmetric one for moderate fluctuatio
tends to become comparable to it~remaining of course al-
ways below it! for large fluctuations. The predictions in@17#,
although based on a closure explictly invoking small dev
tions from Gaussian behavior, turn out to be compatible w
the numerical results. This indicates that the closure is lik
to be more robust and ‘‘nonperturbative’’ than its derivati
might suggest.

To address the issue of the expected universality of
present results with respect to the type of forcing we a
performed numerical simulations with an injection rate ch
acterized by the spectral correlation functio
^ f (k,t) f (k8,t8)&5d(t2t8)d(k1k8)d(12kl f) @6#. At vari-
ance with the former choice, this forcing is limited to a na
row bandwidth in Fourier space but its spatial correlatio
decay rather slowly. Averages have been taken over 20 s
shots of the velocity field.

Odd-order structure functions and the antisymmetric p
of the PDF do not show any visible dependence on the
tails of the energy input. Conversely, the symmetric part
the PDF of velocity differences and even order moments
more sensitive. For the forcing limited to a shell of wav
numbers, both the~symmetrized! longitudinal and the trans
verse pdfs are visually indistinguishable from Gaussian,
shown in Fig. 6.

Deviations of kurtosis and hyperkurtosis from the
Gaussian values are small and compatible with those
sented in@12#. For the forcing localized in physical spac
the far tails of the PDF at scalesO( l f) tend to be~symmetri-
cally! broader. This tendency is due to the formation of sm
vortices of size comparable tol f , which generate large ve
locity differences~especially transverse ones! across a dis-
tance of the order of their size. The effect becomes,
course, negligible at scales larger thanl f but it might affect
the quality and the extension of the scaling region for ev
order structure functions. No coherent structure of size lar

c

FIG. 6. Left: symmetric part of the longitudinal velocity differ
ence PDF. Right: PDF of transverse velocity differences. The fo
ing is restricted to a band of wave numbers. Gaussian distribut
are shown as solid lines.
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than l f has ever been detected in our simulations. This c
firms that the inverse cascade does not proceed by vo
merging, as also observed in experiments@12#. Note that the
vortices formed at the forcing scale~or smaller! do not affect
odd-order structure functions@20#.

In conclusion, we have presented quantitative eviden
for deviations from Gaussian behavior of the velocity inc
ment statistics in the inverse energy cascade. Odd-o
structure functions display a power-law scaling compati
with classical Kolmogorov predictions. Numerical prefacto
in adimensionalized structure functions are expected to
universal with respect to the forcing statistics and have b
measured up to the seventh order. Despite the small valu
the skewness, asymmetries in longitudinal velocity statis
m
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have been shown to be important and should therefore
incorporated and treated systematically in theoretical mod
for the inverse energy cascade.
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