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Dual synchronization of chaos
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This paper treats the problem of simultaneously synchronizing two different pairs of chaotic oscillators with
a single scalar signal. The condition for dual synchronization is obtained explicitly for chaotic oscillators
represented by specific classes of piecewise-linear maps with conditional linear coupling. Dual synchronization
with conditional linear coupling is also demonstrated numerically for oscillators modeled by a number of
different classes of maps, and for oscillators modelled by delay-differential equations.

PACS numbgs): 05.45.Xt

Chaos synchronization, or synchronization of chaotic osof various different pairs of chaotic maps, including the lo-
cillators, provides a means to copy chaos; that is, to generagistic map, Chebyshev map, generalized tent map, and a
identical chaotic oscillations in different sites, by coupling class of cosine maps. The extension of the coupling condi-
the oscillators with suitable driving signal$,2]. The topic  tion also facilitates the implementation of dual chaos syn-
of synchronization of chaotic oscillators has attracted inchronization in practical physical systems. We propose a
creased attention in recent years because of possible rgicheme of performing dual chaos synchronization in two
evance to communications and biological syst¢&4]. One  pairs of nonlinear resonators which can be modeled by
of the interesting developments concerns the possibility oflelay-differential equations. The robustness of dual chaos
synchronizing multiple pairs of oscillators using just onesynchronization in delay-differential systems with respect to
communication channgb]. This is potentially useful in par- both parameter mismatches and additive noises is verified.
ticular to applications of chaos to spectrum-spreading com- To start with, we consider the case of a pair of maskers
munication systemgs]. and Y sending signals to a pair of slavesandy using a

This work concentrates on using a scalar signal to simulcommon channel in which their signals are linearly coupled.
taneously synchronize two different pairs of chaotic oscilla-

tors, which we refer to as dual synchronization. Figure 1 is a X(t+1)=1(X(1)), ()
schematic circuit diagram showing the situation of dual syn-
chronization. The outputs of a pair of master oscillators are Y(t+1)=g(Y(1)). 2

linearly coupled and fed to a pair of slave oscillators. The ] o )
signals from the slave oscillators are coupled in a similafi€re, we consider the coupling in a general way by linearly
way and subtracted from the signal received from the mascombining the two outputs of the master oscillators as

ters’ and the difference signal, or the joint error signal, is _

injected into each slave oscillator. When the slaves are syn- u(t) = e f(X(1)+e29(Y(1)), ©
chronized to their respective masters, the joint error signal '%vheresl, s,(0=<s,, £,<1) are coupling parameters. The

zero and no signal is injected into the slaves, so they are freéﬁave system contains two oscillators identical to the pair on

oscillating. The _fact that_ there_|s no cc_>upllng between thethe master side and each oscillator is injected with an error
two master oscillators distinguishes this problem from the_.

problem of using a single scalar signal to synchronize mu|_5|gna| e(t),
tidimensional chaotic oscillators, or hyperchaotic oscillators B

i i it ' o t+1)=f(x(t))+e(t), 4
with multiple positive Lyapunov exponen{g]. Tsimring X( )=f(x(t)+e(t) (4)

and SushchiK5] showed that dual synchronization is pos-

sible for oscillators modeled by some well-known discrete y(t+r1)=g(y/(t)+e(v), ®
maps when the gontr|but|ons to th_e_commo_n 5|gna_l are equal, ANSMITTER RECEIVER
i.e.,e1=¢e,=1/2 in Fig. 1. An explicit analytic condition for
synchronization was obtained for maps known as tent maps. Masier | X® o)) Shave [XO

In this Rapid Communication, we show further, the proof Ocilaor | Oscilaor |
of dual chaos synchronization can be extended to the case of w __* ‘ v
maps with coupling coefficients satisfying the linear condi- A ’
tion e;+e,=1. The extension of the coupling condition fa- Master Slave
cilitates synchronization between very different pairs of cha- L2 2[xo o] OxcTawr? [y

otic oscillators. We show numerically examples of dual
synchronization over a wide range of parameters in the case fig. 1. Schematic diagram of dual synchronization. Signals
from two independent master oscillators, representeX fand Y,
are sent to a system containing two corresponding slave oscillators,
*Electronic address: y-liu@acr.atr.co.jp represented byx and y. In the dual synchronization state
TElectronic address: davis@acr.atr.co.jp =X, y=Y.

1063-651X/2000/6()/21764)/$15.00 PRE 61 R2176 ©2000 The American Physical Society



RAPID COMMUNICATIONS

PRE 61 DUAL SYNCHRONIZATION OF CHAOS R2177

with TABLE I. Chaos maps used in numerical experiments of dual
synchronization.

e(t)=u(t)—v(t), (6)
Map f(x) p(x)
v(t)=e,f(x(1))+e29(y(1)). D Tent (- 1)l gx mod1 10=23...)
o . . _ Chebyshev cos|(cos x) Um1-x% (q=23...)
The dual synchronization state is definedxdt) = X(t), Logistic ax(1—x) U JKAI=x) (q=4)

y(t)=Y(t). Clearly such a dual synchronization state can_ ~
exist as a solution. For example, if the initial state is choserf°sine
sox(0)=X(0) andy(0)=Y(0), theerror signal is zero and
remains zero, so the oscillations are and remain identical. We
next show that the dual synchronization state can also be d@rs. Equation(12) gives the general condition for dual syn-
attracting solution by evaluating the Lyapunov exponent ofchronization of two pairs of one-dimensional maps with lin-
the slave system with respect to the synchronized sigje  ear couplinge; +e,=1.
=X(1), y(t)=Y(t). For dual synchronization of two pairs of chaotic oscilla-
Assume a small perturbation at tinteis Sx(t)=x(t) tors, we need to satisfy EqL2) even though each master is
—X(t) and dy(t)=y(t)—Y(t). Such perturbation evolves independently chaotic with [ In|D;(X)|p; (X)JdX>0 and
according to the linearized dynamics given by J In|Dy(Y)|pg(Y)dY>0. Note that even ifD| and [Dy| are
both greater than unity in magnitude, whBp andD 4 have
[ox(t+1),8y(t+1)]"=M(t)[ ox(t),dy(t)]" (8) opposite signs|(1—&;)D¢+e,Dy| may be smaller than
unity, so the coupling of the slave oscillators can reduce the

u cos+6) numerically available

whereT means transpose and magnitude of the deviation, and thus facilitate dual synchro-
nization. Certainly it can be seen that dual synchronization,
(1—e41)D4(1) —&,Dg(t) for example, is not possible for maps in whidh andD 4 are
MO=| —¢ Di(1) (1—£2)Dg(t) (9)  both greater than unity everywhere.

We give some specific examples where the condition for
dual synchronization can be analytically obtained for the
is a 2x2 Jacobian matrix withD¢(t)=df/dx|,—x) and  conditional coupling;+&,=1. The first one is two pairs of
Dg(t)Edg/dy|y=Y(t). identical oscillators represented by generalized tent maps,
In Ref. [5], dual synchronization was analytically proven i.e., f(x)=g(x)=(—1)"gxmodl, with q=2,3,4...,
for a special coupling case; =¢&,=1/2. Here, we show that where[qx] is the integer part ofjx. Since the invariant
such coupling constraint could be extended to a line density of the tent map is unity over the dom§&j, one can
+&,=1. Under this condition, one of the eigenvaluesf easily verify that|y(t)|=|(1—&;)D¢(t) +&,D4(t)| only
is identically zero, and the only nonzero eigenvalue is giverhas two possible values & —2e,|q andq with the prob-
simply by ability of [q%/2]/g? and[(q?+1)/2]/q?, respectively. Then
the maximum Lyapunov exponent is given by
y=(1—¢&1)Ds+eDy. (100 =(1/x)In(q¥|1—2¢4)), where x=q?/[q?%/2]. This yields the
condition for dual synchronization of two pairs of tent maps
The corresponding eigenvectoh{,A,) satisfiese A+ (1 a5 (1-q~X)/2<e,;<(1+q X)/2. For the usual tent map at
—&;)A,=0 and depends only on the ratio of the two COU-q=2, the condition is 3/& £,<5/8.
pling coefficients, remaining constant during the evolution of | ot us next consider the Bernoulli shift mag(t+1)
the slave system. The maximum Lyapunov exponent = 2x(tymod1, which also has a uniform invariant density. In
then given by =lim__.. 1LZZgIn|(t)[. Thus, we obtain  the case of two pairs of Bernoulli shift mapi(x)=g(x)
th_e condition for dual synchronization with the linear cou- =2x mod1, y, is always 2 and dual synchronization can
pling as never be achieved. However, if one choosééx)
=2xmod1 andy(x)=(—1)["™gxmod1 withq restricted to
be an even numbery; has two possible values as 2(1
—¢eq)tQeq and 2(1-e4) —qe4 with equal probability and
one then obtains\ = 1/2 IN4(1—&;)?>—q%3]. The condition
Now when the oscillation of the master oscillators is ergodicfor_dual synchronization is 3/z,<5/8 for q=2 and
we can replace the average over time by an average over tfie/30°+4—4)/(0?—4)<e,<(V50°—4—4)/(g?~4) for

variablesX andY using the invariant density(X,Y) to ex- ~ 4>2, with the strongest synchronizatiom € —«) at &;
press the condition as =2/(g+2) for both cases. It is worth noting that fqe>2,

dual chaos synchronization is not possible: gt e,=1/2.

We have done numerical tests of dual synchronization

f f In|(1—21)D¢(X) +21Dg(Y)|ps(X)pg(Y)dXdY=<O. using a number of different maps, including the logistic map,
(12) Chebyshev map, generalized tent map, and cosine map.

These maps together with their available invariant density

Here we use the fact that the dynamics of the two masters af8] are listed in Table I. For logistic and Chebyshev maps,
not correlated, s@(X,Y)=p:(X)py(Y), where p;(X) and the perturbations due to coupling may take the map out of its
pg(Y) are the invariant densities of the two master oscilla-usual domain, so we extended the domain by making the

1 L-1
lim — 20 In[(1—&1)Dy(t)+&,Dg(1)[<0.  (11)
t=

L—oo
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. FIG. 3. Attractors of(a) chaos oscillator 1 an¢b) chaos oscil-

1 lator 2 used in dual synchronizationu;=3.0, 6,=0.47, u,

FIG. 2. Lyapunov exponeit and synchronization tim&syncas 3.5, 6,=0.5m, T,/7=100.

functions of coupling coefficient for conditional coupling + ¢, heref and i f . d
=1. Solid line and circles denote and Ty, respectively for dual  Wheref andg are nonlinear functions; an T, are respec-

synchronization of two different pairs of chaotic oscillators: a pair Vel the response time and the time delay in the feedback.

of cosine maps £=2.2) and a pair of logistic mapsj&4). Pa- The synchronization signal is.generated by coupling out-
rameter range for successful dual synchronization corresponds futs from the two master oscillators agt)=e,f(X(t))
the range for negative Lyapunov exponent. +e,9(Y(t)). Meanwhile, the slave system possesses the

same set of oscillators with similar parameter values as those

map periodic, i.e., we také(x)=f(x=xn) for the logistic in the driver side, i.e.,

map and takef(x)=f(xx2n) for the Chebyshev map, i _ _ Te(t—
wheren is an integer. It was verified that for almost all pairs rdx(O)/dt+x(t)=f(x(t=T,))+et=T,), (19
in Table I, there exists a parameter range over which the rdy()/dt+y(t) =g(y(t—T,)) +e(t—T,). (16)

Lyapunov exponent at the dual synchronized state is nega-

tive. The only exceptional case is the coupling between twqyhere e(t)=u(t)—v(t) and v(t)=e,f[x(t)]+eg[y(t)].
pairs of Chebyshev maps whexenever becomes negative, Here, the delay time is assumed to be identical for all oscil-
implying no dual synchronism happens in this case. lators.

Figure 2 shows both the Lyapunov exponantind the Let us consider the dynamics of small perturbations about
synchronization timél'sy,c as functions of the coupling co- the dual synchronization state. Note that under the condition
efficient for dual synchronization of two pairs of chaotic 0s- ¢, =¢,=0.5 we can write
cillations generated from two different maps: a pair of cosine
maps together with a pair of logistic map§(x) = u cos) 7d( X+ dy)/dt= —(6x+ dy), (17
andg(x) =qgx(1—x)]. Here, Ty is defined to be the aver- ) ) )
age time for the error signal between the slave and mast&howing that there is convergence to the lifie=—dy.
systems, Ertt) = |x(t) — X(t)| +|y(t) — Y(t)|, to become less Then the condition for dual synchromzatlo_n dgpends only on
than a certain magnitud&{=10~° in Fig. 2). As can be seen the convergence to zero 6k(= — dy) on this line, which is
from the figure, there exists a wide range of the couplingdoverned by
coefficients over which\ is negative and dual synchroniza-
tion succeeds. It was further verified tHB,1/\|. The rdox(t)/dt=—ox(t) + 0.5 D¢(t—T)
r_esults demons_trate that the possmmty of dual .synchronlza- +Dgy(t—T)]8X(t—T,). (18
tion of two pairs of chaos maps is rightly guided by the
condition Eq(12) on the Lyapunov exponent calculated over Here D¢(t)=df/dX andD4(t)=dg/dY. These are time de-
separate chaotic attractors. We also note the fastest dual syffendent butsx(t) will tend to relax to zero if the second
chronization happens at;=0.35, £,=0.65 rather than at term on the right hand side is zero on average. This equation
g1=g,=1/2. It can be generally concluded that=e,  shows that in the case of this type of delay-differential oscil-
=1/2 is not necessarily the optimal coupling for dual syn-lators, as in the case of the one-dimensional discrete maps,
chronizing of two different chaotic attractors. the possibility of stable dual synchronization of chaos is gov-

In the second part of this paper, we discuss dual synchraerned by the statistical balance of the fluctuating values of
nization in chaotic systems described by a class of delayp; and Dy.
differential equations of one variable, for which the mecha- Now we show numerically that there are particular delay-
nism for dual synchronization is related to that of one-differential systems for which dual synchronization is pos-
dimensional maps. We consider the master system isible. We consider delay-differential equations describing a
described by two delay-differential equations with differentwell-known class of nonlinear resonator with a delayed feed-

nonlinearities as, back[9]. A typical form forf (andg) corresponding to ex-
perimental systemg9] is the cosine map,f(X;u,6)
rdX(t)/dt+ X(t)=f(X(t—T,)) (13) = u cosX+6), where ¢ is an offset parameter and is a

parameter usually proportional to the external input power.
Figure 3 shows an example of two chaotic attractors, ob-
dY(t)/dt+Y(t)=g(Y(t—T,)), (14 tained for two nonlinear resonators with different parameter
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0 the driver system, i.e.E=[a(X—X)+o(y—=Y)]/[a(X)
+o(Y)]. Figure 4 shows the normalized synchronization er-
. ror E as a function of parameter mismatd/u and the
. noise levelo for dual synchronizing the two different chaos
attractors shown in Fig. 3. It is demonstrated that the error
increases almost linearly with both the parameter mismatch
° and the noise level. One percent of parameter mismatch re-
4l sults in the synchronization error of 8% while one percent of
noise results in the error of about 4%. The results imply that
5 P— s s s the proposed dual synchronization in delay-differential sys-
-6 5 -4 3 2 -1 tems is robust to both the parameter mismatches and the
log(Aw/p), log 6 system noise, which is important for physical realization of
synchronizing systems.

In conclusion, we have shown that dual synchronization is
possible between two pairs of independent chaotic oscillators
with a generalized coupling. For dual synchronization in dis-
crete maps, we have shown analytically that dual synchroni-
zation is possible for a more general coupling than the con-
values, for which dual synchronization is possible. It is founddition described in the previous work5]. Numerical
that two oscillators in the slave side synchronize to theirsimulations using various chaos maps verified the effective-
corresponding oscillators in the master side within a timeness of our analysis. It was shown that a particular class of
interval typically about 100, . Numerical results show that practical physical systems described by delay-differential
dual synchronization is achieved over a wide range of paequations, nonlinear resonators which have been investigated
rameters f¢, ) and linear coupling coefficients:(,e5). in a large number of experiments on opto-electronic oscilla-

To evaluate the robustness of dual synchronization, wéors[9], can be dually synchronized. The effects of param-
use a normalized synchronization erBbwhich is defined as eter mismatches and noise, which need to be dealt with in
the ratio of the root-mean-squafrens) value of the synchro- actual experiments, are evaluated and the results verified the
nization error to the rms value of the chaotic waveform ofrobustness of the dual synchronization in such systems.

*0
0
o

log E
o
0

FIG. 4. Normalized synchronization err&rvs parameter mis-
matchA u/ u (open circley and noise levet (closed trianglesfor
w1=3.0, 6,=0.4m, u,=3.5, 6,=0.57, T,/7=100, £,=0.4, and
£,=0.6. The base of the logarithm is 10.
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