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Dynamics of a harmonic oscillator on the Bethe lattice
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The velocity autocorrelation functions for a classical coupled harmonic oscillator on the Bethe lattice are
exactly evaluated with use of the continued fraction formalism. A long-time tail oft23/2 leading to a vanishing
diffusion coefficient results from the localized excitations with a gap occurring due to the nonexistence of a
well-defined wave vector. The strongly colored fluctuating forces in the generalized Langevin equation are
specified by the memory functions with a tail oft23/2.

PACS number~s!: 05.60.2k, 05.20.2y, 05.40.2a, 82.20.Rp
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The harmonic oscillator is a canonical model in physics
any field. The dynamical properties have been investiga
e.g., to elucidate the phenomenological study of Brown
motion and to study the transport coefficients@1–7#. This
work is to show the velocity autocorrelation functions for
classical coupled harmonic oscillator on the Bethe latt
@8,9# as an ample study in higher dimensions. The time e
lution on the Bethe lattice has not been studied extensivel
the authors’ knowledge@10#. This work also presents
many-body model where we can obtain a long-time tail
t23/2 for autocorrelation functions. Understanding of a lon
time tail for correlation functions is one of the importa
problems in statistical physics@1,5–7,11–17#.

The continued fraction formalism to study the dynam
of a dynamical variableA is written @18# as

a0~ t !5~A~ t !,A!~A,A!21, ~1!

ā0~z!5
1

z1
D1

z1
D2

z1•••

~2!

for the Laplace transformā0(z)5*0
`dte2zta0(t). The scalar

product for classical systems is (A(t),A)[^A(t)A&
5Z21*dGA(t)Ae2bH, where b51/kBT,dG[) idpidqi ,
andZ5*dGe2bH with a canonical momentumpi and a ca-
nonical coordinateqi on a sitei. The continued fraction co
efficients$Dn% are written in a compact form@19,20# as

f n115(
i

S ]H

]pi

]

]qi
2

]H

]qi

]

]pi
D f n1Dnf n21 , ~3!

Dn5~ f n , f n!~ f n21 , f n21!21, ~4!
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with f 05A. The boundary conditions areD051 and f 21
50. Hence the knowledge of the static quantities$Dn% is
essential to understanding the dynamical behaviors of a
tem.

This procedure has been developed from the general
Langevin equation@21#

d

dt
A~ t !52E

0

t

dswA~ t2s!A~s!1 f A~ t !. ~5!

We may reformulate the memory function as

wA~ t !5~ f A~ t !, f A!~A,A!215D1b1~ t !, ~6!

b̄1~z!5
1

z1
D2

z1
D3

z1•••

. ~7!

We also may rewrite A(t)5(n50an(t) f n and f A(t)
5(n51bn(t) f n with time-dependent real functions includin
Eqs. ~1! and ~6!, respectively. We note thata0(0)5b1(0)
51. Some issues such as electron gas@22#, spin systems
@23–28#, and strongly correlated systems@29# have been dis-
cussed using the same continued fraction formalism in qu
tum systems. This formalism also gives us the knowledge
dynamical equivalence@30# such as Brownian motion with
two time scales@31# in different physical systems.

The Hamiltonian of a coupled harmonic oscillator read

H5
1

2m (
i

pi
21

k

2 (
^ i , j &

~qi2qj !
2, ~8!

with a particle massm and a force constantk. Particles in-
teract with nearest neighbors only. Both a momentumpi and
a coordinateqi have a single degree of freedom.

We investigate the dynamics of a momentum at a cer
site on the Bethe lattice,

A5pi . ~9!

Dynamics of Eq.~9! is site-independent due to the nature
the Bethe lattice. The Bethe lattice is characterized by
R2172 ©2000 The American Physical Society
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coordination numberl>2 and becomes the pseudolattice f
l .2. The harmonic oscillator chain is the case withl 52. A
site hasl first (N51) nearest neighbors and each first near
neighbor hasl 21 second (N52) nearest neighbors with
respect to the original site and so on. After all there
@ l ( l 21)N22#/( l 22) sites up to theNth nearest neighbors
A closed passage in the system is missing. Quite recently
Hubbard model on this lattice has been studied with the s
continued fraction method@22#. Next we obtain the coeffi-
cients$Dn% by extrapolating those obtained in a finite syste
rigorously.

For brevity we study the dynamics ofA5p0 in the finite
system withl 53 up to the second (N52) nearest neighbors
The summation in the first term of the right-hand side of E
~8! thus runs overi 50 to i 59. The numbering of sites is a
follows: 1 to 3 for the first nearest neighbors and 4 to 9
the second ones. Using Eq.~3! and f 05p0, we have f 1

52]H/]q05k( i 51
3 (qi2q0) and (f 1 , f 1)5^ f 1

2&53k/b. It
is clear thatD153k/m from Eq. ~4! because of (f 0 , f 0)
5^p0

2&5m/b. The integration for the one-dimensional va
ables,pi andqi , runs over2` through`. By succesive use
of Eq. ~3!, we havef 25(k/m)( i 51

3 pi . Then we haveD2

5k/m from ( f 2 , f 2)53(k2/mb). Note that the factor 35 l
disappears atD2. We havef 35(k2/m)(( i 54

9 qi22( i 51
3 qi),

( f 3 , f 3)5332(k3/m2b), and D352(k/m) with the factor
25 l 21. The next basis vector isf 45( i 54

9 pi andD45k/m.
Since this system has finite sites,f 550 and thus the Hilbert
space ofA5p0 is spanned by$ f n<2N% with N52. Here we
must note that$Dn<2N%5$ l ,1,l 21,1% in units of k/m51
with l 53. If we consider a system with more sites up
e.g., the third (N53) nearest neighbor, then we hav
$Dn<2N%5$ l ,1,l 21,1,l 21,1%. Consequently, we may con
clude that Eq.~4! is

$Dn%5$ l ,1,l 21,1,l 21,1,l 21, . . .% ~10!

on the Bethe lattice withl 53. This is valid for arbitraryl
>2. No space for proof. The continued fraction coefficie
$Dn% of Eq. ~10! are not perfectly alternating because of t
presence ofD1, however, the spectral density obtained fro
those has a clear gap as shown later. The perfectly alte
ing $Dn% have been shown in Ref.@25#, but the correspond
ing models have not been specified there. Such$Dn% have
not been obtained so far except the Bethe lattice@29#, but
may be obtainable in a system with a gap@16#.

We rewrite the functionF(t)5(2p i )21*dzeztF̄(z) such
as Eqs. ~1! and ~6! to introduce the spectral densit
ReF̄(2 iv1) as

F~ t !5
1

pE2`

`

dv cosvt ReF̄~2 iv1!, ~11!

with v15v1 i01. We substitute Eq.~10! for $Dn>1% in Eq.
~2! and$Dn>2% in Eq. ~7! to have, respectively,

ā0~z!5
~22 l !~z21 l !1 lA~z21a2!~z21b2!

2z~z21c2!
, ~12!

b̄1~z!5
l 222z21A~z21a2!~z21b2!

2~ l 21!z
, ~13!
st

e

he
e

.

r

,

s

at-

with a5Al 2121, b5Al 2111, and c5A2l in units of
the characteristic frequencyAk/m51. Equations~12! and
~13! hold the relationzā0(z)2152D1b̄1(z)ā0(z), which is
obtained through taking the inner product of Eq.~9! and both
sides of Eq.~5!.

The diffusion coefficient defined byD5*0
`dt^v i(t)v i&

5(mb)21*0
`dta0(t) with v i5pi /m is rewritten as

D5 lim
t→`

D~ t !5
1

mb
Reā0~2 i01!, ~14!

D~ t !5
1

pmbE2`

`

dv
sinvt

v
Reā0~2 iv1!. ~15!

For the coordination numberl 52, the system becomes
harmonic oscillator chain and includes no features of
Bethe lattice. Equation~10! reproduces the results$Dn%
5$2,1,1,1, . . . % obtained in Ref.@30#. Equations~12! and
~13! becomea0(z)51/Az214 and b1(z)5(Az2142z)/2,
respectively. We then have Eqs.~1!, ~6!, and~14! as

^pi~ t !pi&

^pi
2&

5J0~2t !, ~16!

wpi
~ t !5

2J1~2t !

t
, ~17!

D5
1

2mb
, ~18!

whereJ0(1) is the Bessel function of the order of 0~1!. Equa-
tion ~16! has a tail oft21/2, but Eq.~15! with t5` converges
to Eq. ~18!. This is identical to Eq.~14! with Reā0(2 i01)
51/2. Equation ~17! has a tail of t23/2. We have
*0

`dtwpi
(t)52 Reb̄1(2 i01)52. The finite values togethe

with Eq. ~18! are inconsistent with the fact that the particle
fixed up at a site with vibration on a uniform chain@5#. This
inconsistency is due to the existence of acoustic mode in
system with the boundary condition in the thermodynam
limit @6#. Furthermore the dynamical variable given by E
~9! does not show Brownian motion because there is a sin
time scale in both Eqs.~16! and ~17!. Equation~14! in this
system has no meaning of diffusion coefficient.

For the coordination numberl>3, the characteristic fea
tures of the Bethe lattice have appeared explicitly. Using
~12! the spectral density of Eq.~1! is

Reā0~2 iv1!5
Ab22v2

4

A12~a/v!2

12~v/c!2
Q~v!, ~19!

where Q(v)5u(uvu2a)u(b2uvu) with a step function.
Equation ~19! is determined by the conditions for the re
evant part of the spectral density@30# and corresponds to th
branch cuts in evaluation of the inverse Laplace transfo
The contribution from the isolated pole vanishes. Equat
~19! is identical to the spectra obtained by the phon
Green’s function@8,9#. The Bethe lattice withl>3 has a gap
in the spectral density. This feature must be compared to
case withl 52 as shown before. The reason why a gap op
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in the spectral density would be related to the missing of
acoustic lattice vibration due to the structure of pseudolat
with this case. The wave number cannot be defined conv
tionally and the localized excitation would take place.
similar gap in the one-particle density of states has b
reported in the Hubbard model on the Bethe lattice@29#.

Noting 0,a,b,c we can expand the factor in Eq.~19!
as

A12~a/v!2/@12~v/c!2#5 (
k50

`

@gk~ l !v22k1hk~ l !v2k#,

with

gk~ l !52(
j 5k

`

Aja
2 j c2(k2 j ),

hk~ l !52(
j 5k

`

Aj 2ka
2( j 2k)c22 j ,

Aj5~2 j 21!!!/ @2 j~2 j 21! j ! #,

andA0521. Furthermore, puttingv5b sinu and using an
identity, cos(btsinu)5(n52`

` cos 2nuJ2n(bt), we obtain the
velocity autocorrelation function of Eq.~1! with the Bessel
function of the order of even integer as

a0~ t !5
^pi~ t !pi&

^pi
2&

5 (
n52`

`

@Gn~ l !1Hn~ l !#J2n~bt!,

Gn~ l !5 (
k50

`
gk~ l !

b2k22

1

2pEa

p/2

du
~cosu!2

~sinu!2k
cos~2nu!,

~20!

Hn~ l !5 (
k50

`
hk~ l !

b22k22

1

2pEa

p/2

du
~cosu!2

~sinu!22k
cos~2nu!,

FIG. 1. Velocity autocorrelation functions for a fewl ’s together
with Eq. ~16!. A long-time tail for l>3 is t23/2 when we plot them
in a log-log scale not shown here. A tail oft21/2 for l 52. The
frequency unit isAk/m with a force constantk and a particle mass
m.
e
e
n-

n

with a5arcsin(a/b). Temperature dependence in Eq.~20!
disappears due to the normalization by^pi

2&5m/b.
Similarly we have the spectral density of Eq.~6! from Eq.

~13! as

Reb̄1~2 iv1!5
l 22

l 21
pd~v!

1
A~b22v2!@12~a/v!2#

2~ l 21!
Q~v!.

~21!

Unlike Eq. ~19! there is a term withd(v) in Eq. ~21! con-
tributed from a pole atz50 in evaluation of Eq.~11!. This is
because the alternation in$Dn>2% for Eq. ~7! is inverse to
that in$Dn>1% for Eq. ~2! @25#. We thus obtain Eq.~6! in the
similar way to Eq.~20! as

wpi
~ t !5

l

l 21 F l 221 (
n52`

`

I n~ l !J2n~bt!G ,

~22!

I n~ l !5 (
k50

`
Ak

b2k22

1

pEa

p/2

du
~cosu!2

~sinu!2k
cos~2nu!.

To illustrate the time evolutions of interest, we show t
numerical calculations of Eqs.~1!, ~6!, and~15! with use of
Eqs. ~11!, ~19!, and ~21! in Figs. 1, 2, and 3, respectively
The characteristic time scalet0 defined by the first zero poin
such thata0(t0)50 is roughly equal toA2/l . For t&t0,
we have ^pi(t)pi&/^pi

2&512 l t 2/2, b1(t)512t2/2, and
D(t)mb5t to be observed in Figs. 1, 2, and 3, respective

For t@t0, a glance at the analytical expressions in E
~20! and ~22! brings us a misleading tail oft21/2. A tail
observed in Figs. 1 and 2 is in factt23/2, which holds true for
arbitraryl>3, is originated from the structure of the spectr
density. To see this mathematically we go back to Eq.~11!
with Eq. ~19!. After performing the partial integration we
have

FIG. 2. Memory functions scaled byD15 l for a few l ’s to-
gether with Eq.~17!. Short time expansion givesb1(t)512t2/2
irrespective ofl. A tail of t23/2 is observed inb1(t)2b1(t5`)
when we plot them in a log-log scale.
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a0~ t !52
2

ptEa

b

dv sinvt
d

dv
Reā0~2 iv1!. ~23!

Since the first derivative in the vicinity of the boundari
diverges as (b2v)21/2 and (v2a)21/2, the integration in
Eq. ~23! would behave like the Bessel function as shown
Eq. ~16!. Thus, a tail oft23/2 for Eq. ~20! is verified. Similar
consideration is given to a tail in Eq.~22!. This tail reminds
us of higher dimension studies such as those in Refs.@1,11#.
If the first derivative converges, then we have a tail oft21 as
obtained in Refs.@16,17#, where the relaxation functions an
the memory functions for the current operator in the tw
band Bloch electrons have calculated.

FIG. 3. Time-dependent diffusion coefficients for a fewl ’s to-
gether with the case forl 52. A time tail of them is the same as i
the velocity autocorrelation functions, i.e.,t23/2 for l>3 andt21/2

for l 52. The vanishing convergent value is identical to Eq.~14!

with Reā0(2 i01)50.
h

F

-

The conventional Brownian motion with white noise
described by the frequency-independent spectral density
lead to the memory function of Eq.~6! written with d(v).
On the contrary, this system shows the strongly colo
spectral density. The strongly colored factor meant byQ(v)
guarantees the existence of a tail. The structure of the s
tral density determines the power of a tail. Therefore,
need physical grounds for such a structure; however, no s
candidates except the localized excitation can be allowed
this system. This is because there exists no well-defi
wave vector. The quantal case is expected to have a tai
Eqs.~1! and~6! due to a similar reason. A tail oft21 in Refs.
@16,17# originates from the spontaneous strongly color
quantum fluctuations.

If an impurity sits on the sitei 50, then we must replace
(l/2m)p0

21(ak/2)( j 51
l (q02qj )

2 for the corresponding
term in the Hamiltonian Eq.~8!. The massm0 and the force
constantk0 is written asl5m/m0 and a5k0 /k, respec-
tively. The autocorrelation function ofA5p0 is determined
by $Dn%5$ lla,a,l 21,1,l 21,1,l 21,1, . . .%. The detailed
study will be published sometime in the future@32#.

To summarize, we have investigated the dynamics o
classical coupled harmonic oscillator on the Bethe lattice
obtain the velocity autocorrelation functions with a tail
t23/2 leading to a vanishing diffusion coefficient. This ta
results from the localized excitaions with a gap in the sp
tral density due to the nonexistence of a well-defined wa
vector. The strongly colored fluctuating forcesf A(t) in Eq.
~5! are specified by the memory functions with a tail oft23/2.
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