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Dynamics of a harmonic oscillator on the Bethe lattice
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The velocity autocorrelation functions for a classical coupled harmonic oscillator on the Bethe lattice are
exactly evaluated with use of the continued fraction formalism. A long-time tail 8% leading to a vanishing
diffusion coefficient results from the localized excitations with a gap occurring due to the nonexistence of a
well-defined wave vector. The strongly colored fluctuating forces in the generalized Langevin equation are
specified by the memory functions with a tail ©f*2

PACS numbgs): 05.60—k, 05.20-y, 05.40-—a, 82.20.Rp

The harmonic oscillator is a canonical model in physics ofwith fo=A. The boundary conditions ar&y,=1 andf_;
any field. The dynamical properties have been investigateds 0. Hence the knowledge of the static quantit{es,} is
e.g., to elucidate the phenomenological study of Browniaressential to understanding the dynamical behaviors of a sys-
motion and to study the transport coefficiefiis-7]. This  tem.
work is to show the velocity autocorrelation functions for a  This procedure has been developed from the generalized
classical coupled harmonic oscillator on the Bethe latticedLangevin equatio21]
[8,9] as an ample study in higher dimensions. The time evo-

lution on the Bethe lattice has not been studied extensively to i _ Jt _
the authors’ knowledgd10]. This work also presents a at”v odS(PA(t SAS) +TaL). ®)
many-body model where we can obtain a long-time tail of .
t =3 for autocorrelation functions. Understanding of a long-We may reformulate the memory function as
time tail for correlation functions is one of the important B 1
problems in statistical physid4,5-7,11-1T. Pa(t) = (Ta(1). TA) (AA) 7= A4y (1), 6
The continued fraction formalism to study the dynamics 1
of a dynamical variablé\ is written[18] as b,(2)= X (7)
z+—Z
ag(t)=(A(t),A)(A,A) "1, (o 74—
zZ+ -
_ 1 We also may rewrite A(t)=3,_0a,(t)f, and fa(t)
ao(z)= A, 2 =2>,-1bn (1) f,, with time-dependent real functions including
z+—A Egs. (1) and (6), respectively. We note thaty,(0)=b,(0)
242 =1. Some issues such as electron §22], spin systems
zZ+ -

for the Laplace transformgy(z) = [ydte *'ay(t). The scalar
product for classical systems isA(t),A)=(A(t)A)
=7 1fdI'A(t)Ae PH, where B=1/kgT,d['=II;dp,dq;,
andZ=fdI'e” A" with a canonical momenturp, and a ca-
nonical coordinate); on a sitei. The continued fraction co-
efficients{A,} are written in a compact forrfi.9,2Q as

. _E(aHa aHaHAf @
g \op g og opg) N T
An:(fn:fn)(fn—lyfn—l)ila (4)
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[23-28, and strongly correlated systefi29] have been dis-
cussed using the same continued fraction formalism in quan-
tum systems. This formalism also gives us the knowledge of
dynamical equivalencg30] such as Brownian motion with
two time scale$31] in different physical systems.

The Hamiltonian of a coupled harmonic oscillator reads

— 1 2 k
H=gm 2 Pt 2 (), ®

i)
with a particle massn and a force constark Particles in-
teract with nearest neighbors only. Both a momenpyrand
a coordinatey; have a single degree of freedom.
We investigate the dynamics of a momentum at a certain
site on the Bethe lattice,

Dynamics of Eq(9) is site-independent due to the nature of
the Bethe lattice. The Bethe lattice is characterized by the
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coordination number=2 and becomes the pseudolattice forwith a=+1—1—1, b=+1—1+1, andc=+2I in units of
|>2. The harmonic oscillator chain is the case With2. A the characteristic frequencyk/mz 1. Equations(12) and
site had first (N=1) nearest neighbors and each first nearest; 3) hold the relatiorzay(z) — 1= — A,b;(2)ag(z), which is

neighbor hasl —1 second N=2) nearest neighbors with optained through taking the inner product of E2). and both

respect to the original site and so on. After all there aresiges of Eq/(5).

E;('l—l)g‘—Z]/(l—Z_) tiites UI? to the\th DeafgSt,t”eigthtfls-th The diffusion coefficient defined by = [5dt(v;(t)v;)
closed passage in the system is missing. Quite recently the —1p Hh o Im i

Hubbard model on this lattice has been studied with the same (MB)"Jodtao(t) with v;=p; /m s rewritten as

continued fraction methof22]. Next we obtain the coeffi- 1 _
cients{A,} by extrapolating those obtained in a finite system D=Ilim D(t)= mB Reag(—i0"), (14
rigorously. t=e

For brevity we study the dynamics é&f=p, in the finite .
system with =3 up to the second\=2) nearest neighbors. D(t)= N deInwt Reag(—iw*). (19
The summation in the first term of the right-hand side of Eq. TMBJ

(8) thus runs over=0 toi=9. The numbering of sites is as

follows: 1 to 3 for the first nearest neighbors and 4 to 9 for For the coordination numbér=2, the system becomes a
the second ones. Using E¢) and fo=po, we havef, harmonic pscillator qhain and includes no features of the
= —gHIdgo=k=2,(q—qo) and (F;,f;)=(f2)=3k/p. It  Bethe lattice. Equation10) reproduces the resultgA}

is clear thatA,=3k/m from Eq. (4) because of f(,f) ={2,1,1,1...} obtained in Ref[30]. Equations(12) and
=(p2)=m/B. The integration for the one-dimensional vari- (13 becomeay(z)=1/yz"+4 andby(2)=(yz°+4-2)/2,
ables,p; andq; , runs over— throughe. By succesive use '€SPectively. We then have Eqd), (6), and(14) as

of Eq. (3), we havef,=(k/m)=3 ,p;. Then we havej, (Pi(HP))

=k/m from (f,,f,)=3(k?/mB). Note that the factor 81 ———=Jo(21), (16)
disappears ah,. We havef,=(k?/m)(2_,q—2322 ,q), (p7)

(f3,f3)=3%x2(k%m?B), and A;=2(k/m) with the factor

2=1—1. The next basis vector i5=3}_,p; andA,=k/m. oo ()= 2d,(2) (17)
Since this system has finite sitdg=0 and thus the Hilbert Pi t

space ofA=pg is spanned by f,<,n} with N=2. Here we

must note that{A,—,}={I,11—1,1} in units of k/m=1 D:L 18)
with 1=3. If we consider a system with more sites up to, 2mg’

e.g., the third N=3) nearest neighbor, then we have

{A —nt={1,11—1,1)—1,1}. Consequently, we may con- WhereJys)is the Bessel function of the order ofl). Equa-

clude that Eq(4) is tion (16) has a tail ot~ but Eq.(15) with t=20 converges
to Eq. (18). This is identical to Eq(14) with Reag(—i0*)
{Anp={,1)-1,1)-11-1,.. } (100 —1/2. Equation (17) has a tail of t" 32 We have

on the Bethe lattice with=3. This is valid for arbitraryl ~ J0dtep (1) =2 Reb;(—~i0")=2. The finite values together
=2. No space for proof. The continued fraction coefficientswith Eq. (18) are inconsistent with the fact that the particle is
{A,} of Eq. (10) are not perfectly alternating because of thefixed up at a site with vibration on a uniform chad#). This
presence of\;, however, the spectral density obtained frominconsistency is due to the existence of acoustic mode in the
those has a clear gap as shown later. The perfectly alternagdystem with the boundary condition in the thermodynamic
ing {A,} have been shown in RdR25], but the correspond- limit [6]. Furthermore the dynamical variable given by Eq.
ing models have not been specified there. Stk have  (9) does not show Brownian motion because there is a single
not been obtained so far except the Bethe latfe@], but  time scale in both Eqg16) and(17). Equation(14) in this
may be obtainable in a system with a dd|6]. system has no meaning of diffusion coefficient.

We rewrite the functiorF (t) = (27i) "1/ dz&F(2) such For the coordination numbée3, the characteristic fea-

as Egs.(1) and (6) to introduce the spectral density tures of the Bethe Iatti_ce have ap'peared explicitly. Using Eq.
(12) the spectral density of Edql) is

ReF(—iw") as
. — V02— 0? 1-(alw)?
J— +\ —
F(t)= %f_mdwcos(ut ReF(—iw®),  (11) Reao( e )=~ ooz 0@ (19
with &* = w+i0". We substitute EL0) for {A,—,} in Eq.  Where ©(w)=6(|w|-a)6(b—|w|) with a step function.
(2) and{A,~,} in Eq. (7) to have, respectively, Equation(19) is determined by the conditions for the rel-
evant part of the spectral densf§0] and corresponds to the
_ (2= (Z2+ 1)+ 1\ (ZZ+ad)(2+Db?) branch cuts in evaluation of the inverse Laplace transform.
ag(z)= T , (12 The contribution from the isolated pole vanishes. Equation
22(z°+¢”) (19 is identical to the spectra obtained by the phonon
) —————— _Green’s functior[8,9]_. The _Bethe lattice with=3 has a gap
bi(2)= |—2-22+ (2" +a%)(Z°+b?) (13  in the spectral density. This feature must be compared to the
1 2(1-1)z ' case with =2 as shown before. The reason why a gap opens
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FIG. 1. Velocity autocorrelation functions for a fdve together
with Eq. (16). A long-time tail for|=3 ist~%? when we plot them
in a log-log scale not shown here. A tail 6f%2 for [=2. The
frequency unit isyk/m with a force constank and a particle mass
m.

in the spectral density would be related to the missing of th
acoustic lattice vibration due to the structure of pseudolattice

FIG. 2. Memory functions scaled bg,=1 for a fewI’'s to-
gether with Eq.(17). Short time expansion gives,(t)=1—t%/2
irrespective ofl. A tail of t~%2 is observed inb,(t)—b,(t=)
when we plot them in a log-log scale.

with a=arcsin@/b). Temperature dependence in HGO)
Sisappears due to the normalization f)=m/p.
Similarly we have the spectral density of E§) from Eq.

with this case. The wave number cannot be defined converidd as
tionally and the localized excitation would take place. A

similar gap in the one-particle density of states has been

reported in the Hubbard model on the Bethe latfi2g].
Noting 0O<a<b<c we can expand the factor in EQL9)
as

Jl—(a/w>2/[1—<w/c>2]=k§0 [gk()w 2+ h (D)o,

with

gu()=—2 Aa?c?t,
i=k

he(1)= _Ek Aj_kaz(i‘k)c‘ZJ,
=

A= (2i-D1[2)(2)-D)j1],

and Ag= —1. Furthermore, puttingp=b sin# and using an
identity, cosbtsing)=X___ cos h6J,,(bt), we obtain the
velocity autocorrelation function of Eql) with the Bessel
function of the order of even integer as

i(0)Pi -
aoﬂFM: > [Gu(D+Hu()]320(b1),
(PP =
< O(l) 1 (72 (cos6)?
Gn(|)—k20 b2k72% 3 d@wcoiznﬂ),
(20
< () 1 (72 (cosh)?
Hn(l)—kgomﬂfa mcos&nm,

) -2
Reb;(—iw™*)= mwﬁ(w)

V(b?—0”)[1-(8/w)’]
2(1-1)

).
(21)

Unlike Eq. (19) there is a term withd(w) in Eq. (21) con-
tributed from a pole at=0 in evaluation of Eq(11). This is
because the alternation {a\,-,} for Eq. (7) is inverse to
that in{A .~} for Eqg. (2) [25]. We thus obtain Eq6) in the
similar way to Eq.(20) as

oo

|
on(D=7—7 |—2+n2_x 1,(1)Jon(bt) ],

(22)

©

=3,

72 (cosh)?
k=0 b% 2 7)o (sin6)

v cog2né).

To illustrate the time evolutions of interest, we show the
numerical calculations of Eg$l), (6), and(15) with use of
Egs.(11), (19, and (21 in Figs. 1, 2, and 3, respectively.
The characteristic time scalg defined by the first zero point
such thatag(te)=0 is roughly equal toy2/l. For t<tg,
we have (p;(t)p;)/(p?)=1—1t%/2, by(t)=1—1%/2, and
D(t)mB=t to be observed in Figs. 1, 2, and 3, respectively.

For t>t,, a glance at the analytical expressions in Egs.
(20) and (22) brings us a misleading tail of ¥ A tail
observed in Figs. 1 and 2 is in fact®?2, which holds true for
arbitraryl =3, is originated from the structure of the spectral
density. To see this mathematically we go back to @4)
with Eq. (19). After performing the partial integration we
have
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The conventional Brownian motion with white noise is
described by the frequency-independent spectral density and
lead to the memory function of E@6) written with §(w).

0.5 On the contrary, this system shows the strongly colored
< spectral density. The strongly colored factor meantiiy)
E guarantees the existence of a tail. The structure of the spec-
- tral density determines the power of a tail. Therefore, we
~ need physical grounds for such a structure; however, no solid
Q candidates except the localized excitation can be allowed for

0.0 this system. This is because there exists no well-defined

wave vector. The quantal case is expected to have a tail for
Egs.(1) and(6) due to a similar reason. A tail ¢f * in Refs.
L [16,17 originates from the spontaneous strongly colored
quantum fluctuations.
t If an impurity sits on the sité=0, then we must replace
_ o N (M2m)pi+ (ak/2)=]_1(qo—q;)? for the corresponding
FIG. 3 Time-dependent dlff_usmn _coef‘fluenFs for a feéw to- ~ term in the Hamiltonian Eq8). The massn, and the force
gether le[h the case fdr——.2. A tlme tail .°ff2,§m is the sameifli/.:, in constantk, is written ash=m/m, and a=ko/k, respec-
the velocity autocorrelation functions, i.¢.,”* for =3 andt tively. The autocorrelation function ok=p, is determined
for I:2._The vanishing convergent value is identical to Ety) by {Al={INa,a,|-1,1]—1,1]—1,1,...}. The detailed
with Reag(—i0")=0. study will be published sometime in the futJig2].
To summarize, we have investigated the dynamics of a
2 b d _ classical coupled harmonic oscillator on the Bethe lattice to
ag(t)=— —f dw sinwt—Reay(—io™). (23 obtain the velocity autocorrelation functions with a tail of
mt)a do t~%? leading to a vanishing diffusion coefficient. This talil
results from the localized excitaions with a gap in the spec-
tral density due to the nonexistence of a well-defined wave
vector. The strongly colored fluctuating forcég(t) in Eq.
(5) are specified by the memory functions with a taitof%.

Since the first derivative in the vicinity of the boundaries
diverges as lf—w) 2 and (@—a) %2, the integration in
Eq. (23) would behave like the Bessel function as shown in
Eq. (16). Thus, a tail oft ~%? for Eq. (20) is verified. Similar The authors are grateful to the hospitality of KIAS, Seoul,
consideration is given to a tail in ER2). This tail reminds  Korea, where a portion of this work was done. They thank
us of higher dimension studies such as those in R&f$1].  Jaesuk Kim for his assistance. J. K. appreciates the support
If the first derivative converges, then we have atal'ofas by Korea Research FoundatiofGrant No. 1998-001-
obtained in Refs[16,17], where the relaxation functions and D00305 and by the PD program of Kyungpook National
the memory functions for the current operator in the two-University, 1999. I. S. is supported by the Japan Society for

band Bloch electrons have calculated. the Promotion of Science.
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