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Large-q asymptotics of the random-bond Potts model
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We numerically examine the largpasymptotics of thej-state random bond Potts model. Special attention
is paid to the parametrization of the critical line, which is determined by combining the loop representation of
the transfer matrix with Zamolodchikovistheorem. Asymptotically the central charge seems to behave like
c(q) =% log,(g)+0O(1). Very accurate values of the bulk magnetic expomxgrdre then extracted by perform-
ing Monte Carlo simulations directly at the critical point. 4s-»«, these seem to tend to a nontrivial limit,
X1—0.192+0.002.

PACS numbse(s): 05.70.Jk, 64.60.Ak, 64.60.Fr

I. INTRODUCTION Although this behavior of the central charge is reminiscent of
the Ising-like features of the tricritical fixed point discussed
Recently the two-dimensiona}state random bond Potts above, we shall soon see that from the point of view of the
model withg>4 has attracted considerable interest, becausmagnetic exponent th@— o limit is most definitely not in
it serves as a paradigm for examining the effect of quenchethe Ising universality class. Note also that our precision al-
randomnes§l] on a first-order phase transiti¢g]. Since in  lows us to convincingly distinguish the numerically com-
this case the randomness couples to the local energy densifyted central charge from its analytically known value in the
a theorem by Aizenman and Wef#], along with related percolation limit[9].
analytical work[4,5], suggests that the transition should be- With the numerically obtained parametrization of the
come continuous, as has indeed been verified by subsequestitical disorder strength at hand we then proceed to measure
numerical studie§6—13]. Unfortunately, analytical results the corresponding magnetic bulk scaling dimensigras a
have been scarce, except in the limit:cc where properties function of g. The most suitable technique here is that of
of a particular tricritical point were related to those of the conventional Monte Carlo simulations. Our results lend cred-
zero-temperature fixed point of the randdigid Ising model ibility to the belief[12] thatx,(q) saturates ag— <. Based
in d=2+¢ dimensiond8]. From the conjectured phase dia- on results for they=_8* state model wittk=1,2,3 we pro-
gram[8] it is, however, known that this fixed point is not the pose the limiting value
analytical continuation of the line of random fixed points
found for finiteq>2 [14,15. Namely, the lattethenceforth X1(0)—0.192£0.002 for gq—o, (1.2
referred to as thg— o limit of the mode) is rather believed

to be associated with a subtle percolationlike lifiii, the agreement with the one reported in Réf2]. The fact that

exact properties of which have not yet been fully elucidatedgq. (1.2) does not coincide with any known scaling dimen-
In the present Rapid Communication we seek to gain fursjon of standard percolation is remarkable, and calls for fur-

ther knowledge of thigj—co limit by producing numerical ther analytical investigations of the—co limit.

results along the aforementioned line of critical fixed points  After explaining the loop model transfer matrices in Sec.

for very large values of}. Since cross-over effects to the || e state our results for the critical line and the central

pure and percolative limits of the model have been shown t@harge in Sec. IIl. The Monte Carlo method and the resulting

be important[9,10], special attention must be paid to the yajyes of the magnetic scaling dimension are presented in
parametrization of the critical line. Generalizing a recentlygec. v, and we conclude with a discussion.

developed transfer matrix technig[E6], in which the Potts

model is treated through its loop representatjd], we

were able to explicitly trace out this line, and as a by-product Il. LOOP MODEL TRANSFER MATRICES

obtain very precise values of the central charge. Based on The partition function of the random bond Potts model
our numerical results for the=8 state model withk can be written as

=1,2,...,6 we findcompelling evidence that

c(q) =7 logx(q) +O(1). (1.1 z=> 1 eXii%s, (2.1)

*Present address: LPTMS; tment 100, UniversiteParis-Sud, where the summation is over tlpdiscrete values of each

F-91405 Orsay, France. spin and the product runs over all nearest-neighbor bonds on
Laboratoire associaux universite Paris 6, Paris 7 et au CNRS. the square lattice. Th&;; are the reduced coupling con-
*Unite Mixte de Recherche CNRS UMR 7589. stants, which for the moment may be drawn from an arbi-
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trary distribution. By the standard Kasteleyn-Fortuin trans- TABLE I. Effective central charge of thg=28 state model, as a
formation[18], Eq. (2.1) can be recast as a random clusterfunction of disorder strength Two- and three-point fits to E¢3.1)

model are labeled a€(L,L+2) andC(L,L+4), respectively.
c(4,8) c¢(6,10) ¢(8,12) c(4,6) c(6,8) c(8,10) c(10,12)
z=2q%9 ] (eki-1), (2.2
{g} (ij)eg 3 1.495 1.500 1.500 1.4101 1.4544 1.4731 1.4821

whereg is a bond percolation graph wiB(C) independent 4 1512 1517 1516 14157 14657 14868 14967
clusters. Note that now enters only as &continuouy pa- 1519 1525 1.523 1.4152 1.4690 1.4918 1.5025
rameter, and since the nonlocality of the clusters does not® 1521 1.528 1527 14116 14683 14927 15044
obstruct the construction of a transfer matfb9] the inter- 7 1520 1529 1529 1.4067 1.4656 1.4915 1.5041
esting regime ofy>4 becomes readily accessible, provided 8 1518 1.528 1529 1.4013 1.4619 1.4890 1.5026
that one can take into account the randomness in the cou® 1509 1.530 1.528 1.3972 1.4552 1.4860 1.5004
plings[9]. 10 1511 1.525 1.527 1.3908 1.4534 1.4826 1.4977

In an analogous fashion we can adapt the even more eftl 1.501 1526  1.526 1.3873 1.4465 1.4791 1.4949
ficient loop model representatidi6] to the random case. 12 1.504 1519 1524 1.3816 14451 1.4756 1.4919
Indeed, trading the clusters for their surrounding loops on the
medial lattice[17], Eq. (2.2) is turned into

K1 tral limit theorem. Thus, for large enougd any desired
NP2 L(G)/2 el— precision onfy(L) can be achieved.
Z=4 % - <ij1>_[eg ( Jq ) 23 An important observation is that for larger and larger
thec(L) found from Eq.(3.1) become increasingly sensitive
where N is the total number of spins, and configuratiGn to errors infy(L). Therefore,M must be chosen in accor-
encompassek(G) loops. The strip width_ is measured in  dance with the largest strip width,,, used in the simula-
terms of the number of “dangling” loop segments, and musttions. For the system at hand we found that four significant
be even by definition of the medial latti¢26]. digits in c(L) were needed for a reasonable precise identifi-
A pleasant feature of the random bond Potts model is thatation ofs, (L), and withL =12 this in turn implies that
the critical temperature is known exactly by self-duaJ@g].  the fy(L) must be determined with six significant digits. We

Employing for simplicity the bimodal distribution were thus led to choosél = 10° for =8, andM =10° for
L larger values ofg. [Incidentally, improving our results to
P(Kij) = 2[ o(Kjj — K1) + 6(Kj; —K3) ], (24  L,.=14 would require augmenting by at least a factor of

100 (apart from the increased size of the transfer matyjces
and since several months of computations were spent on the
present project this hardly seems possible in a foreseeable
future]

Data collection was done by dividing the strip intd/I

To fully identify the critical point the only free parameter is Patches of length=10" lattice spacings, and for each patch

then the strength of the disorder, which can be measured i€ couplings were randomly generated frontanonical
terms ofR=K, /K,>1 ors=s,>1. ensemble, i.e., the distributid@.4) was restricted to produce

an equal number of strong and weak bonds.
In the right part of Table | we show the resulting two-
point fits (3.1) in the q=8 state model, as a function ef
In Ref.[16] we showed that Zamolodchikovistheorem  The left part of the table provides analogous three-point fits,
[21] is a powerful tool for numerically identifying the fixed obtained by including a nonuniversalLf/correction in Eq.
points of apuresystem. The idea is simple: From the lead- (3.1). In all cases the error bars are believed to affect only the
ing eigenvalue of the transfer matrix, specific free energiedast digit reported. The two-point fits give clear evidence of a
fo(L) can be computed as a function of the strip widith ~maximum in the central charge, and we estimate its location
Effective central charges(L) are then obtained by fitting ass, =6.5=2.0. The corresponding central charge is esti-
data for two consecutive strip widths according 22] mated from the three-point fits, as these are known to con-
verge faster in theL—c limit [9], and we arrive atc
mC =1.530+0.001. To appreciate the precision of this result, we
fo(L)=To(>)— AR (3D mention that the numerical values ofq=8) first reported
were 1.50-0.05[7] and 1.517-0.025[8].
By tuning the free parametarof the system, local extrema Table Il summarizes our results for other valuesg.ofwo
c(L,s, (L)) are sought for, and finally the fixed point is iden- remarkable features are apparent. Fsgt:q" is well fitted
tified by extrapolations, =s, (L—). by a power law withw=0.31=0.02. This gives valuable
In principle this strategy can also be employed fatigw  information on how theq—o limit of the model is ap-
ordered system, provided that error bars are carefully keptproached, and implies that the ratio of the coupling constants
under control. Nowfo(L) is related to the largest Lyapunov R=K,/K,=log(1+syq)/log(1++/q/s) is a nonmonotonic
exponent of a product oM —oo random transfer matrices function of g that tends to thefinite limiting value (1
[23,8], and its statistical error vanishes s ¥ by the cen-  +2w)/(1—2w)=4.3+0.6 asq—x. We shall discuss this

and choosing the parametrizatios, =(eNi—1)/\q, the
self-duality criterion takes the simple form

S$1S,= 1. (25)

Ill. CENTRAL CHARGE
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TABLE . Critical disorder strengtls and central charge, as 0.153%10) for =8
functions ofq. x;=1 0.1722)  for q=64 (4.2
q s, c c/l0g,(0) 0.18Q3) for gq=512.
8 6.5 (20) 1.530 (1) 0.5100 (3) We see that the magnetic exponent seems to saturate as
64 15.5 (20) 3.050 (3) 0.5083 (5) we increaseg. In view of the result(1.1) for the central
512 32(2) 4545 (10) 0.5050 (11) charge we expect the asymptotic behavior should involve
4096 65(8) 6'038 24 0'5032 20 log(q) rather thary itself, and indeed the data are well fitted
32768 135(20) 7.54 (3) 0.5027 (20) by
262144 250(50) 9.04 (3) 0.502 (2) x1(q)=a+b/log(q), 4.3

with a=0.192(2) andb=—0.08q4). Thus, based on the
finding further in Sec. V. Second, the central charge seems tiorm (4.3) we are led to propose the limiting vali#.2) of
fulfill the relation (1.1) as stated in the Introduction. X1 given in the Introduction.

IV. MAGNETIC SCALING DIMENSION V. DISCUSSION

In this section we explain the Monte Carlo method used Itis useful to juxtapose our findings on the largéehav-
for obtaining values of the magnetic scaling exponent. Simuior of the critical line with the phase diagram proposed in
lations were performed on square lattices of dizel with Ref.[8]. In that work the disorder strength was parametrized
periodic boundary conditions, with ranging from 4 to throughs=g" with w>0, and the limitw— < was identified
L max=128 forq=8, 64 andL =64 for q=512. with classical percolation on top of the strong bonds. Actu-
We employed the Wolff cluster algorithfi24]. The first ~ ally it is easily seen from Eq2.2) that directly atg= this
part of the simulations was to determine the autocorrelatiofercolation scenario holds true whenewer 3, and assum-
times , which were found to increase with the lattice sizeing that the line of critical fixed points is described by a
and also withg. For the largest simulated lattices, we deter-monotonic functionw, (q) it can thus be confined to the
mined r as follows: 88-4 cluster updates foy=8 andL  regionw=3. With this slight reinterpretation, Ref8] ar-
=128, 3000215 for q=64 and L=128, and 31000 gues that ag=c the critical point is located in the limiyv
+3000 forq="512 andL = 64. This rapid increase afwith ~ —3. Indeed, since fog=c any initialw< 3 will be driven
q explains why we simulate only up to=64 for the largest to larger values due to mapping to the random field Ising

q. model, this is nothing but the usual assumption of “no inter-
Next, we measure the magnetization, defined for each dig«ening fixed points.”
order sample< by However, this seems at odds with the results of Table Il,
where we found that fog>4 the critical line, when mea-
_a(p)—1 1) sured in terms ofv, saturates atv=0.31+0.02. Unless our
X ’ .

numerical method is flawed by some gross systematic error,
it is thusa priori difficult to see how this can be reconciled
wherep=max@N;,N,, . .. ,Nq)/L2 andN, is the number of  with the above result ofv, (q=«)=3. A possible explana-
Potts spins taking the value Here(...) denotes the ther- tion is that the limitsq—o andw— 3 are highly noncom-
mal average. Then the magnetizatiorfL) is obtained by muting. This is witnessed by the jump in the central charge,
averaging over 10disorder configurations fay=8, and 16  which in the percolation limifw=c andq<) reads[8]
configurations foig=64 and 512. For each disorder sample, 53
1007 updates were dedicated to the thermalization, and a _ov -
further 100- to the magnetization measurement. Error bars Crerc™ 47 In(q)=0.47769log(a), D
were computed from the disorder fluctuatiajitscan easily
be checked10] that the contribution fronthermalfluctua-
tions is negligible, and the strength of the disorder was cho-
sen as indicated in Table II.

From a fit tom(L)=L*1, we obtain for the magnetic We are grateful to J. Cardy for some very helpful com-

q—1

to be contrasted with our numerical res(ltl).
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