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Self-similarity and fractals in soliton-supporting systems
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We describe a principle that can be used to generate self-similarity and fractals in almost any nonlinear
system in nature that supports solitons, given that some proper nonadiabatic conditions are met. We illustrate
our idea on a particular optics example that also theoretically demonstrates fractals in nonlinear optics.

PACS number~s!: 42.65.Tg, 05.45.Df
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Fractals are one of the most fundamental concepts in
ture @1#, characterizing many natural phenomena; they h
been described not only in biology, medicine, galactic cl
ters, material structures, etc., but also in areas as surpr
as stock markets@2#. In optics, fractals have been identifie
in conjunction with binary gratings@3# and with unstable
cavity modes@4#. Both of these optical fractal systems a
fully linear; they respond in a passive manner to illuminati
by constructing fractals through linear diffraction. In th
Rapid Communication, we show that nonlinear systems
support solitons can, under proper nonadiabatic conditio
evolveand give rise to statistical fractals. Further, our id
can be used to demonstrate exact fractals as well. The p
ciple we describe is universal and seems to hold for m
soliton-supporting systems in nature. Just as an illustratio
our idea, we present a specific example that theoretic
demonstrates fractals in nonlinear optics.

As an example of a soliton-supporting system, conside
system described by the normalized nonlinear Schro¨dinger
equation~NLSE!:

i
]C

]z
1

1

2
¹T

2C1 f ~ uCu2!C50, ~1!

where the nonlinear termf (uCu2) is specific to the physica
system, and¹T

2 is the Laplacian transverse to the propagat
direction z. For waves in a single transverse dimension@(1
11)D NLSE#, ¹T

25]2/]x2. Equation~1! describes many
physical systems, primarily those in which nonlinear wav
propagate in isotropic media@5#, where C describes the
slowly varying envelope that modulates a fast carrier wa
In particular, NLSE describes several optical systems@6,7#,
whereC is the slowly varying amplitude of the electric field
superimposed on a singlek vector carrier plane wave. W
focus on the~111!D NLSE and on two particular forms o
nonlinearity that are common in optics@7#: the Kerr-type,
where f (uCu2)5uCu2, and the saturable type, whe
f (uCu2)5uCu2/(11uCu2). Extending our ideas to othe
forms of nonlinearities is straightforward, and extendi
them to higher dimensions maintains the main results w
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adding beauty and complexity to the fractals generated.
particular systems we discuss are just examples of the
eral principle we propose.

Sinced f(uCu2)/duCu2.0, both the Kerr and the saturab
nonlinearity are of the self-focusing type, i.e., the nonline
ity has a tendency to shrink a pulse. In optical systems,
happens because the presence of the light pulse increase
local index of refraction, which, in turn, tends to shrink th
pulse. The tendency to shrink competes with diffractio
which tries to expand the pulse, and, for some NLSEs, th
two tendencies can exactly cancel each other, producin
localized pulse whose shape is stationary as it propagate
soliton @8#. Solitons are universal nonlinear phenomena, a
they have fascinated scientists of different fields for mo
than 150 years now@9#. They have been described in man
systems: on the surface of shallow water@9#, in deep sea
water @5#, in plasma@10#, and on the surface of black hole
@11#, to name a few, and of course in nonlinear optics, p
marily as temporal@6# and as spatial solitons@7#. The soli-
tons of the particular NLSEs we discuss in this article a
very robust creatures. Even if one perturbs them sligh
from their equilibrium shape, they soon evolve into stab
solitons again.

Consider first the~111!D Kerr NLSE, of which a funda-
mental soliton solution isC(x,z). One can obtain a whole
family of solitons of Eq.~1! by a simple rescaling:C(x,z)
→qC(qx,q2z) for any realq. According to the definition of
self-similarity, this means that all solitons of the same ord
of this equation are self-similar to each other@12#. This prop-
erty, in fact, holds for solitons of any orderN: if C(x,z
50) is a soliton of order 1, thenNC(x,z50) is a soliton of
orderN. Furthermore, because the generic waveform of s
tons of all orders is hyperbolic secant, then solitons of d
ferent orders are also self-similar to one another, at leas
some points in their propagation~although their propagation
dynamics differs from one order to another!. The physical
basis for this self-similarity is the fact that the~111!D Kerr
NLSE does not have any natural scale built into it, so
physics of this equation looks the same on all scales.

In contrast to the Kerr nonlinearity, the~111!D saturable
NLSE does have a natural scale, given by the number
the denominator of the nonlinear term. However, foruCu2

!1, the nonlinearity reduces to the Kerr nonlinearity,
0,
R1048 ©2000 The American Physical Society
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self-similarity exists in the saturable case also. Furtherm
if a soliton of ~111!D saturable NLSE satisfiesuC(x
50,z)u2@1 in the regions where most of the energy of t
soliton is contained, uCu2/(11uCu2)'12(1/uCu2). Of
course, this approximation does not hold at the tails of
soliton. Still, most of the interesting properties can
captured by studying~111!D NLSE with a nonlinearity
given by 12(1/uCu2); we call this nonlinearity the ‘‘deep
saturation nonlinearity.’’ We have checked numerica
that if the conditionuC(x50,z)u2@1 is satisfied, then in-
deed most of the soliton’s physics is captured by study
the ~111!D deep-saturation NLSE. IfC(x,z) is a solution
of the ~111!D deep-saturation NLSE, then a whole fami
of solutions can be obtained by re-scalingC(x,z)
→eiz(12q2)C(qx,q2z)/q, for any realq. Therefore, all soli-
tons of the same order of~111!D saturable NLSE are relate
by this simple rescaling, as long as most of the energy of
solitons is in the regions whereuCu2@1; all of these solitons
are self-similar to one another in their physical properti
such as intensity, shape, etc. This is because the natural
in the saturable NLSE is visible only in the margins
the intensity profile of the soliton, and its effect on the sha
is tiny.

We now introduce the concept of the soliton existen
curve@13#, a two-dimensional curve that gives the full wid
at half-maximum of the soliton intensity in normalized uni
as a function of the peak amplitude of the correspond
soliton, C0[C(x50,z). The curve is drawn for the set o
all solitons of the same order of a given NLSE, where ea
soliton is represented by a point on the graph. Differ
NLSEs have different existence curves, and solitons of
ferent orders of the same NLSE lie on different existen
curves. According to the scaling relation described above
existence curves~of solitons of all orders! of Kerr NLSEs are
parallel lines of slope21 on a log-log plot. The existenc
curves of saturable NLSEs are also parallel lines of slope21
on a log-log plot~which coincide with the Kerr curves! in the
region C0!1. On the other hand, in deep-saturation wh
C0@1, the existence curves are parallel lines of slope 1 o
log-log plot, like in Fig. 1. The region in between these tw
regimes, i.e., whereC0;1, we call the valley. All solitons of
the same order of a saturable NLSE are to a large ex
self-similar to each other as long as they are all on the s
side of the valley.

FIG. 1. Existence curves of Kerr-type solitons~dashed line!,
solitons in a saturable nonlinear medium~solid curve!, and deep-
saturation solitons~dashed-dotted line!, all in ~111!D. The vertical
axis gives the normalized width of the intensity of the soliton, in t
x-units of Eq.~1!. The point indicated by* describes the input puls
to the fractal-generating process of Fig. 2.
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The existence curves can provide information about
evolution of arbitrary input pulses into solitons. Consider
pulse of widthw and peak amplitudeC0 , and assume tha
this pulse does not have the stationary soliton shape. T
pulse is represented by a point on the existence curve plo
this point is close to the curve, then the pulse soon evol
into a stable soliton shape~while shedding some power in
the form of radiation modes or smaller scale solitons!. Since
the solitons of the NLSEs we study here are stable, this h
pens even though their initial shape only approximates a s
ton.

Having established that Kerr solitons are exactly se
similar, and that deep-saturation solitons are approxima
self-similar, it is now compelling to ask: ‘‘Can solitons o
various scales coexist in the same nonlinear medium sim
taneously?’’ If the answer is positive, can they coexist with
one another in a fractal structure? And, if the answer to t
question is also positive, then how can a nonlinear system
driven to generate solitons organized in a fractal structu
The answers to all of these questions are in the respons
the nonlinear system to a nonadiabatic change in one~or
more! of its properties. As described below, an abru
change in the nonlinear coefficient, or in the saturation co
ficient ~in saturable systems!, or in the dispersion coefficien
~for temporal solitons!, or in almost any parameter that lead
to a large deviation of the pulse from the soliton existen
curve, will lead to the appearance of a fractal structure driv
by soliton dynamics. In our simulations, we observe se
similarity and fractals both in the Kerr regime, and in th
deep-saturation regime of Eq.~1!. Here we present only the
results in deep-saturation, which can be realized with
photorefractive nonlinearity~see Ref.@7#, and references
therein!.

Our goal is to design a physical system that can supp
many solitons all of different sizes simultaneously. If o
starts with a pulse whose shape is very far off the existe
curve, this pulse is not able to evolve smoothly into a solit
Under proper conditions, it breaks up into smaller piec
and radiation. Quite often, the pieces resulting from t
‘‘explosion’’ include many small solitons, all of differen
sizes. If the nonlinearity is such that these solitons are s
similar to each other, one can claim to have observed s
similarity.

We distinguish between two scenarios that produce s
breakup. The first is driven by noise and is easier to rea
experimentally. Consider a pulse whose initial width is f
above the existence curve launched into a nonlinear med
in the regime that can support self-similar solitons~as in Fig.
1!. Therefore, small perturbations~initiated by noise! of
large wavelengths will grow on top of the pulse as it prop
gates. After some distance, the energy in these perturba
becomes significant, and the pulse breaks up into sma
pulses. This phenomena is known@6# as modulational insta-
bility ~MI !. In many physical systems, the products of th
breakup include many solitons of different sizes. We cal
‘‘MI-induced breakup.’’

The second breakup scenario is a ‘‘dynamics-induc
breakup.’’ It is observable in numerical calculations that
herently have no or very little noise. It should also be o
servable in ‘‘clean’’ experimental systems, such as tempo
solitons in optical fibers. Consider a pulse above the e
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tence curve launched into a self-focusing medium with
initial pulse width much larger than the width of the lowe
guided mode of this induced waveguide. The light coales
towards the center trying to reach the solitonic shape
which diffraction is exactly balanced by self-focusing. How
ever, once the equilibrium is reached the pulse keeps shr
ing because of its inertia. Since the equilibrium could n
have been reached smoothly~the pulse is initially far above
the existence curve!, the pulse explodes into smaller piece
which form smaller solitons of different sizes.

In our simulations, we observe both breakup mechanis
As an example, we present the dynamics driven brea
shown in the upper-left plot of Fig. 2. Since both the und
lying equation and the initial pulse obey left-right symmet
the output multisoliton pulses also obey this symmetry~in
contrast with a MI-induced breakup, since noise obeys
symmetry!.

In order to create fractals, one can apply the logic that
caused this breakup in a repetitive manner. One can take
output ‘‘daughter solitons’’ at the end of the upper-left pl
in Fig. 2, make an abrupt change in the nonlinear mediu
and thus force each one of the daughter solitons to brea
into a train of smaller solitons. This happens if the chan
moves the position of the daughter solitons far above
existence curve. Such a change in the nonlinear medium
be realized either by altering the intensity of the puls
abruptly, or by changing the coefficient in front of¹T

2 in Eq.
~1!, or by changing the properties of the nonlinearity~mag-
nitude, saturation, etc.!. It is important that the change in th
conditions is abrupt; an adiabatic change does not cau
breakup, but instead the pulse adapts and evolves smo
into a narrower soliton. When the change is abrupt and la
enough, each of the pulses undergoes a self-similar brea
as illustrated in the top plot of Fig. 2. This process can
repeated, in principle, an infinite number of times, there
creating a fractal structure. Of course, all the resulting s

FIG. 2. Top view of a three-stage self-similar breakup creat
a fractal structurestarting in the deep-saturation regime of the~1
11!D saturable NLSE. The 1st stage is given in the upper-left p
The 2nd stage is given in the upper-right plot. A magnified de
of the 2nd stage is shown in the lower-left plot. The continuat
of evolution of that detail into the 3rd stage is given in the low
right plot.
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tons after each breakup have to be in the regime where
are all self-similar to each other.

A three stage fractal is presented in Fig. 2. This breaku
dynamics-induced. At the input, self-focusing is much stro
ger than diffraction for a pulse of that width, so the pul
contracts and eventually breaks up into many self-sim
solitons observed at the output of the upper-left figure. At
plane of the output of the upper-left figure, we change
denominator in the nonlinear term from 11ucu2 to 1
1(ucu2/8). This makes all the pulses at the output of t
upper-left figure have amplitude eight times smaller th
solitons of the same widths have. Then, we propagate
output of the upper-left figure for a few more diffractio
lengths, resulting in a self-similar breakup of every pulse,
shown in the upper-right plot of Fig. 2. For better clarit
only a detail of the upper-right plot is shown in the lower-le
plot. At the output of the upper-right figure, we change t
nonlinear term into 11(ucu2/64), and propagate the puls
further. As shown in the lower-right figure, we observe o
more stage of self-similar breakup. In these simulations,
use the saturableucu2/11ucu2 nonlinearity, to show when we
expect the fractal generation process to end in a real sys
In this case, the third stage shown by the lower-right figure
the final breakup, because most of the end solitons at
stage are of peak intensities on the order of unity, wh
ceases to be self-similar. As for the other end of this proc
i.e., the first breakup, there is no upper limit: one can s
this fractal generation process by literally breaking up pla
waves.

To have a real fractal in mathematical sense, one sho
have a infinite number of stages in this process. However
is the case with all other physical fractals, the number
stages is limited, thus resulting in a prefractal, rather tha
fractal. The reason why all physical fractals live in only
limited regime of scales is easy to understand. Both at la
but primarily at small scales, sooner or later the scale of
fractal in question becomes comparable to some other
evant physical scale. Such scale then modifies the physic
the system, and the equation representing the system
modified, typically to an equation that does not display se
similarity anymore. For example, at small scales, at least
atomic scale presents a lower bound to fractal generat
Specifically for optical spatial solitons, the number
breakup stages is limited by the ratio between the be
width ~of any of the daughters solitons in a particular stag!
and the optical wavelength in the medium. When this ratio
smaller than, say 5, the beam is no longer paraxial and
has to add other terms to the equation~and for ratio;1 the
underlying equation becomes vectorial!. For optical temporal
solitons in fibers, the limiting factors are third order dispe
sion, and additional nonlinear processes~e.g., Raman scatter
ing!. In both cases, we realistically expect to observe 3
stages of breakup.

Let us go back now to the definition of a fractal@2# as ‘‘an
object which appears self-similar under varying degrees
magnification. In effect, possessing symmetry across sc
with each small part replicating the structure of the whole
It is obvious that the structures described in Fig. 2 are fr
tals: they are self-similarwithin each scale~i.e., the daughter
solitons after each breakup!, and they are also self-simila
over at least three widely separated scales. Also, as we s
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by the increasing magnification~Fig. 2!, each part breaks up
again and again in a structure replicating the whole. It
obvious that we have found a way to generate fractals, wh
are driven by soliton dynamics.

Several topics merit discussion. We want to emphas
the resemblance of our fractals to Cantor sets@2#. This fractal
structure~after several breakup processes! is actually aran-
domized Cantor set, because at any given stage self-simi
structures~solitonlike pulses! of various scales coexist, with
the distances between these pulses varying in what looks
a random manner, especially in the presence of signific
noise. Furthermore, the process we described is pretty
bust; in our simulations we did not have to be particula
careful about when to start each particular stage in order
our final creatures to be fractals. The presence of the n
does not harm the fractal generation either; in fact, as
explained above, one can use this idea to build random f
tals that are in factnoise-driven. This brings in another point
the fractal dimensions. The fractal dimension can be est
mated using box-counting method, and it is obvious that
dimension is~in general! not an integer. In any case, th
fractal dimension is specific to the system and the ini
conditions used. Because the purpose of the paper i
present a newgeneralidea, we leave the issue of the fract
dimension to future work. Another topic has to do withfrac-
tals in higher Euclidian dimensions, e.g., in full 3D. Since
d
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the ideas presented are not restricted by dimensionality, they
should be easy to translate into higher dimensions and
envision fractals that have two different transverse sca
that is, when the width of every pulse inx is much different
than that iny. However, caution must be taken to make su
that the system can support~211!D soliton structures first.
The saturable NLSE can support stable bright~211!D soli-
tons @14#, so we expect it to support 2D fractals as we
There are many other new ideas under research, but the
challenge is experimental: to demonstrate fractals.

In conclusion, we proposed a general scheme of gene
ing fractals by the dynamics of solitons that undergo abr
changes along their propagation paths@15#. This method of
fractal generation is universal and should exist in any n
linear system that can support solitons. Interestingly, this
one of the very few cases in which one can generate frac
experimentally and investigate them theoretically knowi
all the physics involved. In fact, experiments are curren
carried out in our laboratory to demonstrate fractals fro
spatial and temporal solitons.

We acknowledge enlightening discussions with De
etrios Christodoulides of Lehigh University. The work o
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