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Self-similarity and fractals in soliton-supporting systems
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We describe a principle that can be used to generate self-similarity and fractals in almost any nonlinear
system in nature that supports solitons, given that some proper nonadiabatic conditions are met. We illustrate
our idea on a particular optics example that also theoretically demonstrates fractals in nonlinear optics.

PACS numbds): 42.65.Tg, 05.45.Df

Fractals are one of the most fundamental concepts in nadding beauty and complexity to the fractals generated. The
ture[1], characterizing many natural phenomena; they havearticular systems we discuss are just examples of the gen-
been described not only in biology, medicine, galactic cluseral principle we propose.
ters, material structures, etc., but also in areas as surprising Sinced f(|¥|?)/d|¥|?>0, both the Kerr and the saturable
as stock marketg2]. In optics, fractals have been identified nonlinearity are of the self-focusing type, i.e., the nonlinear-
in conjunction with binary grating$3] and with unstable jty has a tendency to shrink a pulse. In optical systems, this
cavity modes[4]. Both of these optical fractal systems are happens because the presence of the light pulse increases the
fully linear; they respond in a passive manner to illumination|oca| index of refraction, which, in turn, tends to shrink the
by constructing fractals through linear diffraction. In this pulse. The tendency to shrink competes with diffraction,

Rapid Communication, we show that nonlinear systems tha\’vhich tries to expand the pulse, and, for some NLSEs, these

support solitons can, under proper nonadiabatic conditi0n§WO tendencies can exactly cancel each other, producing a

evolveand give rise to statistical fractals. Further, our ide . . . . )
can be used to demonstrate exact fractals as well. The pria;lf?Callzed pulse whose shape is stationary as it propagates: a

; Lo ) i . Soli re universal nonlinear phenomena, and
ciple we describe is universal and seems to hold for mos oliton[8]. Solitons a P

soliton-supporting systems in nature. Just as an illustration df '€y have fascinated Scr']em'its ofbd|ffer§nt f'?bldz for more

our idea, we present a specific example that theoretically'@" 150 years no@]. They have been described in many

demonstrates fractals in nonlinear optics. Systems: on the surface of shallow wafél, in deep sea
As an example of a soliton-supporting system, consider ¥/ater[5], in plasma[10], and on the surface of black holes

system described by the normalized nonlinear Sdinger [11], to name a few, and of course in nonlinear optics, pri-
equation(NLSE): marily as temporal6] and as spatial solitong]. The soli-

tons of the particular NLSEs we discuss in this article are
very robust creatures. Even if one perturbs them slightly
from their equilibrium shape, they soon evolve into stable
solitons again.
where the nonlinear terrfi(|W|?) is specific to the physical Consider first th€1+1)D Kerr NLSE, of which a funda-
system, and7$ is the Laplacian transverse to the propagationmental soliton solution i8F(x,z). One can obtain a whole
directionz. For waves in a single transverse dimendi¢h  family of solitons of Eq.(1) by a simple rescaling¥(x,z)
+1)D NLSE], V2=4%gx?. Equation(1) describes many —qW¥(qx,q2z) for any realq. According to the definition of
physical systems, primarily those in which nonlinear wavesself-similarity, this means that all solitons of the same order
propagate in isotropic medifb], where ¥ describes the of this equation are self-similar to each oth#2]. This prop-
slowly varying envelope that modulates a fast carrier waveerty, in fact, holds for solitons of any ordeé: if W(x,z
In particular, NLSE describes several optical syst¢f3], =0) is a soliton of order 1, theNW¥ (x,z=0) is a soliton of
whereW is the slowly varying amplitude of the electric field, orderN. Furthermore, because the generic waveform of soli-
superimposed on a single vector carrier plane wave. We tons of all orders is hyperbolic secant, then solitons of dif-
focus on the(1+1)D NLSE and on two particular forms of ferent orders are also self-similar to one another, at least at
nonlinearity that are common in opti¢3]: the Kerr-type, some points in their propagatigalthough their propagation
where f(|W|?)=|¥|?, and the saturable type, where dynamics differs from one order to anothefhe physical
f(|¥|?)=|P|?/(1+|¥|?). Extending our ideas to other basis for this self-similarity is the fact that tig+1)D Kerr
forms of nonlinearities is straightforward, and extendingNLSE does not have any natural scale built into it, so the
them to higher dimensions maintains the main results whilghysics of this equation looks the same on all scales.
In contrast to the Kerr nonlinearity, tHé+1)D saturable
NLSE does have a natural scale, given by the number 1 in
*Present address: Physics Department, Technion, Haifa 3200the denominator of the nonlinear term. However, |fl§'r|2

Israel. <1, the nonlinearity reduces to the Kerr nonlinearity, so

d 1V2‘P f(|w|2)w=0 1
IE+§T+(||)_’ (1)
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The existence curves can provide information about the
evolution of arbitrary input pulses into solitons. Consider a
pulse of widthw and peak amplitud&’,, and assume that
this pulse does not have the stationary soliton shape. This
pulse is represented by a point on the existence curve plot. If
this point is close to the curve, then the pulse soon evolves
into a stable soliton shapevhile shedding some power in
the form of radiation modes or smaller scale solijoi®nce
the solitons of the NLSEs we study here are stable, this hap-
pens even though their initial shape only approximates a soli-

FIG. 1. Existence curves of Kerr-type solito@ashed lin ton. . . .
solitons in a saturable nonlinear mediigolid cur\(/g?and deehp- . I—_|avmg established that K?” sol!tons are exactly self-
saturation solitongdashed-dotted lineall in (1+1)D. The vertical ~ Similar, and that deep-saturation solitons are approximately

axis gives the normalized width of the intensity of the soliton, in theSelf-similar, it is now compelling to ask: “Can solitons of
x-units of Eq.(1). The point indicated by describes the input pulse vVarious scales coexist in the same nonlinear medium simul-

to the fractal-generating process of Fig. 2. taneOUSIy?” If the answer is pOSitive, can they coexist within
) one another in a fractal structure? And, if the answer to this

;elf—simi!arity exists in the saturable case aIso.l Eurthermorqmestion is also positive, then how can a nonlinear system be
if a sgllton. of (1+1}D saturable NLSE satisfie$¥ (X griven to generate solitons organized in a fractal structure?
=02)[*>1 in the reg|onszwhere mgst of the energy of theThe answers to all of these questions are in the response of
soliton is  contained, |W[%/(1+[¥|*)~1—(1W¥[). Of the nonlinear system to a nonadiabatic change in @mne
course, th|§ approximation d_oes nof[ hold at th(_a tails of themore) of its properties. As described below, an abrupt
soliton. Still, most of the interesting properties can bechange in the nonlinear coefficient, or in the saturation coef-
captured by stud;gnglJrl)D NLSE with a nonlinearity ficient (in saturable systemsor in the dispersion coefficient
given by 1—(1/W[%); we call this nonlinearity the “deep- (for temporal soliton or in almost any parameter that leads
saturation nonlinearity.” We gave _checked numericallyiq 5 |arge deviation of the pulse from the soliton existence
that if the condition|W(x=02)|*>1 is satisfied, then in-  cyrve, will lead to the appearance of a fractal structure driven
deed most of the soliton’s physics is captured by studying,y soliton dynamics. In our simulations, we observe self-
the (1+1)D deep-saturation NLSE. W(x,2) is a solution  gimilarity and fractals both in the Kerr regime, and in the
of the (1'_|‘1)D deep-saturation NLSE, then a vx_/hole family deep-saturation regime of Efl). Here we present only the
of solutions can be obtained by re-scalin$(x,z)  results in deep-saturation, which can be realized with the
—e21-a)p(gx,q%2)/q, for any realq. Therefore, all soli- photorefractive nonlinearitysee Ref.[7], and references
tons of the same order ¢f+1)D saturable NLSE are related therein.
by this simple rescaling, as long as most of the energy of the Our goal is to design a physical system that can support
solitons is in the regions whef@|?>1; all of these solitons many solitons all of different sizes simultaneously. If one
are self-similar to one another in their physical propertiesstarts with a pulse whose shape is very far off the existence
such as intensity, shape, etc. This is because the natural scalerve, this pulse is not able to evolve smoothly into a soliton.
in the saturable NLSE is visible only in the margins of Under proper conditions, it breaks up into smaller pieces
the intensity profile of the soliton, and its effect on the shapeand radiation. Quite often, the pieces resulting from this
is tiny. “explosion” include many small solitons, all of different

We now introduce the concept of the soliton existencesizes. If the nonlinearity is such that these solitons are self-
curve[13], a two-dimensional curve that gives the full width similar to each other, one can claim to have observed self-
at half-maximum of the soliton intensity in normalized units, similarity.
as a function of the peak amplitude of the corresponding We distinguish between two scenarios that produce such
soliton, V(=W (x=0,z). The curve is drawn for the set of breakup. The first is driven by noise and is easier to realize
all solitons of the same order of a given NLSE, where eactexperimentally. Consider a pulse whose initial width is far
soliton is represented by a point on the graph. Differentabove the existence curve launched into a nonlinear medium
NLSEs have different existence curves, and solitons of difin the regime that can support self-similar solitdas in Fig.
ferent orders of the same NLSE lie on different existencel). Therefore, small perturbation@nitiated by nois¢ of
curves. According to the scaling relation described above, alarge wavelengths will grow on top of the pulse as it propa-
existence curve®f solitons of all ordersof Kerr NLSEs are  gates. After some distance, the energy in these perturbations
parallel lines of slope-1 on a log-log plot. The existence becomes significant, and the pulse breaks up into smaller
curves of saturable NLSEs are also parallel lines of slofie  pulses. This phenomena is knoWs] as modulational insta-
on a log-log plotwhich coincide with the Kerr curveéén the  bility (MI). In many physical systems, the products of this
region¥,<1. On the other hand, in deep-saturation wherebreakup include many solitons of different sizes. We call it
¥ ,>1, the existence curves are parallel lines of slope 1 on dMl-induced breakup.”
log-log plot, like in Fig. 1. The region in between these two The second breakup scenario is a “dynamics-induced
regimes, i.e., wher®,~ 1, we call the valley. All solitons of breakup.” It is observable in numerical calculations that in-
the same order of a saturable NLSE are to a large exteriterently have no or very little noise. It should also be ob-
self-similar to each other as long as they are all on the samgervable in “clean” experimental systems, such as temporal
side of the valley. solitons in optical fibers. Consider a pulse above the exis-
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tons after each breakup have to be in the regime where they
are all self-similar to each other.

A three stage fractal is presented in Fig. 2. This breakup is
dynamics-induced. At the input, self-focusing is much stron-
o ger than diffraction for a pulse of that width, so the pulse
-500 contracts and eventually breaks up into many self-similar
solitons observed at the output of the upper-left figure. At the
0. 0. TeRy L TS0 A0 760 plane of the output of the upper-left figure, we change the
denominator in the nonlinear term from-+1y|?> to 1
+(]#|%/8). This makes all the pulses at the output of the
upper-left figure have amplitude eight times smaller than
solitons of the same widths have. Then, we propagate the
output of the upper-left figure for a few more diffraction
lengths, resulting in a self-similar breakup of every pulse, as
shown in the upper-right plot of Fig. 2. For better clarity,
e oy Tooc only a detail of the upper-right plot is shown in the lower-left

. . . 75508 7551 . .

zinly plot. At the output of the upper-right figure, we change the
nonlinear term into % (||%/64), and propagate the pulse
S ; ; Yurther. As shown in the lower-right figure, we observe one
a fractal structurestarting in the deep'.satwat'qn regime of the more stage of self-similar breakup. In these simulations, we
+1)D saturable NLSE. The 1st stage is given in the upper-left plot. 2 > . .
The 2nd stage is given in the upper-right plot. A magnified detail¥S€ the saturabley| /1+|¢’|. nonlinearity, to Sh.OW when we
of the 2nd stage is shown in the lower-left plot. The con’[inuationexpect the fractal generation process to end in a real system.

of evolution of that detail into the 3rd stage is given in the lower- In thi_s case, the third stage shown by the '°Wer'”9ht figure i?
right plot. the final breakup, because most of the end solitons at this

stage are of peak intensities on the order of unity, which

tence curve launched into a self-focusing medium with theceases to be self-similar. As for the other end of this process,
initial pulse width much larger than the width of the lowesti.e., the first breakup, there is no upper limit: one can start
guided mode of this induced waveguide. The light coalescethis fractal generation process by literally breaking up plane
towards the center trying to reach the solitonic shape, iwaves.
which diffraction is exactly balanced by self-focusing. How-  To have a real fractal in mathematical sense, one should
ever, once the equilibrium is reached the pulse keeps shrinkiave a infinite number of stages in this process. However, as
ing because of its inertia. Since the equilibrium could notis the case with all other physical fractals, the number of
have been reached smootlithe pulse is initially far above stages is limited, thus resulting in a prefractal, rather than a
the existence curyethe pulse explodes into smaller pieces,fractal. The reason why all physical fractals live in only a
which form smaller solitons of different sizes. limited regime of scales is easy to understand. Both at large,

In our simulations, we observe both breakup mechanismsut primarily at small scales, sooner or later the scale of the
As an example, we present the dynamics driven breakufractal in question becomes comparable to some other rel-
shown in the upper-left plot of Fig. 2. Since both the under-evant physical scale. Such scale then modifies the physics of
lying equation and the initial pulse obey left-right symmetry, the system, and the equation representing the system is
the output multisoliton pulses also obey this symméiry  modified, typically to an equation that does not display self-
contrast with a Ml-induced breakup, since noise obeys naimilarity anymore. For example, at small scales, at least the
symmetry. atomic scale presents a lower bound to fractal generation.

In order to create fractals, one can apply the logic that haSpecifically for optical spatial solitons, the number of
caused this breakup in a repetitive manner. One can take thweakup stages is limited by the ratio between the beam
output “daughter solitons” at the end of the upper-left plot width (of any of the daughters solitons in a particular sjage
in Fig. 2, make an abrupt change in the nonlinear mediumand the optical wavelength in the medium. When this ratio is
and thus force each one of the daughter solitons to break ugmaller than, say 5, the beam is no longer paraxial and one
into a train of smaller solitons. This happens if the changehas to add other terms to the equati@and for ratio~1 the
moves the position of the daughter solitons far above thenderlying equation becomes vectoyiddor optical temporal
existence curve. Such a change in the nonlinear medium casolitons in fibers, the limiting factors are third order disper-
be realized either by altering the intensity of the pulsession, and additional nonlinear procesg¢es., Raman scatter-
abruptly, or by changing the coefficient in front % in Eq.  ing). In both cases, we realistically expect to observe 3—4
(1), or by changing the properties of the nonlineafityag-  Stages of breakup.
nitude, saturation, etc.lt is important that the change in the Let us go back now to the definition of a fracfd] as “an
conditions is abrupt; an adiabatic change does not causeabject which appears self-similar under varying degrees of
breakup, but instead the pulse adapts and evolves smoothigagnification. In effect, possessing symmetry across scale,
into a narrower soliton. When the change is abrupt and largwith each small part replicating the structure of the whole.”
enough, each of the pulses undergoes a self-similar breakupis obvious that the structures described in Fig. 2 are frac-
as illustrated in the top plot of Fig. 2. This process can bdals: they are self-similawithin each scaléi.e., the daughter
repeated, in principle, an infinite number of times, therebysolitons after each breakypand they are also self-similar
creating a fractal structure. Of course, all the resulting soli-over at least three widely separated scales. Also, as we show
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FIG. 2. Top view of a three-stage self-similar breakup creatin
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by the increasing magnificatiaifrig. 2), each part breaks up the ideas presented are not restricted by dimensiondtigy
again and again in a structure replicating the whole. It isshould be easy to translate into higher dimensions and we
obvious that we have found a way to generate fractals, whicknvision fractals that have two different transverse scales,
are driven by soliton dynamics. that is, when the width of every pulse inis much different
Several topics merit discussion. We want to emphasizéhan that iny. However, caution must be taken to make sure
the resemblance of our fractals to Cantor §2{sThis fractal  that the system can suppd-+1)D soliton structures first.
structure(after several breakup procespesactually aran-  The saturable NLSE can support stable bright 1)D soli-
domized Cantor sebecause at any given stage self-similariy,g [14], so we expect it to support 2D fractals as well.
structureg(solitonlike pulsepof various scales coexist, With There are many other new ideas under research, but the main
the distances between these pulses varying in what looks ”kéhallenge is experimental: to demonstrate fractals.
a r_andom manner, especially in the presence o_f significant |, conclusion, we proposed a general scheme of generat-
noise. Furthermore, the process we described is pretty rqng fractals by the dynamics of solitons that undergo abrupt
bust; in our simulations we did not have to be partlcularlychanges along their propagation pafis]. This method of
careful about when to start each particular stage in order fofactal generation is universal and should exist in any non-
our final creatures to be fractals. The presence of the noisgear system that can support solitons. Interestingly, this is
does not harm the fractal generation either; in fact, as Wene of the very few cases in which one can generate fractals
explained above, one can use this idea to build random fragsyperimentally and investigate them theoretically knowing

tals that are in factoise-driven This brings in another point: 51 the physics involved. In fact, experiments are currently
the fractal dimensionsThe fractal dimension can be esti- ¢5rried out in our laboratory to demonstrate fractals from

mated gsing bpx-counting metho_d, and it is obvious that thi%patial and temporal solitons.

dimension is(in general not an integer. In any case, the

fractal dimension is specific to the system and the initial We acknowledge enlightening discussions with Dem-
conditions used. Because the purpose of the paper is tetrios Christodoulides of Lehigh University. The work of
present a newgeneralidea, we leave the issue of the fractal M.S. and M.S. was supported by the U.S. Army Research
dimension to future work. Another topic has to do witac-  Office. The work of C.R.M. was supported by the Depart-
tals in higher Euclidian dimension®.g., in full 3D. Since ment of Energy.
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