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Nonlinear short-wave propagation in ferrites
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In this paper we discuss the propagation of nonlinear electromagnetic short waves in ferromagnetic insula-
tors. We show that such propagation is perpendicular to an externally applied field. In the nonlinear regime we
determine various possible propagation patterns: an isolated pulse, a modulated sinusoidal wave, and an
asymptotic two-peak wave. The mathematical structure underlying the existence of these solutions is that of the
integrable sine-Gordon equation.

PACS numbe(s): 41.20.Jb, 02.30.Jr

The subject of this paper is the propagation of electrodinear, equations. These intermediate models usually intro-
magnetic waves in ferrites. For our purposes,féyite we  duce a novel perturbative parameter, most often the longness
mean a ferromagnet of zero conductivity, a ferromagneti®r shortness of the wave, and then consider particular rela-
insulator. We will always assume that it is in the presence ofions between this parameter and the amplitude gedldn
an external magnetic field and that it is saturated. In thighe present case, Nakdta] carried out a study of the non-
case, due to the absence of eddy currents, electromagnetigéar case investigating the propagation of small-amplitude
waves may propagate. This is interesting not only from 6{_ong-waveIengthelectromagnetlc waves in a saturated fernt_e
theoretical point of view but also from a practical point of In the presence of an external magnetic field. Further studies
view, particularly in connection with the behavior of ferrite Where concerned with wave modulatigh7] and dissipation

devices such as ferrite-loaded waveguides at microwave fréSl: The propagation of long electromagnetic waves in an
quencied1]. isotropic damped ferromagnet with free charges has also

The equations that describe this wave propagation arBeen the object of recent studigk10).

fundamentally nonlinear. It is a simple exercise to show that As we stated above, these results refer to intermediate
. y ) P models where a long-wave approximation is supposed. This
in the absence of currents and charges, the Maxwell equ

Rurns out, however, not to be the most interesting physical

tions in a medium of scalar permittivity reduce to limit. The main practical interest of ferrites is that they
propagate microwaves. Thus, an opposite limit, a short-
) 52 wavelength limit, comes naturally into consideration. The

—V(V-H)+V°H= gﬁ(HﬂLM), (1) point is this: is it possible to construct a short-wa@W),

nonlinear limit of Egs(1) and(2)? If it is, do the nonlinear
= ) ) . effects show something new? We hold in this paper that the

wherec=1/yuoe is the speed of lighty, is the magnetic  apgyers for these questions are positive ones.
permeability of the vacuum, arld andH are, respectively, In basic physical systems asymptotionlineaj SW dy-
the magnetization density and the magnetic inductiBn.  namics cannot always be isolated owing to the particularly
passant we have assumed the usual constitutive relationgestrictive conditions required from the associated linear dis-
D=¢E and B=uo(H+M), where the symbols have their persion relations. Hence only few results eXisl,12. To
usual textbook meaning. our knowledge the case study here is the first one in which a

Equation (1) must be supplemented with a relation be- complete description of SW dynamics is given from basic
tweenM andH. This is the torque equation, which reads, physical equations.

under the hypothesis of zero damping, We will show that SW'’s propagate in a saturated ferrite
only in the direction perpendicular to the external saturating

M magnetic field. This comes as an existence condition for SW.
ot ~HoYMXH, @) Granted it is satisfied, the nonlinear dynamics obeys an inte-

grable system of nonlinear evolution equations which, for
where vy is the gyromagrtec ratio. It is by means of this instance, can be reduced to the sine-Gordon equation. As a
equation that nonlinearity sets in. consequence, soliton excitations are possible, and the dy-

For sufficiently small amplitudes a linear theory can, andnamics can be solved in this particular limit.

has, been developéd,3]. We shall return to the essentials of ~ We shall proceed in three steps. First, we will reproduce a
the linear analysis later. For the moment let us notice that part of the linear analysis di3], and study its short-wave
fully nonlinear theory has not been developed so far, as Egdimit. Next, we will construct a SW nonlinear model, through
(1) and(2) are not exactly solvable. In order to obtain resultsthe standard multiple scales method, based on the results of
valid in nonlinear regimes, at least weakly nonlinear, one hashe preceeding step. Finally, we will discuss the equations so
to resort to intermediate models, much in the same way onebtained from a physical as well as a mathematical point of
proceeds in hydrodynamics, where effective long-wave owriew. We will be able to show explicit propagating nonlinear
short-wave models are obtained from underlying, fully non-patterns.
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In order to clear the notation, let us rescale the variables The meaning of this result is that a SW can propagate
as only if ¢= /2. Condition(9) is thus an existence condition
for a SW. In what follows we need also to knaw, which

is given by
MOYM, H—>'u°yH, and t—ct. €]

M —
,(1+a)

M (10)

w1=
This gives us

Having put in focus the short-wave characteristics in the

) 1 4 linear limit, we now turn to the nonlinear aspects, which
= V(V-H)+V*H=— —(H+M), (4)  constitute the main results of this paper. We will resort to the
ce ot . .
multiple-scale method, adapted to short-wave asymptotics.
Thus, we will introduce rescaled, space and time variables,
oM such that
St = " MoYMXH. 5
Jd 19 J 190 J
_ o _ —=—-— and —=——-—+s—.
To study the linear limit regime we must look at Ix & dL gt edl I

small perturbations of a given solution. We choose the

uniform  state  Mo=(MoCOSe:Mosing,0) and  Hyg We will now consider general expansions of the form:

=(Ho cose,Hgsing,0), whereMy andH, are positive con- M=MO+sMD+2M@ 4 ...

stants, withHg=aMy(a>0) and < ¢o<m/2. We linearize

Egs.(4) and(5) around this state and assume for the pertur- H=HO+gHM 4+ g2H@ 4 ... (12)
bations a plane wave solution propagating alongxtl@ec-

tion, so thatM=Mg+me'®*~“) and H=Hy+he' =) and we consider that all the functions depend on the vari-

wherem andh are real vectors of componentsi(,m,,m,)  ables{ and . Before substituting these expansions into Egs.
and (hy,hy,h;), and wherek and  are, respectively, the (4) and (5), let us state the boundary conditions, which
wave number and the frequency of the wave. This leads tare M(®—(0,M,,0), H(®—(0H,,0), M"—-(0,0,0), and

the following dispersion relation: H®—(0,0,0) for{— — . Moreover, we impose that all de-
rivatives ofH; andM; go to zero for{— — . Using the new
Mé[w2(1+a)—ak2][w2(1+ a)— K3 (a+sirfe)] variables, the derivative operators, the expansiorMoand
H and using the new boundary values we find, at the first
— 0¥ (0®—k?)?=0. (6)  orders in e, that M s the constant vectorM(©®

=(0M,,0) and thatH{”’=0. The second order equations
The above results can be found[B]. We will be interested |ead toM§,1)= M{M=0 and to the relations
in studying the short-wave limik—«. To do so, suppose

that k~&~ 1, with e<1, and furthermore, that(k) is (1y_ 1) Jd )y (0)
bounded or has a pole of order onekjrthat is to say that we My’=—H" and a_gMX =MoHz ™. (12)
may write
The third order leads to a system of six equations which
w_1 reduces, using the precedent orders, to a system of two
w=——+eot 3wyt (7). coupled equations for the functioht andM{",
: : - - I o~ ol o
This assumption corresponds just to the requirement that —Hy ' =M — M, (13
ar y 2MO (?g

short-waves exist in the linear limit, as with such a disper-

sion relation we have that the phase veloeitfk)/k and the 72 M
group velocitydw/ ok are always bounded in the short-wave Mgl):_omg(l)(Hy)Jr Mo). (14)
limit, resulting in finite velocity propagation of geometrical 9Lt 2

characteristics and of energy. Note, furthermore, that this The above system of equatiofk) and(14) is a nonlin-
expansion selects one of the branches of the dispersion rela- ystern q : . o
tion. A more detailed treatmefig] shows that it is the so- ear system describing the evolution of the first nontrivial

: : : . .. terms in the expansion ¢ andM. It is worth pointing out
called ordinary branch, with waves propagating with velocity . ) . .
¢, that is chosen. Introducing such an expressiorBinwe that the phenomena so described, and which will be dis-

. - cussed below, involve effects @¥(1) in H and of O(¢) in
get, at the first order ia, M. We will now discuss the consequences of these results.
These will follow from the fact that Eq$13) and(14) can be
reduced to an integrable system, which displays exact solu-
tions. We would like to point out that the importance of the
In the following we will considew _; =ko, hence choosing a integrability of this system comes not only from the fact that
direction of propagation. The next order leads to we can find exact solutions, but also, and overall, from the
fact that the large time asymptotics of such systems is well
sirf(¢)=1. 9 determined. Indeed, the solutions for large tinfessthe in-

w?,=Kk3. (8)
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termediate asymptotid45]) can be qualitatively determined E
from the initial conditions. Thus the general picture emerges 1
where for large enough times the solutions are composed of
a train of solitons plus some radiative part. )

The system of equation$l3) and (14) is a (1+1)- 7.5 -5 -2.5 2.5 5 7.5
dimensional reduction of d2+1)-dimensional integrable
system found irf13]. But instead of proceeding through di-
mensional reduction, we will prefer to present a straightfor-
ward transformation from the system in question to the sine-
Gordon equation[14], and then map some well-known
solutions of this equation to solutions of the systi®) and
(14).

The transformation referred above is best understood if -3
made in two steps. First, we define FIG. 1. The solitary-wave profile of the functidh=H{” com-

ing from the kink solution to Eq(23) with My=a=1.
Mg(l): +0, (15) 9 a(23) o=«
4 the original physical variables. Here we shall treat two dis-
H(yO): ~Mo+——17,, (16) tinguished cases: the kink solution and the breather solution
0 to Eq. (23).

, The kink solution of the sine-Gordon equation is given by
which leads us to the system

P 26 v=4 arctafexpz)], (29
alar 2 bR (A7) \ith z=ké&+ 7, /k. We can obtain the functioH {9 by going
through the reversed transformations. We omit the details,
%0 an which are purely algebraic manipulations. The result is
agarzz o’ (18

H®O=aMo—2Mq(1+a)sec(z)=F(2), (25

which, through the following transformation: and is depicted in Fig 1. The result implies the possibility of

propagation of short electromagnetic pulses in ferrites. In

a—n=ucos(v), (190  this case we can also calculate the functidd", which
¢ turns out to be

0 _ M P = +M2(1+ a)secliz) (26)
— = 0 .

37 usin(v), (20) X

The breather solutions to ER3) are a family of solu-
takes us to the system tions parametrized by, given by:

3_U:0 (21) m  sin(y1—m?y)
ar ! v=—4arcta , (27)
1—m2 coshiimw)
9% .
— 2ussin(v). (220 where y=\2u({+7), w=\2u({—7), with u=M}1
JdTd¢ + a)/4. It is possible to write down the expression febij'o)
The corresponding boundary conditions are as
2
lim u=+M3(1+a)/4, ©)_ —_
é’ﬂ—oc Hy aMO_ 4M0(1+a) 1—|—X2 1 (28)
lim v=n, where
(=
N P
with n an integer. It is then obvious that one solution is to X = m__ sin(yl-m y).
take u constantu=*+M3(1+ a)/4 and consider the evolu- y1-m? coshimw)

tion of v given by the sine-Gordon equation, which reads’This is a quite involved expression and it is worth looking at
after the transformatiog=¢/u, 7=,/ Ju: some particular cases. The first case, fok1l, gives a

92V modulated wave
agalesm(v). (23

sir[V2u(¢+ )]
cosf[my2u(¢—7)]
(2

. . . . , H®— aMo=—4Mq(1+ a)m?
This equation has extensively been discussed in textbooks

[16]. Let us see how the solutions to E&3) are reflected in

9
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G This expression does not describe a solitary wave, but its
0.25 large time limits composed of two single waves of the same
amplitude. In Fig. 2 we plot the function
0.2
e H® - aM, a1
0.15 (giT)__4MO(1+a) ( )
o for 7="50.
0 05 Let us now summarize these results. The system consid-
' ered is a ferromagnetic insulator, modeled to be infinitely
2 extended, and under the influence of an external magnetic
45 50 55 60 field. Propagation of electromagnetic waves is possible under
FIG. 2. Plot ofG(g,r)E(H(yo)—aMo)/[—4M0(1+a)] given these circumstances. Thl_s propagation is ess_enually nonlin-
by Eq. (31) for r=50. ear. We have studied this system asymptoticaly, for short

wavelengths, which we knew to exist in the linear limit. It
rns out thati) propagation can occur only perpendicular to
the external field(ii) the system of equations describing the
a%w limit is integrable and can be mapped to the sine-Gordon
e(_aquation;(iii) propagation of pulses as well as of modulated
waves are predicted. We note also that when speaking of
pulses, we refer here not to sinusoidal waves but rather to
propagating magnetic field configurations accompanied by a
magnetization wave.

(¢+7)%secR({—7) ]
Psoch 5| The authors thank P.G. Estz and J. Len for useful
[1+(f+7)%sech({—7)] discussions. This work was partially funded by CAPES,
(30 FAPESP, and CNRS.

This represents a wave of small wavelength whose amplitud
is modulated by the cosh term over a larger space scale.
Indeed the envelope propagates in the opposite direction
the wave itself, with the same speed, and the typical wav
number is proportional ton<<1.

Finally, from Eq.(28) in the casen=1 we get

H®—aMo=—4Mg(1+a)
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