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Perturbative and nonperturbative parts of eigenstates and local spectral density of states:
The Wigner-band random-matrix model

Wen-ge Wang
Department of Physics, South-east University, Nanjing 210096, China;
International Center for the Study of Dynamical Systems, 22100 Como, Italy;
Department of Physics and Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China
(Received 16 January 1998; revised manuscript received 22 July 1999

The Wigner-band random-matrix model is studied by making use of a generalization of Brillouin-Wigner
perturbation theory. Energy eigenfunctions are shown to be divided into perturbative and nonperturbative parts.
Several perturbation strengths predicted by the perturbation theory are found to play important roles in the
variation of the shape of the local spectral density of states with perturbation strength.

PACS numbegs): 05.45—-a

The average shape of energy eigenfuncti@fs's), char-  +\v;;, whereEiozi (i=1,... N) are eigenenergies of the
acterizing the spreading of perturbed eigenstates over unpesigenstates oH° labeled by|i) and \ is for adjusting the
turbed eigenstates, is of importance in a wide range of physiperturbation strength. Off-diagonal matrix elemewngs=v;;
cal fields, from nuclear physics to condensed-matter physicgre random numbers with Gaussian distribution for 1
(see, e.g.[1-6]). Recently, another important quantity, the <|i—jl<b ((vijy=0 and(vizj>=1) and are zero otherwise.
so-called local spectral density of stat@dOS), has also  Hereb is the bandwidth of the Hamiltonian matrix ahdis
attracted lots of attentioitsee, e.g.[5-9]). This quantity its dimension. Eigenstates bf, labeled by|«), are also or-
gives information about the “decay” of a specific unper- dered in energyH|a)=E,|@).
turbed state into other states due to interaction. In particular, Before discussing properties of the WBRM, let us first
the width of LDOS defines the effective “lifetime” of the cite two results of the GBWPT in Reff10]. The first one is
unperturbed state. Numerically, it is already known that forthat, an eigenstater) can be divided into a nonperturbative
Hamiltonian matrices with band structure generally both theNPT) part [t)=P|a) and a perturbative(PT) part |f)
average shape of EF’s and that of LDOS can be divided inte=Q|a) by two projection operatorE’inpjp li)(i] andQ
two parts: central parts ano_l tails vv_ith_exponen('mi fast_e? _ =1-P, wherep, and p, are determined bly two require-
decay. However, an analytical def|r_1|t|on for such a d|V|S|0nmentS:(i) (p,—p;) has the smallest valuéj)
has not been achieved yet. A possible clue for this problem
comes from a generalization of the Brillouin-Wigner pertur- lim (a|(T")"T" ) =0, 1)
bation theory(GBWPT) introduced in Ref[10] for studying n—o

long tails of EF’s, which tells that analytically EF’s can be where T=[1/(E, —H%]Q\V. (Subscriptse for the opera-

divided into perturbative gnd nonperturbative parts with PeTiors P and Q, etc., are omitted for brevityThe PT partf)

¥an be expanded in a convergent perturbation expansion by
fhaking use of the NPT paft) even when perturbation is
strong. The second result is that, defining the size of the NPT

. . part [t) as N,=p,—p;+1, the perturbation strength at
The so-called Wigner-band random-matrtVBRM) e N,=b, denoted by\,, is of importance since the

model was introduqed by Wigner more than 40 years a9%tructure of the perturbation expansion|bf for the case of
[11] for the description of complex quantum systems as NUN_=b is different from that foN,<b. Another perturbation
clei. It is currently under close investigatigsee, e.g.[12— P b

. o . . .. st th of int tis th llestfor N,=2, label
17]) since it is believed to provide an adequate descriptio Strength of interest is the smallestfor N, abeled by

r}\f, which indicates the beginning of the invalidity of the
also for some other complex systems, €.g., the Ce g&m ordinary Brillouin-Wigner perturbation theory.

and as well as for dynamical conservative systems possess- ; _ 0 ;

. . . L . : ; Introducing an operatod=QV[1/(E,—H")]Q and its
ing chaotlc'classmal limit. I—!avmg been studied eXten.s"Velyeigensolution:tJ|v>=UV| »), one can show that the condition
both analytically and numerically, many of th_e properties Of(1) is equivalent to the requirement that all the values of
the WBRM are already known clearly, especially, analyt|cal|)\u | are less than one. Then, using the perturbation expan-
techniques for studying the LDOS of the WBRM have been_. ' ' .

; . sion of the PT part ofle) and an expansiorQAV|t)
developed quite wel[l7]. However, there are still some prop- 3 ,h.|»), one can show that each componen=(j|a)
erties of the model which have not been studied, e.g., the = »'»"/: ponent=(j|a

L L . . with  je[pi—(m+1)b,p;—mb) or (p,+mb,p,+(m
division of EF’s into perturbative and nonperturbative parts.+ 1)b], wherem=0, can be expressed as
It is such properties of the model that we are to study in this ' - P
paper by making use of the GBWPT. 1 h
The Hamiltonian matrix of the WBRM model studied in C. .= 2 [1 ; (jlv)
— uV

this paper is chosen of the fori;; = (H%+\V); =E’5; “ E.~E &

sion. The relationship between central parts and nonpertu
bative parts of EF’s was not studied in R€10], but it is
quite important as well.

(Au,)™ (2
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FIG. 1. The average shape of EF’s in the middle energy region

for A=0.6, b=10, andN=300. The vertical dashed-dot lines indi-
cate positions of the averaged boundafyandp3 of the NPT parts
of the EF’s.

Since|\u,|<1 for all v, the behavior of the long tails of

EF’s of the WBRM is more or less like exponential decay. In & il

fact, from the viewpoint of the GBWPT, the proof and argu-
ments given in Ref[5] for exponential-like behaviors of
long tails of the LDOS of the WBRM are still valid when
perturbation is strong. Equatid@) shows that the decaying
speed of|C,;j| for m=0 should be slower than that fon
>0. The two regions {§,,p,+b] and[p;—Db,p;) will be
called thesloperegions of the eigenstafe).

Now let us study the division of EF’s into perturbative

IC oyl
T
05 | |
i I a=148
04 . I
! |
03 | i
! |
02 H
! 2 | ?
01 15 280 i
0.0--49-9-9-0—o°-o-°'ooooo'| & o ""T‘o: & 'b¢°~oo°‘e-er°‘o~oooo<
; |
| i
01 1 i
05 | |
i ! =149
0.4 . |
! |
03 | |
| ‘
02 | ° |
SR
0.1 !'?‘, b
Lo e @
o ,'0'6 . cl o :d,'se “L o..a
009-0-9-00-0%0 0 4 T >0007°0" '9.0-0-0 000000
; |
0.1 I i
130 135 140 145 150 155 160 165 170
0
E'y

FIG. 2. Values of|C,|? (circles for two states|a) when
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FIG. 3. (a) Same as in Fig. 1 fox=1.4. (b) Same as i(a) in
logarithm scale.

(PT) and nonperturbativéNPT) parts numerically. For an
EF of anH matrix obtained by numerical diagonalization,
the boundary of its NPT part is calculated by finding the
pair(s) of (py,p,) with the smallesN, ensuring that condi-
tion (1) holds. In order to check the results thus obtained,
eigenvalues ofA\U are also calculated. The shape of an
eigenstatg «) in the unperturbed states can be defined as
W, (E®) =32/ C | 28(E°—EY), whereC = (k| ). In order
to obtain the average shape of eigenstates, we express
W,(E® with respect toE, before averaging. The average
shape of eigenstates, denotedVWES), can also be divided
into a NPT part and a PT part by the averaged boundary of
the NPT parts of the statds), denoted bypi=(p,—E,)
and p5=(p,—E,), respectively. The average size of the
NPT parts of eigenstates {,)=(p,—p;+1).

The first numerical result we present is for the case of
N=300, b=10, and\ =0.6. This is a case for whidN, can
be equal to both 1 and 2. The average shape of EF'scfor
from 130 to 170 is given in Fig. 1 with the boundarjgsand
p5 indicated by vertical dashed-dot lines. Then, we increase
the value of\ to 1.4. For this\, N,=b for some of the
eigenstates, e.gN,=9,10 for = 148,149, respectively. In-
dividual EF’s for the two|a) are given in Fig. 2 with their

=1.4. Vertical dashed-dot lines indicate positions of the boundariepoundaries of the NPT parts. The average shape of EF’s in

p; andp, of the NPT parts of the states.

the middle energy region for= 1.4 is presented in Fig.(8),
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FIG. 4. Same as in Fig. 2 for=30.0, b=10, andN=900 in

logarithm scale.
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FIG. 6. Variation ofAS. (circles and A Sgyy (squareswith A
(N=500p=10).

N=30, b=10, andN=900, the main bodies of the EF’s
occupy only part of their NPT regions betwepn and p,.

This property of the EF’s could explain the phenomenon of
localization in the energy shell. In our opinion, the localiza-
tion is in fact localization of EF’s in their NPT regions. Fig-
ure 4 also shows that although many components of the NPT
parts of the EF's are quite small, their decaying speed is
obviously slower than that in the PT parts of the EF’s. The

the main body of which lies obviously in the averaged NPTaverage shape of the EF’s in this case has been found show-

region. Figure &) also shows why the two regior{g]

ing similar features as in Fig. 3 with respect to the NPT

—b,p%) and (3,p5+b] are called “slope” regions. Figure regimes. _ o
3(b) shows that, as predicted above, the decaying Speed of In Orde.r to have a clear picture for the Varlatlon. Of the
the averaged EF’s in the two slope regions is obviouslyaverage sizéN,) of NPT parts of EF’s with\, we plot it in

slower than that in the long-tail regions.

Fig. 5 by circles. Numerically we have found that;,, the

A feature of the WBRM model is that in some regimes of smallest\¢, is about 0.4 ang\,)~1.5. Figure 5 shows that
the parameter there would appear the so-called localizatioflNp) has four types of behavior separated by three values of
in the energy shel[12]. Behaviors of EF’s in their NPT X, namely, A min, (Ap), and \g=4.5. When A <X\{ nn,
regions in these regimes of the parameter are different froiNp)=0. In the region of k¢ min.(\p)), the value of(N)
that shown in Fig. 2. For example, as shown in Fig. 4, wherhas a quadratic dependence »n(upper-left inset When
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FIG. 5. Circles show the values 6N,) and the triangles show

A>(\p), the dependence ¢N,) on A becomes linear, but
the slope forn<Aq is different from that forA>\g. The
variance ofN,, denoted byAN,, is small compared with
N, as shown in the lower-right inset of Fig.(Bircles.

The local spectral density of statdDOS) for an unper-
turbed statek) is defined aspf(E)=2,|Cl20(E—E,).
The average shape of the LDOS, denotedpb{E) (sub-
scripts will be omitted, can be obtained in a way similar to
that for the EF's discussed above, except thé@E) are
expressed as functions dt ¢ EE) before averaging. Proper-
ties of the LDOS of the WBRM have already been studied
well (see, e.q.[5,12,14), especially, the corresponding ana-
lytical techniques have already been developed {¥@lIThe
reason for us to pay some attention to it in this paper is that
the role of A\, and A\ has not been discussed in previous
work.

Let us first study the transition of the average shape of the
LDOS from the Breit-Wigner form to the semicircle form.

the half-width of the LDOS K=500p=10). The three solid FOr this we make use of two quantities\Sgy
straight lines are fitting lines. The upper-left inset shows the fitting:ﬂPL(E) —pew(E)|dE and AS;=[|p.(E) — ps{E)|dE,

curves of the quadratic form fdiN,) and for the half-width of the
LDOS, respectively, fon from 0.4 to 1.5. The lower-right inset

shows the values akN,, (circles.

which measure the deviation of the LDQS(E) from its
best fitting Breit-Wigner form and from the semicircle form,
respectively,
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/27 2 of the average shape of LDOS, the variation of which is
pew(E)= ———, pSC(E):—Z\/ROZ—EZ, (3) given in Fig. 5 by triangles. We see that the well-known
E°+T7/4 TRy guadratic dependence and linear dependence of the half-

o . width on perturbation strength is separated by the perturba-
where Ry=\\8b. Variation of the two quantities\Sgw  tion strength(\,).

(squaresandA S (circles with A are given in Fig. 6. Fox In conclusion, in this paper numerically it is shown that
alittle larger tham iy, @s is well known, the LDOB.(E)  the central part of the average shape of EF’s is composed of
is close to the Breit-Wigner form anliSgyy is small. When s nonperturbativeNPT) part and the slope region of its

\ reacheg\,)~1.5, the LDOSp, (E) is absolutely different  pertyrhative(PT) part predicted by the GBWPT. Three per-
from the Breit-Wigner form, while it becomes close to the yrpation strengths related to properties of the size of NPT
semicircle form. When is larger tham ;~4.5, the value of parts of EF’s, namelyy;, \,, and\, have been found also

AS,; becomes quite small, indicating that the LDOS is al-t5 play important roles in the variation of the shape of the
ready quite close to the semicircle form. Since the semicirclg pos.

form p;{E) obeys a scaling law undeE—E/\, pg

—A\pse, andRy—Ry/\, when the LDOSp (E) is close to This work was partly supported by the National Basic
the semi-circle form, it should obey an approximate scalingResearch Project “Nonlinear Science,” China, the Natural
law. Therefore, the perturbation strengthcan be regarded Science Foundation of China, Grants from the Hong Kong
as characterizing the beginning for the LDOS to obey a goodResearch Grant CoundiRGC), and a Hong Kong Baptist
approximate scaling law. Second, let us study the half-widtiniversity Faculty Research GratRRG).
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