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Universality classes in the random-storage sandpile model
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The avalanche statistics in a stochastic sandpile model where toppling takes place with a probabilityp is
investigated. The limiting casep51 corresponds to the Bak-Tang-Wiesenfeld~BTW! model with a determin-
istic toppling rule. Based on the moment analysis of the distribution of avalanche sizes we conclude that for
0,p,pc the model belongs to the direct percolation universality class while forpc,p,1 it belongs to the
BTW universality class, wherepc is identified with the critical probability for directed percolation in the
corresponding lattice.

PACS number~s!: 05.65.1b, 05.70.Ln
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Sandpile automata were proposed as a paradigm of
organized critical~SOC! phenomena@1#. These simple mod-
els capture its essential dynamics, which takes place in
form of avalanches of all sizes. At the early state of SO
theory it was believed that the critical state of sandpile
tomata is insensitive to changes in model parameters; h
ever, some recent works contradict this statement. For
stance, Vespignani and Zapperi@2# have shown that driving
and dissipation rates actually act as control parameters, c
cality is obtained after fine tuning of these fields. On t
other hand, we have recently shown that a class of mo
with stochastic rules display a transition from SOC to
rected percolation~DP! with increasing the degree of sto
chasticity @3#. Nevertheless, before we make our final co
clusion, we have to investigate if the original Bak-Tan
Wiesenfeld~BTW! sandpile automaton and these modifi
models belong to the same universality class; otherwise,
would just be different models. One may thus ask, do de
ministic and stochastic sandpile models belong to the s
universality class?

The BTW automaton is defined on ad-dimensional hy-
percubic lattice of linear sizeL. On each sitei an integer
variablezi is defined, which we call energy following@2#.
Energy is added to the system by selecting a site at ran
and increasing its energy by one, i.e.,zi→z111. The energy
addition continues until one of the sites reaches or excee
thresholdzc52d; then this site topples, transferring ener
to its neighbors. Toppling is defined by the set of ruleszi
→zi2zc and zj→zj11 at each of thej nearest neighbors
The toppling at one site may induce an avalanche of topp
events. After the avalanche has stopped we restart ad
energy to the system. Open boundary conditions are
sumed. The toppling rules of this model are determinis
and the only randomness is introduced through the rand
energy addition.

Maybe the simplest stochastic sandpile model is
Manna or d-state model@4#. In this casezc5d,2d and,
therefore, onlyd of the 2d neighbors will receive energy
after toppling. Thesed neighbors are selected at random. T
real-space renormalization-group approach@5# suggests tha
the BTW and Manna models belong to the same universa
class. However, there is not complete agreement in num
cal simulations. Early large-scale simulations of the Man
PRE 611063-651X/2000/61~1!/944~4!/$15.00
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@4# and BTW models@6# in two dimensions show that th
avalanche distributions are described by the same expon
for the power-law decay and the scaling of the cutoffs. Th
results were contradicted by more recent estimates of
avalanche exponents by Lu¨beck and Usadel@7#. On the other
hand, Ben Hur and Biham@8# analyzed the scaling of condi
tional expectation values of various quantities, obtaining s
nificant differences in the exponents for the two mode
However, Chessaet al. have recently shown@9# that the
method of conditional expectation values, introduced
Ben-Hur and Biham, is systematically biased by nonuniv
sal corrections and, therefore, does not provide indicati
on universality classes. Moreover, according to the lar
scale simulations performed by Chessaet al. @9#, the BTW
and Manna models belong to the same universality class

In the Manna model the randomness appears in the en
transfer after toppling, but the condition for toppling is d
terministic. Motivated on a directed model by Ta´dic and
Dhar @10# we have proposed a different model, where si
topple whenz>zc52d but with probability p @3#. In this
case, as in the BTW model, each of the 2d neighbors re-
ceives one energy grain but the condition for toppling
stochastic. In the particular casep51 one recovers the BTW
model. Forp,1 sites accumulate a random amount of e
ergy, random-storage model~RSM! @11#. From mean-field
theory and numerical simulations in one dimension@3# we
have shown that the RSM self-organizes into a critical st
for pc,p,1, while it is subcritical forp,pc . The subcriti-
cal state is found to be similar to DP andpc is identified with
the critical threshold for DP. The correlation length exp
nents are identical to those of DP but other exponents res
are different due to open boundary conditions. However
that occasion our analysis was limited to a small region cl
to pc and simulations were performed only ind51. Thus,
we could not provide any indication about the universal
classes.

In the present paper we extend the numerical simulati
of the RSM to the whole range ofp, in one and two dimen-
sions. To determine the avalanche size and duration ex
nents we use moment analysis, a technique previously in
duced by de Menechet al. @12# to obtain the scaling
exponents for the BTW model. techniques. The numer
evidence suggests that the RSM and the BTW model bel
944 ©2000 The American Physical Society
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to different universality classes. Moreover, forp,pc we cor-
roborate that the model is similar to DP.

The meanfield~MF! theory of the RSM@3# reveals that
there is a critical probabilitypc below which the system is
subcritical. In this regimep is small and sites accumulate
large amount of grains. Let us assume that all sites h
heights above the critical thresholdzc . Then when a new
grain is added at a certain site this site will topple with pro
ability p. If it topples, then each of its nearest neighbors w
also topple with probabilityp and so on. This picture is
equivalent to a site-directed percolation problem, where s
become active with probabilityp if one of its neighbors was
active in the previous step. Hence, the correlation lengt
given byj;(pc2p)2n, wherepc is the critical threshold for
site-directed percolation in the corresponding lattice andn is
the spatial correlation length exponent. Now, ifp!pc in
such a way thatj!L, whereL is the system size, then a
avalanche starting from a bulk site will never reach t
boundary and, therefore, no grain will be dissipated. Hen
the average height will increase in time because dissipa
will not balance the grain addition from the external fie
After a time long enough most sites will have heights abo
zc , supporting our starting assumption. The dynamical s
below pc is thus equivalent to DP andpc is identified with
the site DP threshold in the corresponding lattice. Abovepc
and forz.zc at all sites the system will still be equivalent~at
least for small times! to DP and an infinite avalanche will b
generated. However, such a state is not stable becaus
infinite avalanche will reach the boundary leading to dissi
tion of grains and hence the decrease of the column hei
up to the avalanche has stopped. Abovepc the stationary
state is no more equivalent to DP. The balance between
grains added by the external field and dissipation at
boundary leads to a SOC state. Our task will be to determ
if this SOC state belongs to the same universality class of
BTW model.

Let s be the avalanche size andT its duration.s is the
number of toppling events in an avalanche.T is the number
of steps required to obtain a stable configuration star
from the initial site withz>zc , which triggered the ava
lanche, taking into account that on each step all sites
updated in parallel following the toppling rule. Boths andT
are random variables. Their distributions are given by,
suming scaling,

Px~x!5x2txf x~x/xc!, ~1!

wherex is s or T, sc andTc are the cutoff avalanche size an
duration, andf x is a cutoff function. The cutoffs scale wit
the characteristic length of the systemj according to

xc;jbx, ~2!

wherebs5D, b t5z, D is the avalanche dimension, andz is
the dynamic scaling exponent. In the SOC statej;L and,
therefore, the cutoffs scale with system size. On the contr
in the subcritical statej;(pc2p)2n and, hence, the cutoff
diverges whenp approachespc . The scaling exponentstx
and bx are not all independent. From the identityP(s)ds
5P(T)dt one obtains

~ts21!D5~t t21!z. ~3!
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On the other hand, in the SOC state (p.pc) the mean ava-
lanche size should scale as^s&;L2 and, therefore,

~22ts!D52. ~4!

These scaling relations are useful to test the reliability of
numerical estimates.

The purpose of present numerical simulations is to de
mine the exponentsts , t t , D, andz. We are going to take up
this task using as fundamental technique the moment an
sis @12#. Theq moment is given by

^xq&5E dxP~x!xq;jsx(q), ~5!

where

sx~q!5bx~12tx!1bxq. ~6!

The last equivalence in Eq.~5! is not valid for small values
of q. For smallq the integral depends on the functional for
of P(x) in the whole range ofx, while scaling assumptions
are, in general, not valid for smallx. The extreme case isq
50, normalization imposessx(0)50 and, therefore, Eq.~6!
is not valid. But, forq>tx21 largex dominates leading to
the last equivalence in Eq.~5!.

After computing the moments one can obtainsx(q) from
a linear fit to the log-log plot of̂ xq& vs j. Then one can
obtaintx andbx from a linear fit to the straight part of th
plot sx(q) vs q. Abovepc we havej;L, but it is a function
of p below. To compute the correlation length belowpc we
use the following expression@3#:

j2;

(
t50

`

(
i 50

L

~ i 2 i 0!2rai

(
t50

`

(
i 50

L

rai

, ~7!

wherei 0 is the position of the initial active (z>zc) site, t is
the number of steps measured in the time scale of the
lanche, andrai51 (rai50) in active~inactive! sites. More-
over, from the log-log plot ofj vs pc2p one can obtain a
numerical estimate ofpc andn.

d51: The BTW model (p51) in one dimension exhibits
trivial critical behavior @1#. No power-law behavior is ob-
served in the avalanche size and duration distributions; h
ever, one can compute the exponentsD andz from the scal-
ing of the moments with system size, resulting inD'2 and
z'1. Using these values and the scaling relations in Eqs.~3!
and ~4! one could obtain the exponentsts and t t (ts5t t
51); however, these scaling laws are not valid in this ca
because the distributions of avalanche size and duration
not follow the scaling law in Eq.~1!. On the contrary, the
RSM in one dimension has nontrivial behavior. Theq depen-
dence ofss ands t , for different values ofp,1, is shown in
Figs. 1 and 2, respectively. The numerical estimates of
scaling exponents are given in Table I. Forpc,p<0.8 we
observe thatss(q), D, ts , andt t are practically insensitive
to changes inp, but systematic deviations are observed
s t(q) and z. For p50.9 the scaling exponents are betwe
those for p51 and p50.8. On the other hand, using th
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946 PRE 61BRIEF REPORTS
numerical data belowpc , we have obtainedpc50.707
60.002, n51.0760.03, andz51.5760.02 that are, within
the numerical error, identical to the series-expansion e
mates for site DP in a square lattice@13#. Moreover, the
exponentsd5t t21 andz are consistent with previous nu
merical simulations@3#. We have also carried out finite-siz
scaling of the distributions of avalanche size and duration
all cases, including the BTW limit, we observe a good d
collapse and the obtained scaling exponents are in agree
with those obtained from the moment analysis. Moreov
within the numerical error, the scaling relations in Eqs.~3!
and ~4! are satisfied.

d52: The BTW model has nontrivial exponents. How
ever, the data collapse was not compatible with the sca
assumption in Eq.~1!. The corrections to scaling in the BTW
has been found to be very strong@7,9#, making necessary th
use of very large lattice sizes to obtain accurate estimate
the scaling exponents. The largest lattice size used in
simulations,L5512, seems to be not large enough. Us
lattice sizes ranging formL5512 toL52048 Chessaet al.
@9# have obtained a good finite-size scaling for the distrib
tion of avalanche size, but have not for the distribution
avalanche duration. We thus rule out the possibility of de
mining the BTW exponents in two dimensions with su
small lattice sizes. Instead of that, we are going to use

FIG. 1. Plot ofss(q) in d51 for different values ofp. Data
abovepc50.707(2) were obtained using lattice sizesL580, 160,
320, and 640. Data belowpc were obtained using probabilitiesp
50.670, 0.688, 0.696, and 0.7000.

FIG. 2. Plot ofs t(q) in d51. The lattice sites and probabilitie
used are the same as Fig. 1.
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numerical estimates by Chessaet al. @9# and Lübeck and
Usadel@7#. On the contrary, the RSM displays good finit
size scaling for the lattice sizes we have used. Moreover,
scaling exponents obtained from the finite size scaling ar
agreement with those obtained from the moment analy
The q dependence ofss(q) and s t(q) is shown in Figs. 3
and 4, respectively. The numerical estimates of the sca
exponents for different values ofp,1 are given in Table II,
together with the reports by Chessaet al. @9# and Lübeck and
Usadel @7# for the BTW model.ss(q), D, ts , and t t are
practically insensitive to changes inp abovepc , even con-
sidering the deterministic limit. On the contrary,s t(q) andz
suffer from systematic deviations with changingp. In this
case we must be more careful because the finite-size ef
have stronger influence on the distribution of avalanche
ration. For instance, for the largest lattice size usedL5512
the distribution of avalanche sizes covers about six deca
while the distribution of avalanche durations covers less t
five decades. To obtain more precise determination of
dynamic scaling exponents we must increase system siz
the mean time, the scaling exponents of the distribution
avalanche sizes indicate that the RSM in the rangepc,p
,1 belongs to the same universality class of the BT
model, which correspond with the limitp51. On the other
hand, below pc we have obtainedpc50.34460.001, n
50.72860.002, andz51.7660.02 which are, within the nu-
merical error, identical to the numerical estimates for site
in a body-centered-cubic~bcc! lattice @14#. In this case the
difference between the exponents below and abovepc is sig-
nificant, showing that the RSM above and belowpc belongs
to different universality classes.

TABLE I. Scaling exponents ind51 for different values ofp.
Numbers in parentheses are uncertainty figures.

p D z ts t t

1 2 1
0.9 2.25~1! 1.48~2! 1.12~1! 1.17~2!

0.8 2.27~1! 1.52~2! 1.12~1! 1.18~2!

0.708 2.27~1! 1.54~2! 1.13~1! 1.18~2!

p,pc 2.34~1! 1.57~2! 1.16~1! 1.20~2!

FIG. 3. Plot ofss(q) in d52 for different values ofp. Data
abovepc50.344(1) where obtained using lattice sizesL564, 128,
256, and 512. Data belowpc where obtained using probabilitiesp
50.26, 0.30, 0.33, and 0.34.
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The numerical simulations ind52 corroborate that the
RSM is similar to DP belowpc . As in d51, the exponents
n andz and the critical probabilitypc are identical to the DP
values in the corresponding lattice. On the other hand,
difference between the exponentsD andz, obtained using the
data belowpc and those obtained above but close topc , is
far from being contained within the error bars. The mod
above and belowpc belong to different universality classe
Below pc it is DP with open boundaries and random initi
seed, while abovepc we will continue using the term RSM

The numerical evidence obtained for the avalanche
distribution indicates that ind52 the RSM belongs to the
universality class of the BTW model. The scaling expone
ts , t t , andD are practically independent ofp in the SOC

FIG. 4. Plot ofs t(q) in d52. The lattice sites and probabilitie
used are the same as Fig. 3.
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regimepc,p<1; however,z shows a strongp dependence,
which may be attributed to finite-size effects. On the co
trary in d51 the distribution of avalanche sizes and durati
for the BTW model display trivial behavior while in th
RSM they satisfy the scaling hypothesis. In larger dime
sionsd.2 we expect that the SOC regime of the RSM b
longs to the BTW universality class as ind52 .

In summary the RSM has three different regimes.~i! 0
,p,pc similar to DP,~ii ! pc,p,1 where the toppling rule
are still stochastic but the system is in a SOC state, and~iii !
p51 ~BTW! the toppling rules are deterministic. Based
the moment analysis of the distribution of avalanche sizes
conclude that for 0,p,pc the model belongs to the DP
universality class while forpc,p,1 it belongs to the BTW
universality class.

We thank A. Vespignani for bringing to our attention two
dimensional simulations. This work was partially support
by theAlma Materprize, given by the University of Havana

TABLE II. Scaling exponents ind52 for different values ofp.
Numbers in parentheses are uncertainty figures.

p D z ts t t

1 2.73~2! @9# 1.52~2! @9# 1.293 @7# 1.480 @7#

0.9 2.74~1! 1.53~2! 1.28~1! 1.48~2!

0.8 2.75~1! 1.54~2! 1.29~1! 1.48~2!

0.6 2.74~1! 1.58a 1.29~1! 1.47a

0.4 2.74~1! 1.61a 1.28~1! 1.46a

p,pc 2.90~1! 1.76~2! 1.27~1! 1.43~2!

aThese exponents may be affected by finite-size corrections.
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