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Universality classes in the random-storage sandpile model
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The avalanche statistics in a stochastic sandpile model where toppling takes place with a prgbability
investigated. The limiting cage=1 corresponds to the Bak-Tang-WiesenféBd'W) model with a determin-
istic toppling rule. Based on the moment analysis of the distribution of avalanche sizes we conclude that for
0<p<p. the model belongs to the direct percolation universality class whil@ferp<1 it belongs to the
BTW universality class, where, is identified with the critical probability for directed percolation in the
corresponding lattice.

PACS numbd(s): 05.65+b, 05.70.Ln

Sandpile automata were proposed as a paradigm of self4] and BTW modeld6] in two dimensions show that the
organized criticalSOQ phenomendl]. These simple mod- avalanche distributions are described by the same exponents
els capture its essential dynamics, which takes place in thior the power-law decay and the scaling of the cutoffs. These
form of avalanches of all sizes. At the early state of SOCresults were contradicted by more recent estimates of the
theory it was believed that the critical state of sandpile auavalanche exponents by heck and Usadgl7]. On the other
tomata is insensitive to changes in model parameters; howtand, Ben Hur and Bihaif8] analyzed the scaling of condi-
ever, some recent works contradict this statement. For intional expectation values of various quantities, obtaining sig-
stance, Vespignani and Zappg2i] have shown that driving nificant differences in the exponents for the two models.
and dissipation rates actually act as control parameters, critHowever, Chessat al. have recently showrh9] that the
cality is obtained after fine tuning of these fields. On themethod of conditional expectation values, introduced by
other hand, we have recently shown that a class of modeBen-Hur and Biham, is systematically biased by nonuniver-
with stochastic rules display a transition from SOC to di-sal corrections and, therefore, does not provide indications
rected percolatiorfDP) with increasing the degree of sto- on universality classes. Moreover, according to the large-
chasticity[3]. Nevertheless, before we make our final con-scale simulations performed by Chessaal. [9], the BTW
clusion, we have to investigate if the original Bak-Tang-and Manna models belong to the same universality class.
Wiesenfeld(BTW) sandpile automaton and these modified In the Manna model the randomness appears in the energy
models belong to the same universality class; otherwise, thelyansfer after toppling, but the condition for toppling is de-
would just be different models. One may thus ask, do deterterministic. Motivated on a directed model by dia and
ministic and stochastic sandpile models belong to the samBhar[10] we have proposed a different model, where sites
universality class? topple whenz=z.=2d but with probabilityp [3]. In this

The BTW automaton is defined ondadimensional hy- case, as in the BTW model, each of thd Beighbors re-
percubic lattice of linear sizé. On each sitd an integer ceives one energy grain but the condition for toppling is
variable z; is defined, which we call energy followin]. stochastic. In the particular cape=1 one recovers the BTW
Energy is added to the system by selecting a site at randommodel. Forp<1 sites accumulate a random amount of en-
and increasing its energy by one, iz+2z;+1. The energy ergy, random-storage mod&dRSM) [11]. From mean-field
addition continues until one of the sites reaches or exceedstheory and numerical simulations in one dimensj8h we
thresholdz.= 2d; then this site topples, transferring energy have shown that the RSM self-organizes into a critical state
to its neighbors. Toppling is defined by the set of rukes for p.<p<1, while it is subcritical fopp<p.. The subcriti-
—Z—2. andz;—z;+1 at each of thg nearest neighbors. cal state is found to be similar to DP apdis identified with
The toppling at one site may induce an avalanche of topplinghe critical threshold for DP. The correlation length expo-
events. After the avalanche has stopped we restart addingents are identical to those of DP but other exponents results
energy to the system. Open boundary conditions are asre different due to open boundary conditions. However, in
sumed. The toppling rules of this model are deterministicthat occasion our analysis was limited to a small region close
and the only randomness is introduced through the randono p. and simulations were performed only éh=1. Thus,

energy addition. we could not provide any indication about the universality
Maybe the simplest stochastic sandpile model is thelasses.
Manna ord-state model4]. In this casez.=d<2d and, In the present paper we extend the numerical simulations

therefore, onlyd of the 2d neighbors will receive energy of the RSM to the whole range @f in one and two dimen-
after toppling. Thesd neighbors are selected at random. Thesions. To determine the avalanche size and duration expo-
real-space renormalization-group appro@6hsuggests that nents we use moment analysis, a technique previously intro-
the BTW and Manna models belong to the same universalitguced by de Menechet al. [12] to obtain the scaling
class. However, there is not complete agreement in numerexponents for the BTW model. techniques. The numerical
cal simulations. Early large-scale simulations of the Mannavidence suggests that the RSM and the BTW model belong
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to different universality classes. Moreover, forp. we cor-  On the other hand, in the SOC stagXp.) the mean ava-

roborate that the model is similar to DP. lanche size should scale é&s)~L? and, therefore,
The meanfield MF) theory of the RSM 3] reveals that
there is a critical probabilitpp, below which the system is (2—-19D=2. (4)

subcritical. In this regimep is small and sites accumulate a h i lati ful he reliability of th
large amount of grains. Let us assume that all sites havé ese scaling relations are useful to test the reliability of the
numerical estimates.

heights above the critical threshoid. Then when a new . . . .
grain is added at a certain site this site will topple with prob- _The purpose of present numerical smulagons s to deter-
ability p. If it topples, then each of its nearest neighbors will TN€ the exponents;, 7, D, andz We are going to take up
also topple with probabilityp and so on. This picture is th's task using as fundgmgntal technique the moment analy-
equivalent to a site-directed percolation problem, where siteS'S [12]. Theq moment is given by

become active with probabilitg if one of its neighbors was

active in the previous step. Hence, the correlation length is (ﬂ):j dx P(x)x9~ £7x(@) (5)
given byé~(p.—p) 7, wherep, is the critical threshold for
site-directed percolation in the corresponding lattice ansl
the spatial correlation length exponent. Now,pifp. in
such a way that<L, wherelL is the system size, then an o.(q)=By(1— 1)+ B,q. (6)
avalanche starting from a bulk site will never reach the

boundary and, therefore, no grain will be dissipated. HenceThe last equivalence in Eg@5) is not valid for small values
the average height will increase in time because dissipationf g. For smallq the integral depends on the functional form
will not balance the grain addition from the external field. of P(x) in the whole range ok, while scaling assumptions
After a time long enough most sites will have heights aboveare, in general, not valid for smatl The extreme case
Z., supporting our starting assumption. The dynamical state=0, normalization imposes,(0)=0 and, therefore, Eq6)
below p. is thus equivalent to DP angl is identified with  is not valid. But, forg=r,— 1 largex dominates leading to
the site DP threshold in the corresponding lattice. Abpye the last equivalence in Eg5).

and forz>z, at all sites the system will still be equivaleatt After computing the moments one can obtaif(q) from
least for small timesto DP and an infinite avalanche will be a linear fit to the log-log plot ofx%) vs £. Then one can
generated. However, such a state is not stable because tbbtain 7, and 8, from a linear fit to the straight part of the
infinite avalanche will reach the boundary leading to dissipaplot o,(q) vs g. Above p, we haveé~L, but it is a function
tion of grains and hence the decrease of the column heightsf p below. To compute the correlation length belpwwe
up to the avalanche has stopped. Abguethe stationary use the following expressigr3]:

state is no more equivalent to DP. The balance between the

where

grains added by the external field and dissipation at the i o

boundary leads to a SOC state. Our task will be to determine 26 2 (= 10)Pai

if this SOC state belongs to the same universality class of the £~ ) (7)
BTW model.

M

L
_2 Pai
=0

Let s be the avalanche size ardits duration.s is the i
number of toppling events in an avalancfiels the number
of steps required to obtain a stable configuration startingvherei is the position of the initial activez&z,) site,t is
from the initial site withz=z., which triggered the ava- the number of steps measured in the time scale of the ava-
lanche, taking into account that on each step all sites arfanche, ang,;=1 (p,;=0) in active(inactive sites. More-
updated in parallel following the toppling rule. BosandT  over, from the log-log plot of vs p.—p one can obtain a
are random variables. Their distributions are given by, asnumerical estimate g, and v.
suming scaling, d=1: The BTW model p=1) in one dimension exhibits
B trivial critical behavior[1]. No power-law behavior is ob-
Pr(X)=x""f(XIxc), (D served in the avalanche size and duration distributions; how-

wherexissor T, s, andT, are the cutoff avalanche size and ever, one can compute the exponetandz from the scal-

duration, andf, is a cutoff function. The cutoffs scale with ing of the moments with system size, resultingn-2 and

X . z~1. Using these values and the scaling relations in B]s.
the characteristic length of the systéhaccording to and (4) one could obtain the exponents and 7, (.=

X~ £, (2)  =1); however, these scaling laws are not valid in this case
because the distributions of avalanche size and duration do
whereBs=D, B,=z, D is the avalanche dimension, anis not follow the scaling law in Eq(1). On the contrary, the
the dynamic scaling exponent. In the SOC statel and, RSM in one dimension has nontrivial behavior. Theepen-
therefore, the cutoffs scale with system size. On the contraryence ofos andoy, for different values op<1, is shown in
in the subcritical staté~ (p.—p) ~” and, hence, the cutoffs Figs. 1 and 2, respectively. The numerical estimates of the
diverges wherp approachep,. The scaling exponents, ~ Scaling exponents are given in Table |. Fiy<p<0.8 we

and B, are not all independent. From the ident®(s)ds  observe thatr5(q), D, 75, and 7, are practically insensitive
=P(T)dt one obtains to changes i, but systematic deviations are observed for

o(q) andz For p=0.9 the scaling exponents are between
(rs—1)D=(1—1)z. (3) those forp=1 andp=0.8. On the other hand, using the

0
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6 48 TABLE |. Scaling exponents il=1 for different values ofp.
i o 0.9 ﬁﬁﬁ Numbers in parentheses are uncertainty figures.
]
]
o 0.8 mmdl p D z Ts Tt
SR I < S SR 1 2 1
-]
S' e“ﬂ 0.9 2.25%1) 1.482) 1.121) 1.172)
S iy 0.8 2.271) 1.522) 1.121) 1.182)
mm“’ 0.708 2.271) 1.542) 1.131) 1.182)
_o® P<pec 2.341) 1.572) 1.161) 1.202)
ola®” -
0 1 2 3 numerical estimates by Chessaal. [9] and Libeck and
g Usadel[7]. On the contrary, the RSM displays good finite-

FIG. 1. Plot ofog(q) in d=1 for different values ofp. Data
abovep.=0.707(2) were obtained using lattice sizes 80, 160,
320, and 640. Data beloyw, were obtained using probabilitigs
=0.670, 0.688, 0.696, and 0.7000.

numerical data belowp., we have obtainedo,=0.707
+0.002, »=1.07£0.03, andz=1.57+0.02 that are, within

size scaling for the lattice sizes we have used. Moreover, the
scaling exponents obtained from the finite size scaling are in
agreement with those obtained from the moment analysis.
The g dependence ofr4(q) and oy(q) is shown in Figs. 3
and 4, respectively. The numerical estimates of the scaling
exponents for different values pf<1 are given in Table I,
together with the reports by Chessizal.[9] and Libeck and
Usadel[7] for the BTW model.c¢(q), D, 75, and 7, are

the numerical error, identical to the series-expansion eStipracticaIIy insensitive to changes mabovep,, even con-
mates for site DP in a square latti¢@3]. Moreover, the  sjdering the deterministic limit. On the contraey,(q) andz
exponentsé=r,—1 andz are consistent with previous nu- syffer from systematic deviations with changipgIn this
merical simulationg3]. We have also carried out finite-size case we must be more careful because the finite-size effects
Scaling of the distributions of avalanche size and duration. |rhave Stronger influence on the distribution of avalanche du-
all cases, including the BTW limit, we observe a good dataation. For instance, for the largest lattice size used512
collapse and the obtained scaling exponents are in agreemefk distribution of avalanche sizes covers about six decades
with those obtained from the moment analysis. Moreoveryhile the distribution of avalanche durations covers less than

within the numerical error, the scaling relations in E(3.
and(4) are satisfied.

five decades. To obtain more precise determination of the
dynamic scaling exponents we must increase system size. In

d=2: The BTW model has nontrivial exponents. HOw- the mean time, the scaling exponents of the distribution of
ever, the data collapse was not compatible with the scalingyalanche sizes indicate that the RSM in the rapge p
assumption in Eq(1). The corrections to scaling inthe BTW <3 pelongs to the same universality class of the BTW
has been found to be very strofig9], making necessary the model, which correspond with the limii=1. On the other
use of very large lattice sizes to obtain accurate estimates @fand, below p. we have obtainedp.=0.344+0.001, »
the scaling exponents. The largest lattice size used in our 0.728+0.002, andz= 1.76+ 0.02 which are, within the nu-
simulations,L =512, seems to be not large enough. Usingmerical error, identical to the numerical estimates for site DP

lattice sizes ranging forlh =512 toL =2048 Chessat al.

in a body-centered-cubitbco) lattice [14]. In this case the

[9] have obtained a good finite-size scaling for the distribu-gifference between the exponents below and algvis sig-

tion of avalanche size, but have not for the distribution ofyificant, showing that the RSM above and belpwbelongs
avalanche duration. We thus rule out the possibility of deteryq giferent universality classes.

mining the BTW exponents in two dimensions with such

small lattice sizes. Instead of that, we are going to use the 8 : : -
+
o 0.9 4o
' { 6 440
- +
ir o 0.9 ggﬁﬁ' ° 0.4 +5§QQ
o 0.8 gt ~ topP
3r gg P: 4r ﬁé
+  p<p g8 g e
< 2} 6® 2t ﬁﬁ
“ " o)
S o0 @@d,m
]
1t mmmm 0 _EHB@ \
o 0 1 2 3
2
o la® .
0 1 2 3 q
q FIG. 3. Plot ofag(q) in d=2 for different values ofp. Data

FIG. 2. Plot ofay(q) in d=1. The lattice sites and probabilities

used are the same as Fig. 1.

abovep.=0.344(1) where obtained using lattice sites 64, 128,
256, and 512. Data below, where obtained using probabilitigs
=0.26, 0.30, 0.33, and 0.34.
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+F TABLE II. Scaling exponents ird=2 for different values of.
4t o 0.9 ++o° Numbers in parentheses are uncertainty figures.
¢ O
o 0.4 ++;88E|
3l ++08D p D z Ts Tt
+ p<p +3g8”
N e ++88 1 2.732) [9] 1.522) [9] 1.293[7] 1.480[7]
b Ll L8 ] 0.9 2.741) 1.532) 1.281) 1.482)
& ot 08  2.751) 1.542) 1291)  1.482)
L §§§9 | 06  2.741) 158 1.291) 147
ﬁaé 0.4  2.741) 1.68 1.291) 1.46
. |0 | p<p. 2.901) 1.762) 1271 1432
0 1 2 3 #These exponents may be affected by finite-size corrections.
g

regimep.<p=<1; howeverz shows a strong dependence,
FIG. 4. Plot ofoy(q) in d=2. The lattice sites and probabilities which may be attributed to finite-size effects. On the con-
used are the same as Fig. 3. trary ind=1 the distribution of avalanche sizes and duration
for the BTW model display trivial behavior while in the
RSM they satisfy the scaling hypothesis. In larger dimen-
sionsd>2 we expect that the SOC regime of the RSM be-
longs to the BTW universality class asd+2 .

The numerical simulations id=2 corroborate that the
RSM is similar to DP belowp.. As ind=1, the exponents
v andz and the critical probabilityp, are identical to the DP ; o
values in the corresponding lattice. On the other hand, the< In<sum_m{:|1ry tthgg(s..'\)/l his t<hr1ee :lffert?]nttregllm(a*@.ol
difference between the exponeflt&indz, obtained using the P=DPc Simifarto =il ) pc=p= 1 Where Ine toppling ruie

. . till stochastic but the system is in a SOC state,(aind
data belowp, and those obtained above but closeptg is ar_e S . 7
far from being contained within the error bars. The modelp_1 (BTW) the toppling rules are deterministic. Based on

above and belowp,, belong to different universality classes. the moment analysis of the distribution of avalanche sizes we

Below p. it is DP with open boundaries and random initial conclude. that for &p<pc the moqlel belongs to the DP

seed, while above, we will continue using the term RSM. un!versal!ty class while fop.<p<1 it belongs to the BTW
The numerical evidence obtained for the avalanche sizgmversahty class.

distribution indicates that il=2 the RSM belongs to the We thank A. Vespignani for bringing to our attention two-

universality class of the BTW model. The scaling exponentslimensional simulations. This work was partially supported

Ts, Ty, andD are practically independent @f in the SOC by theAlma Materprize, given by the University of Havana.
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